首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Abstract: The dopamine (DA) D3 receptor antagonist PD 58491 {3-[4-[1-[4-[2-[4-(3-diethylaminopropoxy)phenyl]-benzoimidazol-1-yl-butyl]-1 H -benzoimidazol-2-yl]-phenoxy]propyl]diethylamine} bound with high affinity and selectivity to recombinant human DA D3 versus D2L and D4.2 receptors transfected into Chinese hamster ovary cells: K i values of 19.5 n M versus 2,362 and >3,000 n M , respectively. In contrast, the putative DA D3 receptor antagonist (+)-AJ76 displayed low affinity and selectivity for D3 versus D2L and D4.2 receptors (91 n M vs. 253 and 193 n M , respectively). In vitro, PD 58491 (1 n M −1µ M ) exhibited D3 receptor antagonist activity, reversing the quinpirole (10 n M )-induced stimulation of [3H]thymidine uptake in D3 CHOpro-5 cells, but did not have any significant intrinsic activity by itself in this assay. PD 58491 did not decrease the γ-butyrolactone-induced increase in DA synthesis ( l -3,4-dihydroxyphenylalanine accumulation) in rat striatum, indicating that the compound possessed no in vivo DA D2/D3 receptor agonist action at DA autoreceptors. PD 58491 (3–30 mg/kg, i.p.) generally did not alter DA or serotonin synthesis in either the striatum or mesolimbic region of rat brain. The D3-preferring agonist PD 128907 decreased DA synthesis in striatum and mesolimbic regions, and this effect was attenuated by pretreatment with PD 58491. These findings support the hypothesis that DA D3 autoreceptors may in part modulate the synthesis and release of DA in striatum and mesolimbic regions.  相似文献   

2.
Abstract: Pharmacological blockade of either D1 or D2 dopamine (DA) receptors prevents damage of striatal DA terminals by repeated doses of methamphetamine (m-AMPH). Because the substantial DA overflow produced by multiple m-AMPH treatments appears to contribute to the subsequent injury, we have investigated the effects of blockade of D1 or D2 receptors on m-AMPH-induced DA efflux using in vivo microdialysis. Four treatments with m-AMPH (4 mg/kg, s.c., 2-h intervals) produced large increases in striatal DA overflow, with particularly marked overflow (10 times the basal values) following the fourth injection. Administered by themselves, four injections of the D1 antagonist SCH 23390 or the D2 antagonist eticlopride (0.5 mg/kg, i.p., 2-h intervals) significantly increased striatal DA overflow. However, treatment with either SCH 23390 or eticlopride 15 min before each of four m-AMPH injections attenuated the marked DA peak otherwise seen after the fourth m-AMPH injection. These effects on DA overflow were related to subsequent DA depletions. Although our m-AMPH regimen produced a 54% reduction in striatal DA tissue content 1 week later, pretreatments with either the D1 or the D2 antagonist completely prevented subsequent DA content depletions. Furthermore, the DA content of striatal tissue remaining 1 week after m-AMPH treatment was significantly correlated with the magnitude of the cumulative DA overflow during the m-AMPH treatment ( r = -0.69). Thus, the extensive DA overflow seen during neurotoxic regimens of m-AMPH appears critical to the subsequent neurotoxicity, and the neuroprotective action of DA receptor antagonists seems to result from their attenuation of stimulant-induced DA overflow.  相似文献   

3.
Abstract: Male squirrel monkeys ( Saimiri sciureus ) were surgically prepared with cranial guide cannulae for acute microdialysis sampling of the putamen nucleus, a dopamine (DA)-rich brain region. On the day of an experiment, an animal was placed in a Plexiglas restraining chair and a microdialysis probe was inserted through the guide into the putamen. Perfusates of artificial cerebrospinal fluid were collected every 20 min over several hours and analyzed via HPLC with electrochemical detection. DA D2/D3 agonist drugs were administered either orally (p.o.) or subcutaneously (s.c.), and changes in levels of DA in the dialysates were measured. All of the drugs tested, i.e., quinpirole (0.5 mg/kg p.o.), talipexole (0.75 mg/kg p.o. or s.c.), and PD 135222 (7 mg/kg p.o.), decreased spontaneous DA overflow by ∼40–50% during the first 2 h following dosing. In animals that routinely underwent the microdialysis procedure up to 23 times over a 2-year period, there was neither an appreciable change in basal DA overflow nor a significant change in the magnitude of drug response. These data suggest that DA D2/D3 agonists attenuate DA neuronal overflow in the primate brain, similar to effects seen in rodents. Furthermore, these results also demonstrate the utility of repeated intracerebral microdialysis as a tool to monitor dynamic changes in neurochemical activity in monkeys over a prolonged period of time.  相似文献   

4.
Abstract : Presynaptic D2 dopamine (DA) autoreceptors, which are well known to modulate DA release, have recently been shown to regulate DA transporter (DAT) activity. To examine the effects of D2 DA receptor deficiency on DA release and DAT activity in dorsal striatum, we used mice genetically engineered to have two (D2+/+), one (D2+/-), or no (D2-/-) functional copies of the gene coding for the D2 DA receptor. In vivo microdialysis studies demonstrated that basal and K+-evoked extracellular DA concentrations were similar in all three genotypes. However, using in vivo electrochemistry, the D2-/- mice were found to have decreased DAT function, i.e., clearance of locally applied DA was decreased by 50% relative to that in D2+/+ mice. In D2+/+ mice, but not D2-/- mice, local application of the D2-like receptor antagonist raclopride increased DA signal amplitude, indicating decreased DA clearance. Binding assays with the cocaine analogue [3H]WIN 35,428 showed no genotypic differences in either density or affinity of DAT binding sites in striatum or substantia nigra, indicating that the differences seen in DAT activity were not a result of decreased DAT expression. These results further strengthen the idea that the D2 DA receptor subtype modulates activity of the striatal DAT.  相似文献   

5.
Abstract: To expand on the nature of regional cerebral vulnerability to ischemia, the release of dopamine (DA) and dopaminergic (D1 and D2) receptors were investigated in Mongolian gerbils subjected to bilateral carotid artery occlusion (15 min) alone or with reflow (1–2 h). Extracellular cortical and striatal content of DA and its metabolites was measured by microdialysis using HPLC with electrochemical detection. The kinetic properties of D1 and/or D2 receptor binding sites were determined in cortical and striatal membranes with the use of radiolabeled ligands (125I-SCH23982 and [3H]YM-09151-2, respectively). The ischemic release of DA from the striatum was greater (400-fold over preischemic level) than that from the cortex (12-fold over preischemic content). The affinity for the D1-receptor ligand was lower ( K D= 1.248 ± 0.047 n M ) after ischemia than that for sham controls ( K D= 0.928 ± 0.032 n M, p < 0.001). The number of binding sites for D2 receptors decreased in striatum ( B max= 428 ± 18.4 fmol/mg of protein) after ischemia compared with sham controls ( B max= 510 ± 25.2 fmol/mg of protein, p < 0.05). D1 or D2 binding sites were not changed either in the ischemic cortex or postischemic striatum and cortex. The findings strongly suggest that the ischemic release of DA from striatum is associated with early transient changes in D1- and D2-mediated DA neurotransmission.  相似文献   

6.
7.
Abstract: To investigate the hypothesis that the D2 dopamine (DA) receptor regulates DA uptake, as well as release, in the nucleus accumbens (N ACC), rats were pretreated for 10 days with either the selective D2 antagonist pimozide (1.0 mg/kg, i.p.) or vehicle, followed 3 h later by either cocaine (20 mg/kg, i.p.) or saline. On day 11, a microdialysis method was performed in which various DA concentrations (0, 10, and 20 n M DA) were perfused through the dialysis probe to characterize the diffusion of DA through tissue to and from the microdialysis probe (recovery). This diffusion of DA has been shown to be sensitive to changes in release and uptake. Pimozide pretreatment was shown to attenuate significantly a cocaine-induced increase in the in vivo recovery of DA ( p < 0.01). The in vivo recovery for the vehicle/cocaine group was 47 ± 4%, whereas the in vivo recovery for the pimozide/cocaine group was 31 ± 3%. There was no difference between the pimozide/cocaine and control groups (pimozide/saline, 26 ± 2%; vehicle/saline, 26 ± 3%). In vitro probe calibrations indicated no significant difference in probe efficiencies between groups. These data suggest that the D2 receptor is capable of modulating uptake as well as release of DA in the N ACC of the rat.  相似文献   

8.
Abstract: Primary cultures of rat ventral mesencephalon were used to elucidate the role of chronic stimulation of dopamine (DA) D2 autoreceptors in the development of fetal dopaminergic neurons in vitro. Cultured dopaminergic neurons, as visualized by tyrosine hydroxylase immunocytochemistry, became more differentiated in the course of cultivation time and exhibited specific high-affinity uptake for [3H]DA. In rat striatal tissue, activation of D2 receptors has been shown to inhibit the release of DA. Previously accumulated [3H]DA was released from the cultures upon depolarization in a Ca2+-dependent manner. K+-evoked [3H]DA release could be inhibited by the selective D2 receptor agonists LY 171555 and N0437 in a concentration-dependent manner. The inhibitory effects of LY 171555 and N0437 were antagonized by the selective DA D2 receptor antagonist sulpiride. These observations are indicative for the expression of functional D2 receptors in the cultures. Daily treatment of these cultures for 7 days with LY 171555 or sulpiride did not lead to any change in protein content, the number of tyrosine hydroxylase-immunoreactive neurons, or the uptake capacity for [3H]DA. Our data demonstrate that chronic stimulation of DA D2 receptors does not impair survival or differentiation of cultured fetal dopaminergic neurons.  相似文献   

9.
Abstract: To study potential biochemical correlates of dopamine (DA) and serotonin receptor supersensitivity, rats were lesioned at 3 days after birth with 6-hydroxydopamine (6-OHDA; 67 µg in each lateral ventricle; desipramine pretreatment, 20 mg/kg i.p., 1 h) and then sensitized with the DA D1 agonist, SKF 38393 HCl (3.0 mg/kg i.p. per day) either ontogenetically (daily, for 28 consecutive days from birth) and/or in adulthood (four weekly injections, 6–9 weeks from birth). Controls received vehicle in place of 6-OHDA or SKF 38393. Enhanced locomotor responses were observed after SKF 38393 at 6 weeks, only in rats that received SKF 38393 + 6-OHDA in ontogeny. Locomotor responses were further enhanced in this group after the last of four weekly SKF 38393 injections at the 9th week. These weekly SKF 38393 treatments also produced enhanced responses in 6-OHDA rats that did not receive SKF 38393 in ontogeny. When striata were studied at 11 weeks, the percentages of high and low affinity DA D1 binding sites were not altered. Basal as well as DA-, NaF-, and forskolin-stimulated adenylyl cyclase activities also were not changed. Dot blot analysis showed that there was a reduction of mRNA levels for DA D1, but not serotonin1C, receptors in the 6-OHDA groups. However, SKF 38393 at 6–9 weeks eliminated this alteration. Based on these findings it can be proposed that supersensitization may be a consequence of altered neuronal cross talk rather than an imbalance of receptor elements per se.  相似文献   

10.
Dopaminergic Regulation of Septohippocampal Cholinergic Neurons   总被引:3,自引:1,他引:2  
Abstract: The extent to which acetylcholine (ACh) release in the hippocampus is regulated by dopaminergic mechanisms was assessed using in vivo microdialysis in freely moving rats. Systemic administration of the dopamine (DA) receptor agonist apomorphine (1.0 mg/kg) or the specific D1 agonist CY 208–243 (1.0 mg/kg) increased microdialysate concentrations of ACh in the hippocampus. The D2 receptor agonist quinpirole (0.5 mg/kg) produced a small but statistically significant decrease in hippocampal ACh release. d -Amphetamine (2.0 mg/kg) increased ACh release, an effect that was blocked by the D1 receptor antagonist SCH 23390 (0.3 mg/kg) but not by the D2 antagonist raclopride (1.0 mg/kg). These findings suggest that endogenous DA stimulates septo-hippocampal cholinergic neurons primarily via actions at D1 receptors. In addition, these results are similar to previous findings regarding the dopaminergic regulation of cortical ACh release, and suggest that the anatomical continuum formed by basal forebrain cholinergic neurons that project to the cortex and hippocampus acts as a functional unit, at least with respect to its regulation by DA.  相似文献   

11.
Abstract: The effect of dopamine (DA) receptor stimulation on the distribution of γ protein kinase C (γPKC) in hippocampal slices was assessed. Nanomolar concentrations of DA decreased cytosolic γPKC (56%) without altering membrane γPKC levels, resulting in decreased total γPKC immunoreactivity. The maximal decrease in cytosolic γPKC occurred at 20 min of incubation and was significantly blocked by the D1 DA antagonist SCH 23390 (10−6 M ) but not by the D2 antagonist sulpiride (10−5 M ). The D1 agonists SKF 38393 and A 77636 mimicked the effect of DA with similar responses produced at 10 µ M and 1 n M , respectively. The D2 agonist quinpirole had no effect on γPKC immunoreactivity, thus indicating that this dopaminergic response is mediated through a D1-like receptor. DA had no effect on α, δ, or ζPKC isozyme immunoreactivity in the same hippocampal preparations. The DA-induced decrease in cytosolic γPKC immunoreactivity was blocked by the Ca2+-dependent protease inhibitor N -acetyl-Leu-Leu-norleucinal (100 µ M ) and by the inorganic Ca2+ channel blocker Co2+. The data suggest that DA stimulates a D1-like DA receptor, which increases the influx of Ca2+ and activates the Ca2+-dependent proteolysis of γPKC.  相似文献   

12.
13.
Progressive degeneration and intraneuronal Lewy bodies made of filamentous α-synuclein (α-syn) in dopaminergic cells of the nigrostriatal system are characteristics of Parkinson's disease (PD). Glucose uptake is reduced in some of the brain regions affected by PD neurodegenerative changes. Defects in mitochondrial activity in the substantia nigra have been observed in the brain of patients affected by PD and substantia nigra lesions can induce the onset of a secondary parkinsonism. Thus, energy starvation and consequently metabolic impairment to dopaminergic neurons may be related to the onset of PD. On this line, we evaluated the effect of nutrient starvation, reproduced ' in vitro ' by glucose deprivation (GD), in primary mesecephalic neuronal cultures and dopaminergic-differentiated SH-SY5Y cells, to evaluate if decreased glucose support to dopaminergic cells can lead to mitochondrial damage, neurodegeneration and α-syn misfolding. Furthermore, we investigated the effect of dopamine (DA) treatment in the presence of a DA-uptake inhibitor or of the D2/D3 receptor (D2R/D3R) agonist quinpirole on GD-treated cells, to evaluate the efficacy of these therapeutic compounds. We found that GD induced the formation of fibrillary aggregated α-syn inclusions containing the DA transporter in dopaminergic cells. These alterations were accompanied by dopaminergic cell death and were exacerbated by DA overload. Conversely, the block of DA uptake and D2R/D3R agonist treatment exerted neuroprotective effects. These data indicate that glucose starvation is likely involved in the induction of PD-related pathological changes in dopaminergic neurons. These changes may be counteracted by the block of DA uptake and by dopaminergic agonist treatment.  相似文献   

14.
Though dopaminergic mechanisms modulate cholinergic transmission and cognitive function, the significance of specific receptor subtypes remains uncertain. Here, we examined the roles of dopamine D(3) versus D(2) receptors. By analogy with tacrine (0.16-2.5 mg/kg, s.c.), the selective D(3) receptor antagonists, S33084 (0.01-0.63) and SB277,011 (0.63-40.0), elicited dose-dependent, pronounced and sustained elevations in dialysis levels of acetylcholine (ACh) in the frontal cortex, but not the hippocampus, of freely-moving rats. The actions of these antagonists were stereospecifically mimicked by (+)S14297 (1.25), whereas its inactive distomer, (-)S17777, was ineffective. The preferential D(2) receptor antagonist, L741,626 (10.0), failed to modify levels of ACh. S33084 (0.01-0.63) and SB277,011 (0.16-2.5) also mimicked tacrine (0.04-0.63) by dose-dependently attenuating the deleterious influence of scopolamine (1.25) upon social memory (recognition by an adult rat of a juvenile conspecific). Further, (+)S14297 (1.25) versus (-)S17777 stereospecifically blocked the action of scopolamine. Using an intersession interval of 120 min (spontaneous loss of recognition), S33084 (0.04-0.63), SB277,011 (0.16-10.0) and (+)S14297 (0.63-10.0) likewise mimicked tacrine (0.16-2.5) in enhancing social memory. In contrast, L741,626 (0.16-10.0) displayed amnesic properties. In conclusion, selective blockade of D(3) receptors facilitates frontocortical cholinergic transmission and improves social memory in rats. These data support the pertinence of D(3) receptors as a target for treatment of disorders in which cognitive function is compromised.  相似文献   

15.
Abstract: The effect of (±)-8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT), a selective serotonin 5-HT1A agonist, on levels of extracellular norepinephrine (NE), dopamine (DA), and 5-HT (measured simultaneously) was investigated by microdialysis in the ventral tegmental area (VTA) of freely moving rats, and their behavioral activity was monitored. At 50 µg/kg s.c., 8-OH-DPAT reduced 5-HT levels but enhanced NE and DA levels in VTA dialysate. These effects were not altered by pretreatment with systemic idazoxan (5 mg/kg i.p.), a selective α2 antagonist, or local sulpiride (10 µ M ), a selective D2/D3 antagonist. At 500 µg/kg s.c., 8-OH-DPAT further enhanced or more persistently reduced dialysate NE or 5-HT content but had little effect on dialysate DA content. Its DA level-increasing effect could be seen dramatically with local infusion of cocaine (30 µ M ) and, to a lesser extent, sulpiride (10 µ M ). Depletion of endogenous 5-HT with p -chlorophenylalanine attenuated both the 5-HT level-reducing and DA level-enhancing effects of 8-OH-DPAT without affecting its maximal NE effect and the locomotor-stimulatory effect. Partial depletion of endogenous NE with N -(2-chloroethyl)- N -ethyl-2-bromobenzylamine failed to change the monoamine response but diminished the locomotion induced by 8-OH-DPAT. These results suggested that (a) the low dose of 8-OH-DPAT may act at presynaptic 5-HT1A receptors to modulate 5-HT and DA release, while acting at postsynaptic 5-HT1A receptors to modulate NE release; (b) the high dose of 8-OH-DPAT may activate D2 receptors to offset its DA level-increasing effect; and (c) the locomotor-stimulatory effect of 8-OH-DPAT might be mediated primarily by postsynaptic 5-HT1A receptors and the NE system.  相似文献   

16.
Abstract: The human D4 dopamine receptor has been expressed in Sf9 insect cells where it appears to couple to endogenous G proteins. Increased guanine nucleotide exchange to G proteins is a reflection of receptor activation and can be followed using a [35S]GTPγS binding assay. By measuring D4 receptor stimulation of [35S]-GTPγS binding we have been able to characterize several dopaminergic compounds for their functional activity at this receptor. In Sf9 cells expressing the D4 receptor, dopamine, quinpirole, and dp -2-aminodihydroxy-1,2,3,4-tetrahydronaphthalene were all full agonists, whereas (−)-apomorphine appeared to be a partial agonist. No increase in [35S]GTPγS binding was observed for noninfected cells or cells infected with an unrelated sequence. The quinpirole-stimulated [35S]GTPγS binding could be inhibited by the antagonists clozapine, eticlopride, and haloperidol, and a Schild analysis of these data showed that all three compounds were acting as competitive antagonists of D4 receptors. The rank order of affinities derived from the Schild analysis correlated with that obtained from [3H]spiperone competition binding assays. In conclusion, we have shown that, using this assay system, it is possible to investigate functionally the pharmacology of a recombinant G protein-coupled receptor in the absence of any information regarding the eventual second messenger pathways involved.  相似文献   

17.
Abstract: The effects of D1 and D2 dopamine ligands on protein kinase C (PKC) activity were examined in synaptoneurosomes. Incubation with D1 agonists (SKF 38393, fenodopam), in the presence of calcium, decreased the soluble and increased the particulate PKC activity. These effects were reversed by SCH 23390, which by itself had the opposite effect of increasing the soluble and decreasing the particulate PKC activity. In contrast, incubation with the D2 agonists [LY 171555, (+)-3-(3-hydroxyphenyl)- N - n -propylpiperidine, RU 24213] increased the soluble and decreased the particulate PKC activity. These effects were reversed by sulpiride. (−)-3-(3-Hydroxyphenyl)- N - n -propylpiperidine had a D2 antagonist profile. Apomorphine showed a biphasic dose-response change; i.e., it decreased particulate PKC activity at the D2 receptor at low concentrations (0.1 µ M ) and increased it at the D1 receptor at higher concentrations (10 µ M ). Pretreatment with tetrodotoxin or omission of calcium in the incubation medium did not alter the responses of the D2 agonists, but it reversed the changes in PKC activity induced by the D1 agonists and converted the biphasic response of apomorphine to a monophasic inhibition. These results indicate that (1) D1 and D2 dopamine receptors are negatively coupled to PKC and (2) the increase in particulate PKC activity seen with the D1 drugs in the presence of calcium is mediated indirectly via a transneuronal effect.  相似文献   

18.
Abstract: The 7315c pituitary tumor cell expresses a homogeneous population of dopamine receptors that are functionally similar to brain dopamine D2 receptors. [3H]-Sulpiride binding to 7315c cell homogenates was specific and saturable, and K i values for compounds to compete for these sites were highly correlated with values for the same compounds at D2 receptors in brain. Dopamine maximally inhibited ∼65% of forskolin-stimulated cyclase activity in cell membranes. Some D2 agonists had lower efficacies, suggesting that some compounds are partial agonists at this receptor. Removal of GTP from the assay buffer or pretreatment of the tissue with pertussis toxin abolished the inhibition of adenylyl cyclase by dopamine. Immunodetection of most of the known Gα subunits revealed that Gi1, Gi2, Gi3, Go, Gq, and Gs are present in the 7315c membrane. Pretreatment with the AS antibody (which recognizes the C-terminal regions of Gαi1 and Gαi2) significantly attenuated the inhibition of adenylyl cyclase activity by dopamine, whereas antibodies to C-terminal regions of the other Gα subunits had no effect. These findings suggest that the dopamine D2 receptor regulates cyclase inhibition predominantly via Gi1 and/or Gi2 and that the 7315c tumor cells provide a useful model for studying naturally expressed dopamine D2 receptors in the absence of other dopamine receptor subtypes.  相似文献   

19.
Abstract: Despite a high degree of sequence homology, the dopamine D2 and D3 receptors have substantially different second messenger coupling properties. We have used chimeric D2/D3 receptors to investigate the contribution of the intracellular loops to the signaling properties of these receptors. In HEK 293 cells, D2 receptors inhibit prostaglandin E1-stimulated cyclic AMP levels by >90%, whereas D3 receptors inhibit cyclic AMP accumulation by only 20%. In chimeras that have the second or third intracellular loop, or both loops simultaneously, switched between the D2 and D3 receptors, the maximal inhibition of adenylyl cyclase is 60–90%. In addition, the potency of quinpirole to inhibit adenylyl cyclase activity at some of the chimeras is altered compared with the wild-type receptors. It appears that the intracellular loops of the D3 receptor are capable of interacting with G proteins, as when these loops are expressed in the D2 receptor, the chimeras inhibit adenylyl cyclase similarly to the wild-type D2 receptor. Our data suggest that the overall conformation of the D3 receptor may be such that it interacts with G proteins only weakly, but when the intracellular loops are expressed in another context or the D3 receptor structure is altered by the introduction of D2 receptor sequence, this constraint may be lifted.  相似文献   

20.
The existence of pre-synaptic auto- and hetero receptors which modulate neurotransmitter release is well documented. Emerging evidence show that in some cases these pre-synaptic receptors may also cross-talk with each other. The aim of the present work was to investigate whether acetylcholine receptors (nAChRs) and dopamine (DA) autoreceptors, which are both able to modulate DA release, functionally interact on the same nerve endings. We used rat and mouse nucleus accumbens synaptosomes pre-labeled with [3H]DA and exposed to nicotinic and dopaminergic receptor ligands. Both nicotinic agonists and 4-aminopyridine (4-AP) provoked [3H]DA release which was inhibited by quinpirole and blocked by sulpiride and raclopride. Both the inhibitory effect of quinpirole and the stimulatory effect of (−)nicotine did not change when the nAChRs or the DA receptors were desensitized. (−)Nicotine and 4-AP were able to stimulate [3H]DA overflow also in mouse synaptosomes and this overflow was partially inhibited by quinpirole. In the β2 knockout mice quinpirole was still able to inhibit the [3H]DA overflow elicited by 4-AP. To conclude: in rat and mouse the (−)nicotine evoked-release can be modulated by D2/D3 autoreceptors present on the DA terminals and nAChRs function is independent from D2/D3 autoreceptors which themselves may function independently from the activation of nAChRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号