首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane-bound proteolysis may be implicated in the pathogenesis of demyelinating disorders including multiple sclerosis (MS). We previously found that the extent of myelin basic protein (MBP) degradation by the calcium-activated neutral protease did not differ for isolated human control myelin or MS myelin. Hence we suggested that, if involved in demyelination, the myelin neutral protease must be activated in vivo by an increased availability of free calcium. The postulate was therefore tested that immunoglobulin (Ig) binding to myelin results in activation of the myelin neutral protease, possibly through release of free calcium from calcium-binding sites of myelin. Isolated myelin from the brains of controls and patients with MS were incubated with purified Igs eluted from the brains of patients with MS or controls and degradation of MBP was assessed by quantitative electroimmunoblotting. Such degradation was significantly greater in myelin incubated in the presence of MS Igs than in myelin incubated without added Igs or in the presence of control Igs. Furthermore, the degree of MBP degradation in myelin incubated with control Igs was similar to that observed in myelin incubated without added Igs. Accordingly, it is suggested that Ig in MS brain potentiates myelin breakdown. Moreover activation of membrane-bound proteolysis by Ig binding to myelin appears to represent a hitherto undescribed pathway for demyelination in MS.  相似文献   

2.
Degradation of myelin basic protein (MBP) in human man myelin was monitored by electroimmunoblotting. Problems of variation between, as well as within, electroimmunoblots were overcome by the introduction of an internal standard in each sample, thus allowing reproducible quantification of MBP. The Ca2+-dependent protease acting on MBP was active at endogenous levels of Ca2+ (congruent to 300 micrograms/g myelin) and was inhibited in the presence of Ca2+ chelators. Extensive degradation of MBP occurred rapidly in the presence of added Ca2+, reaching a plateau after a 1 h incubation (80-85% degradation). The proteolytic activity was not enhanced in the presence of 2-mercaptoethanol. It was most active at neutral pH and at temperatures approaching physiological conditions. No difference was observed between proteolytic activities of control and multiple sclerotic myelin. It is suggested that fluctuations in the accessibility of free Ca2+ to the protease may lead to the regulation of Ca2+-activated myelinolysis.  相似文献   

3.
ADP-Ribosylation of Human Myelin Basic Protein   总被引:2,自引:0,他引:2  
Abstract: When isolated myelin membranes were ADP-ribosylated by [32P]NAD+ either in the absence of toxin (by the membrane ADP-ribosyltransferase) or in the presence of cholera toxin, the same proteins were ADP-ribosylated in both cases and myelin basic protein (MBP) was the major radioactive product. Therefore, cholera toxin was considered a good model for ADP-ribosylation of myelin proteins. Although purified human MBP migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular mass of 20 kDa, the microheterogeneity that is masked under these conditions can be clearly demonstrated on alkaline-urea gels at pH 10.6. At this pH, MBP is resolved into several components that differ one from the other by a single charge (charge isomers). These charge isomers can be resolved on CM52 columns at pH 10.6, and several can be ADP-ribosylated. Component 1 (C-1), the most cationic charge isomer, incorporated 1.79 mol of ADP-ribose/mol of protein. C-2 and C-3 (which differ from C-1 by the loss of one and two positive charges, respectively) incorporated slightly less at 1.67 and 1.63 mol of ADP-ribose/mol of protein, respectively, whereas C-8, the least cationic, incorporated less than 0.11 mol/mol of protein. In the presence of neutral hydroxylamine, the ADP-ribosyl bond was shown to have a half-life of about 80 min, suggesting an N-glycosidic linkage between ADP-ribose and an arginyl residue of the protein. As MBP contains several components that are ADP-ribosylated to different specific activities, the use of MBP, ADP-ribosylated in the natural membrane, to identify the sites involved would yield a mixture of peptides difficult to resolve. Therefore, to identify the sites ADP-ribosylated, an endoproteinase Lys-C digest of C-1 ADP-ribosylated by cholera toxin was prepared. Two radioactive peptides were isolated by reversed-phase HPLC. Amino acid and sequence analyses identified the radioactive peptides as residues 5–13 and 54–58 of the human sequence (sp. act., 0.89 and 0.62 nmol of ADP-ribose/nmol of peptide, respectively). The ADP-ribosylated residues were identified as Arg9 and Arg54 by automated and manual Edman sequencing. Taken together with our previous observation that MBP binds GTP at a single site, these data suggest that MBP functions as part of a signal transduction system in myelin.  相似文献   

4.
Monoclonal Antibodies to Human Myelin Basic Protein   总被引:1,自引:1,他引:0  
SJL/J and (SJL X PL) F1 hybrid mice were immunized with intact human myelin basic protein (MBP) or the three major peptic fragments of MBP, residues 1-38, 39-89, and 90-170. Immune spleen cells were fused with mouse myeloma P3 X 63Ag8 (NS1) cells in the presence of polyethylene glycol. Hybridoma supernatant culture fluids were screened for antibody to MBP by a solid-phase radioimmunoassay (RIA). The specificity of the monoclonal antibody (mAb) was characterized by RIA using the three major MBP peptic fragments and subfragments as well as MBP and MBP fragments of different species with known amino acid sequence differences. Six MBP mAbs were generated, one of them IgM isotype and the remainder IgG isotypes. One mAb each reacted against regions of residues 22-38, 39-69, 70-89, 90-116, and two reacted against residues 118-157. Immunoblots also showed that the five IgG mAbs were reactive against MBP and the peptic fragment of MBP containing the epitope. Immunohistochemical studies showed the IgG mAbs specifically stained myelinated fiber tracts in human brain tissue.  相似文献   

5.
Abstract: Cultured murine oligodendrocytes elaborate extensive membrane sheets that, unlike multilamellar myelin in vivo, allow the study of interactions between myelin proteins and cytoskeletal elements. This article describes the events that occur due to the interaction of specific antibodies with their respective antigens, myelin/oligodendrocyte-specific protein (MOSP) and myelin/oligodendrocyte glycoprotein (MOG), which are expressed uniquely by oligodendrocytes. After antibody binding, surface anti-MOSP:MOSP complexes redistribute over those cytoplasmic microtubular veins that have 2',3'-cyclic nucleotide 3'-phosphohydrolase colocalized along them. In contrast, surface anti-MOG-MOG complexes redistribute over internal myelin basic protein domains. Long-term anti-MOSP IgM exposure results in an apparent increase in number as well as thickness of microtubular structures in oligodendrocyte membrane sheets, whereas long-term anti-MOG exposure causes depolymerization of microtubular veins in membrane sheets. These data suggest that antibody binding to these two surface proteins elicits signals that have opposite effects on the cytoskeleton in oligodendroglial membrane sheets. Thus, it is possible that signals transduced via antibody binding may contribute to the pathogenesis of diseases affecting CNS myelin.  相似文献   

6.
Incubation of myelin purified from rat spinal cord with CaCl2 (1-5 mM) in 10-50 mM Tris-HCl buffer at pH 7.6 containing 2 mM dithiothreitol resulted in the loss of both the large and small myelin basic proteins (MBPs), whereas incubation of myelin with Triton X-100 (0.25-0.5%) and 5 mM EGTA in the absence of calcium produced preferential extensive loss of proteolipid protein (PLP) relative to MBP. Inclusion of CaCl2 but not EGTA in the medium containing Triton X-100 enhanced degradation of both PLP and MBPs. The Ca2+-activated neutral proteinase (CANP) activity is inhibited by EGTA (5 mM) and partially inhibited by leupeptin and/or E-64c. CANP is active at pH 5.5-9.0, with the optimum at 7-8. The threshold of Ca2+ activation is approximately 100 microM. The 150K neurofilament protein (NFP) was progressively degraded when incubated with purified myelin in the presence of Ca2+. These results indicate that purified myelin is associated with and/or contains a CANP whose substrates include MBP, PLP, and 150K NFP. The degradation of PLP (trypsin-resistant) in the presence of detergent suggests either release of enzyme from membrane and/or structural alteration in the protein molecule rendering it accessible to proteolysis. The myelin-associated CANP may be important not only in the turnover of myelin proteins but also in myelin breakdown in brain diseases.  相似文献   

7.
Myelin basic protein (MBP) and two peptides derived from MBP (MBP1–44 and MBP152–167) stimulated Schwann cell (SC) proliferation in a cAMP-mediated process. The two mitogenic regions of MBP did not compete with one another for binding to SC suggesting a distinctive SC receptor for each mitogenic peptide. Neutralizing antibodies to the fibroblast growth factor receptor blocked the mitogenic effect of the myelin-related SC mitogen found in the supernatant of myelin-fed macrophages. The binding of 125I-MBP to Schwann cells was specifically inhibited by basic fibroblast growth factor (bFGF) and conversely the binding of 125I-bFGF was competitively inhibited by MBP. These data suggested that the mitogenic effect of one MBP peptide was mediated by a bFGF receptor. The binding of MBP to ganglioside GM1 and the ability of MBP peptides containing homology to the B subunit of cholera toxin (which binds ganglioside GM1) to compete for the binding of a mitogenic peptide (MBP1–44) to SC, identified ganglioside GM1 as a second SC receptor. Based on these results, we conclude that MBP1–44 and MBP152–167 associate with ganglioside GM1 and the bFGF receptor respectively to stimulate SC mitosis.  相似文献   

8.
Sites in Myelin Basic Protein that React with Monoclonal Antibodies   总被引:6,自引:6,他引:0  
The epitopes (antigenic sites) for seven monoclonal antibodies (MAbs) evoked in rats or mice by guinea pig or monkey myelin basic protein (BP) have been located in four different sequences of the BPs extracted from various species. Six of the MAbs were evoked by guinea pig BP. (1) One epitope, possibly a pair, is included within residues 1-14 of all BPs tested and reacts with two rat IgG MAbs. (2) A definite pair of overlapping epitopes includes the central Phe91-Phe92 sequence. One epitope is contained entirely within sequence 90-99 and reacts with a rat IgG MAb. The substitution of Ser in chicken BP for Thr97 destroys this epitope. The other epitope appears to include residues on the amino side of Phe44 and even of His32 and suggests some tertiary structure in BP. This epitope reacts with a mouse IgM MAb that does not recognize the chicken substitution. (3) The third epitope lies within residues 114-121, specifically including Trp118, and reacts with a rat IgG MAb. A cross-reacting epitope probably includes residues 44-45 in certain species (guinea pig and bovine but not rabbit). (4) Another pair of epitopes is located within residues 131-140 but is severely species-restricted. This region in guinea pig BP evoked a species-specific mouse IgM MAb. The same region in monkey BP evoked the seventh MAb, a mouse IgG, which reacts with human, chimpanzee, monkey, bovine, and rat-18.5 kDa BPs and to a lesser extent rabbit BP but not with guinea pig, pig, or chicken BPs. Some tertiary structure in guinea pig BP is also suggested by the reactivities with the IgM MAb. All of the MAbs react with myelin in histologic preparations, but the optimum method of preparation of the tissue varies with each.  相似文献   

9.
Human and rat myelin preparations were incubated with varying concentrations of trypsin and plasmin to determine the effects of these proteolytic enzymes on myelin-associated glycoprotein (MAG), basic protein, and other myelin proteins and to compare the effects with those of the neutral protease that was reported to be endogenous in myelin. Basic protein was most susceptible to degradation by both trypsin and plasmin, whereas MAG was relatively resistant to their actions. Under the assay conditions used, the highest concentrations of trypsin and plasmin degraded greater than 80% of the basic protein but less than 30% of the MAG, and lower concentrations caused significant loss of basic protein without appreciably affecting MAG. Neither trypsin nor plasmin caused a specific cleavage of MAG to a derivative of MAG (dMAG) in a manner analogous to the endogenous neutral protease. Thus the endogenous protease appears unique in converting human MAG to dMAG much more rapidly than it degrades basic protein. MAG is slowly degraded along with other proteins when myelin is treated with trypsin or plasmin, but it is less susceptible to their action than is basic protein.  相似文献   

10.
BALB/c mice and Lewis rats were immunized with human myelin basic protein and its N- and C-terminal fragments. Mouse X mouse fusions produced seven monoclonal antibodies, all of the IgG class and directed against the N-terminal fragment. Five of the antibodies seemed to be against the same epitope, between amino acid residues 92 and 118. One antibody bound between residues 45 and 91, and the remaining antibody reacted with both peptides 1-44 and 45-91. Three monoclonal antibodies, all of the IgM class, were obtained by rat X rat hybridization. Two monoclonal antibodies, raised against whole myelin basic protein and the C-terminal fragment, respectively, each bound to peptide 118-178. The remaining antibody, raised against the N-terminal fragment, bound to peptide 45-91. These monoclonal antibodies are of interest for use in clinical radioimmunoassays and for immunohistochemical investigation of the structural relationships of the myelin sheath.  相似文献   

11.
Direct treatment of brain myelin with freezing/thawing in 0.2 M 2-mercaptoethanol stimulated the endogenous myelin phosphatase activity manyfold when 32P-labeled phosphorylase a was used as a substrate, a result indicating that an endogenous myelin phosphatase is a latent protein phosphatase. When myelin was treated with Triton X-100, this endogenous latent phosphatase activity was further stimulated 2.5-fold. Diethylaminoethyl-cellulose and Sephadex G-200 chromatography of solubilized myelin revealed a pronounced peak of protein phosphatase activity stimulated by freezing/thawing in 0.2 M 2-mercaptoethanol and with a molecular weight of 350,000, which is characteristic of latent phosphatase 2, as previously reported. Moreover, endogenous phosphorylation of myelin basic protein (MBP) in brain myelin was completely reversed by a homogeneous preparation of exogenous latent phosphatase 2. By contrast, under the same conditions, endogenous phosphorylation of brain myelin was entirely unaffected by ATP X Mg-dependent phosphatase and latent phosphatase 1, although both enzymes are potent MBP phosphatases. Together, these findings clearly indicate that a high-molecular-weight latent phosphatase, termed latent phosphatase 2, is the most predominant phosphatase responsible for dephosphorylation of brain myelin.  相似文献   

12.
Myelin isolated from goldfish brain shows a multilamellar structure with a major dense line and two intraperiod lines. Sodium dodecyl sulfate gel electrophoresis revealed that the protein profile of goldfish brain myelin is distinctly different from that of rat brain myelin. No protein migrating to the position of proteolipid protein or DM-20 was seen in goldfish myelin. Goldfish acclimated to 5 degrees, 15 degrees, and 30 degrees C showed no qualitative differences in myelin proteins. The 13.5 kD protein in goldfish brain myelin and brain homogenate was intensely immunostained with the antiserum to human basic protein by the immunoblot technique. In contrast, none of the proteins of goldfish myelin were immunostained with antiproteolipid protein serum; however, both proteolipid protein and DM-20 of rat brain myelin were immunostained. The significance of the synthesis of myelin proteins by astrocytes in the goldfish brain is discussed.  相似文献   

13.
A New Form of Myelin Basic Protein Found in Human Brain   总被引:2,自引:0,他引:2  
Human myelin basic protein was subjected to ion-exchange chromatography at high pH to separate the differently charged components. Polyacrylamide gel electrophoretic patterns of the fractions showed that the less basic fractions 3, 4, and 5 contained significant amounts of a protein somewhat smaller than the more common 18.5-kDa form. Fraction 3 consisted of approximately equal amounts of this smaller polypeptide and component 3, the 18.5-kDa form found in other mammalian myelin basic protein preparations. The two proteins in fraction 3 were separated by fast protein liquid chromatography. Both have blocked N termini and identical C termini (-Met-Ala-Arg-Arg). When the tryptic digests of the two proteins were fractionated by HPLC, the elution profiles were similar, except that four peaks found in the chromatogram of the larger protein were missing from the chromatogram of the smaller one. In addition, an extra peak was found in the elution pattern of the latter chromatogram. Amino acid analysis of the individual tryptic peptides indicated that the smaller protein lacked residues 106-116 (-Gly-Arg-Gly-Leu-Ser-Leu-Ser-Arg-Phe-Ser-Trp-). The deleted portion corresponds exactly to the amino acid sequence encoded by exon 5 of the mouse basic protein gene. This new form of myelin basic protein has a molecular weight of 17,200, calculated from its amino acid composition.  相似文献   

14.
This paper proposes a tentative amino acid sequence of guinea pig myelin basic protein obtained by comparison of peptide fragments of the guinea pig and bovine proteins. Analyses of the tryptic peptides confirmed the known sequence differences in the NH2-terminal half of the molecule and showed that in the COOH-terminal half of the guinea pig protein Ser131 was missing, Ala136 - His137 was deleted, Leu140 was replaced by Phe, and an extra Ala was inserted somewhere within sequence 142-151 (tryptic peptide T23 ). Sequence determination of guinea pig tryptic peptides corresponding to residues 130-134 ( T20 ), 135-138 ( T21 ), and 142-151 ( T23 ) of the bovine protein confirmed the above sequence changes and placed the extra Ala between Gly142 and His143 . The sequence of the region corresponding to bovine residues 130-143 is thus Ala-Asp-Tyr-Lys-Ser-Lys-Gly-Phe-Lys-Gly-Ala-His. No species differences were observed in the amino acid compositions of the remaining tryptic peptides obtained from the COOH-terminal half of the molecule. Based upon these results, the guinea pig basic protein contains 167 amino acid residues and has a molecular weight of 18,256.  相似文献   

15.
In Vivo Methylation of an Arginine in Chicken Myelin Basic Protein   总被引:2,自引:0,他引:2  
Abstract: The amino acid sequence around the sole methylarginine residue in chicken myelin basic protein was determined and was found to be similar to that previously reported for mammalian myelin basic protein. The ratio N G, N 'G-dimethylarginine: N G-monomethylarginine:arginine was approximately 1.3:0.9:1.0. No N G, N G-dimethylarginine was detected in the protein. The in vivo incorporation of methyl groups from [methyl-3H]methionine into methylarginines in myelin was found to occur readily in 2-day-old chickens. Radioactively labelled N G, N 'G-dimeth-ylarginine and N G-monomethylarginine in myelin were derived solely from myelin basic protein. Radioactivity was also incorporated into N G, N G-dimeth-ylarginine, although this was not derived from myelin basic protein. As N G-monomethylarginine was easily separated from the dimethylarginines, and as it was derived from myelin basic protein, it may be a good marker for myelin basic protein turnover in vivo. A time course study of the incorporation showed that radioactivity was incorporated into N G-monomethylarginine up to 6 h after injection, and decayed slowly, with an apparent half-life of about 40 days.  相似文献   

16.
Electron microscopic immunocytochemical studies were carried out to localize myelin basic protein and myelin proteolipid protein during the active period of myelination in the developing rat brain using antisera to purified rat brain myelin proteolipid protein and large basic protein. The anti-large basic protein serum was shown by the immunoblot technique to cross-react with all five forms of basic protein present in the myelin of 8-day-old rat brain. Basic protein was localized diffusely in oligodendrocytes and their processes at very early stages in myelination. The immunostaining for basic protein was not specifically associated with any subcellular structures or organelles. The ultrastructural localization of basic protein suggests that it may be involved in fusion of the cytoplasmic faces of the oligodendrocyte processes during compaction of myelin. Immunoreactivity in the oligodendrocyte and myelin due to proteolipid protein appeared at a later stage of myelination than did that due to basic protein. Staining for proteolipid protein in the oligodendrocyte was restricted to the membranes of the rough endoplasmic reticulum, the Golgi apparatus, and apparent Golgi vesicles. The early, uncompacted periaxonal wrappings of oligodendrocyte processes were well stained with antiserum to large basic protein whereas staining for proteolipid protein was visible only after the compaction of myelin sheaths had begun. Our evidence indicates that basic protein and proteolipid protein are processed differently by the oligodendrocytes with regard to their subcellular localization and their time of appearance in the developing myelin sheath.  相似文献   

17.
 本文介绍了从人脑中分离纯化髓鞘碱性蛋白的方法,人脑组织匀浆经甲醇—氯仿脱脂、酸提取、硫酸铵沉淀和羧甲基纤维素柱层析,得到了纯化的髓鞘碱性蛋白。该蛋白在SDS聚丙烯酰胺凝胶电泳中为单一带,分子量为21kD。在聚焦电泳中测得其等电点在pH10以上,氨基酸组成分析结果也与文献值接近。这为进一步研究人脑髓鞘碱性蛋白的抗原性创造了条件。  相似文献   

18.
A rapid procedure for purification of myelin basic protein has been developed. White matter is delipidated with 2-butanol, and the residue is extracted at pH 7.5 and 8.5. Myelin basic protein is solubilized by extraction in acetate buffer, pH 4.5. The entire procedure requires less than 4 h, and gives homogeneous protein essentially free of protease activity. This procedure can be scaled down to process milligram amounts of white matter; thus it can be very useful for purification of myelin basic protein from very limited amounts of human white matter obtained during surgery.  相似文献   

19.
Tsang  D.  Tsang  Y. S.  Ho  W. K. K.  Wong  R. N. S. 《Neurochemical research》1997,22(7):811-819
The zinc-binding proteins (ZnBPs) in porcine brain were characterized by the radioactive zinc-blot technique. Three ZnBPs of molecular weights about 53 kDa, 42 kDa, and 21 kDa were identified. The 53 kDa and 42 kDa ZnBPs were found in all subcellular fractions while the 21 kDa ZnBP was mainly associated with particulate fractions. This 21 kDa ZnBP was identified by internal protein sequence data as the myelin basic protein. Further characterization of its electrophoretic properties and cyanogen bromide cleavage pattern with the authentic protein confirmed its identity. The zinc binding properties of myelin basic protein are metal specific, concentration dependent and pH dependent. The zinc binding property is conferred by the histidine residues since modification of these residues by diethyl-pyrocarbonate would abolish this activity. Furthermore, zinc ion was found to potentiate myelin basic protein-induced phospholipid vesicle aggregation. It is likely that zinc plays an important role in myelin compaction by interacting with myelin basic protein.  相似文献   

20.
Myelin basic protein (MBP) dissociated from brain myelin membranes when they were incubated (37 degrees C; pH 7.4) at physiological ionic strength. Zinc ions inhibited, and calcium promoted, this process. Protease activity in the membrane preparations cleaved the dissociated MBP into both small (less than 4 kilodaltons) and large (greater than 8 kilodaltons) fragments. The latter were detected, together with intact MBP, by gel electrophoresis of incubation media. Zinc ions appeared to act in two distinct processes. In the presence or absence of added CaCl2, zinc ions in the range 0.1-1 mM inhibited MBP-membrane dissociation. This process was relatively insensitive to heat and Zn2+ could be substituted by either copper (II) or cobalt (II) ions. A second effect was evident only in the presence of added calcium ions, when lower concentrations of Zn2+ (less than 0.1 mM) inhibited MBP-membrane dissociation and the accumulation of intact MBP in incubation media. This process was heat sensitive and only copper (II), but not cobalt (II), ions could replace Zn2+. To determine whether endogenous zinc in myelin membranes is bound to MBP, preparations were solubilised in buffers containing Triton X-100/2 mM CaCl2 and subjected to gel filtration. Endogenous zinc, as indicated by a dithizone-binding method, eluted with fractions containing both MBP and proteolipid protein (PLP). Thus, one means whereby zinc stabilises association of MBP with brain myelin membranes may be by promoting its binding to PLP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号