首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract Tyrosine aminotransferase purified from epimastigotes of Trypanosoma cruzi displays an additional activity of alanine aminotransferase, absent in all other tyrosine aminotransferases characterized so far. Since the parasite's genome contains a high number of copies of the tyrosine aminotransferase gene, we could not rule out the possibility that two very similar proteins, with changed specificity due to a few amino acid substitutions, might be responsible for the two activities. We have now expressed in Escherichia coli a recombinant tyrosine aminotransferase as a fusion protein with glutathione S-trans-ferase. The purified fusion protein, intact or after thrombin cleavage, displays tyrosine aminotransferase and alanine aminotransferase activities with apparent K m values similar to those for the natural enzyme, thus proving that they belong to the same protein.  相似文献   

3.
M C Tobes  M Mason 《Life sciences》1978,22(9):793-802
A nearly homogeneous preparation of α-aminoadipate (kynurenine) aminotransferase exhibited substantial activity with 3,5-diiodo-L-tyrosine, a major substrate for halogenated tyrosine aminotransferase. The new activity was found, according to heat inactivation and several inhibition studies, not to be attributable to contamination. Many of the properties previously reported for the two enzymes are identical or very similar. This paper lists these similarities and reports our observations of additional similarities of these activities in the supernatant and mitochondrial fractions of both rat kidney and liver. The properties of the purified enzyme and the noted similarities suggest that α-aminoadipate aminotransferase, kynurenine aminotransferase, and halogenated tyrosine aminotransferase activities are associated with the same protein. These activities are discussed in terms of a possible role in thyroid hormone metabolism.  相似文献   

4.
A data base was compiled containing the amino acid sequences of 12 aspartate aminotransferases and 11 other aminotransferases. A comparison of these sequences by a standard alignment method confirmed the previously reported homology of all aspartate aminotransferases and Escherichia coli tyrosine aminotransferase. However, no significant similarity between these proteins and any of the other aminotransferases was detected. A more rigorous analysis, focusing on short sequence segments rather than the total polypeptide chain, revealed that rat tyrosine aminotransferase and Saccharomyces cerevisiae and Escherichia coli histidinol-phosphate aminotransferase share several homologous sequence segments with aspartate aminotransferases. For comparison of the complete sequences, a multiple sequence editor was developed to display the whole set of amino acid sequences in parallel on a single work-sheet. The editor allows gaps in individual sequences or a set of sequences to be introduced and thus facilitates their parallel analysis and alignment. Several clusters of invariant residues at corresponding positions in the amino acid sequences became evident, clearly establishing that the cytosolic and the mitochondrial isoenzyme of vertebrate aspartate aminotransferase, E. coli aspartate aminotransferase, rat and E. coli tyrosine aminotransferase, and S. cerevisiae and E. coli histidinol-phosphate aminotransferase are homologous proteins. Only 12 amino acid residues out of a total of about 400 proved to be invariant in all sequences compared; they are either involved in the binding of pyridoxal 5'-phosphate and the substrate, or appear to be essential for the conformation of the enzymes.  相似文献   

5.
L-beta-Aminoisobutyrate served as an amino donor for purified beta-alanine-oxo-glutarate aminotransferase from rat liver when 2-oxoglutarate was employed as an amino acceptor, but the D-isomer did not. L-beta-Aminoisobutyrate acted as a competitive inhibitor with respect to beta-alanine and had a Ki of approximately 2.6 mM, which is the same value as the Km of 2.7 mM. When the crude extract was applied to a DEAE-Sepharose CL-6B column, L-beta-aminoisobutyrate aminotransferase and beta-alanine-oxo-glutarate aminotransferase activities were found in the same fractions with a single peak. Antiserum to rat liver beta-alanine-oxo-glutarate aminotransferase inhibited L-beta-aminoisobutyrate aminotransferase activity in rat liver in the same way as beta-alanine-oxo-glutarate aminotransferase activity.  相似文献   

6.
Alanine-glyoxylate aminotransferase and 2-aminobutyrate aminotransferase were co-purified from rat kidney to a single protein (about 500-fold purified from the homogenate). The activity ratios of alanine-glyoxylate aminotransferase to 2-aminobutyrate aminotransferase were constant during co-purification steps suggesting the 2-aminobutyrate aminotransferase activity was catalysed by only alanine-glyoxylate aminotransferase. The molecular weight of the enzyme was estimated to be approx. 213 000, 220 000 and 236 000 by analytical ultracentrifugation, Sephadex G-150 gel filtration and sucrose density gradient centrifugation, respectively. From the polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate, the enzyme consisted of four apparently similar subunits having a molecular weight of approx. 56 000. The enzyme was almost specific to L-alanine and L-2-aminobutyrate as amino donor and to glyoxylate, pyruvate and 2-oxobutyrate as amino acceptor. The enzyme was identified with rat liver alanine-glyoxylate aminotransferase isoenzyme 2 but not with rat liver alanine-glyoxylate aminotransferase isoenzyme 1 from Ouchterlony double diffusion analysis. Absorption spectra and some kinetic properties of the enzyme were clarified.  相似文献   

7.
Aspartate: 2-oxoglutarate aminotransferase from the anaerobic protozoon Trichomonas vaginalis was purified to homogeneity and characterized. It is a dimeric protein of overall Mr approx. 100000. Only a single isoenzyme was found in T. vaginalis. The overall molecular and catalytic properties have features in common with both the vertebrate cytoplasmic and mitochondrial isoenzymes. The purified aspartate aminotransferase from T. vaginalis showed very high rates of activity with aromatic amino acids as donors and 2-oxoglutarate as acceptor. This broad-spectrum activity was restricted to aromatic amino acids and aromatic 2-oxo acids, and no significant activity was seen with other common amino acids, other than with the substrates and products of the aspartate: 2-oxoglutarate aminotransferase reaction. Co-purification and co-inhibition, by the irreversible inhibitor gostatin, of the aromatic amino acid aminotransferase and aspartate aminotransferase activities, in conjunction with competitive substrate experiments, strongly suggest that a single enzyme is responsible for both activities. Such high rates of aromatic amino acid aminotransferase activity have not been reported before in eukaryotic aspartate aminotransferase.  相似文献   

8.
In order to study whether hormone-sensitive tyrosine aminotransferase exists in tissues other than liver, we have devised means to separate the liver-specific enzyme from other enzymes that transaminate tyrosine and to distinguish between the authentic enzyme and the principal "pseudotyrosine aminotransferases," which are the isoenzymes of aspartate aminotransferase. We accomplish this by suppressing proteolysis of the authentic enzyme using a buffer of pH 8.0 containing 0.1 M potassium chloride; enzyme extracted from liver in this buffer migrates as a single peak during chromatography on hydroxylapatite and represents the undegraded native form. A much smaller peak of tyrosine aminotransferase activity elutes at higher ionic strength and corresponds to a mixture of mitochondrial aspartate aminotransferase and partially degraded tyrosine aminotransferase. Cytosolic aspartate aminotransferase, in contrast, adsorbs weakly to the hydroxylapatite column and transaminates tyrosine very poorly although it readily utilizes monoiodotyrosine. The aspartate aminotransferase isoenzymes separate completely from tyrosine aminotransferase during chromatography on DEAE-Sepharose CL-6B. By combining these techniques with the use of specific antibodies, we show that brain, heart, and kidney do not contain tyrosine aminotransferase. Furthermore, we locate both isoenzymes of aspartate aminotransferase on polyacrylamide gels and show that both react histochemically as tyrosine aminotransferases when monoiodotyrosine is used as substrate. Use of these techniques, therefore, permits unambiguous identification of tyrosine aminotransferase and its separation from the background of nonspecific transamination.  相似文献   

9.
Kynurenine pyruvate aminotransferase was purified from rat kidney. The purified enzyme had an isoelectric point of pH 5.2 and a pH optimum of 9.3. The enzyme was active with pyruvate as amino acceptor but not with 2-oxoglutarate, and utilized various aromatic amino acids as amino donors. L-Amino acids were effective in the following order of activity: histidine greather than phenylalanine greater than kynurenine greater than tyrosine greater than tryptophan greater than 5-hydroxytryptophan. The apparent Km values were about 0.63 mM, 1.4 mM and 0.09 mM for histidine, kynurenine and phenylalanine, respectively. Km values for pyruvate were 5.5 mM with histidine as amino donor, 1.3 mM with kynurenine and 8.5 mM with phenylalanine. Kynurenine pyruvate aminotransferase activity of the enzyme was inhibited by the addition of histidine or phenylalanine. The molecular weights determined by gel filtration and sucrose density gradient centrifugation were approximately 76000 and 79000, respectively. On the basis of purification ratio, substrate specificity, inhibition by common substrates, subcellular distribution, isoelectric focusing and polyacrylamide-gel electrophoresis, it is suggested that kynurenine pyruvate aminotransferase is identical with histidine pyruvate aminotransferase and also with phenylalanine pyruvate aminotransferase. The physiological significance of the enzyme is discussed.  相似文献   

10.
KAT (kynurenine aminotransferase) II is a primary enzyme in the brain for catalysing the transamination of kynurenine to KYNA (kynurenic acid). KYNA is the only known endogenous antagonist of the N-methyl-D-aspartate receptor. The enzyme also catalyses the transamination of aminoadipate to alpha-oxoadipate; therefore it was initially named AADAT (aminoadipate aminotransferase). As an endotoxin, aminoadipate influences various elements of glutamatergic neurotransmission and kills primary astrocytes in the brain. A number of studies dealing with the biochemical and functional characteristics of this enzyme exist in the literature, but a systematic assessment of KAT II addressing its substrate profile and kinetic properties has not been performed. The present study examines the biochemical and structural characterization of a human KAT II/AADAT. Substrate screening of human KAT II revealed that the enzyme has a very broad substrate specificity, is capable of catalysing the transamination of 16 out of 24 tested amino acids and could utilize all 16 tested alpha-oxo acids as amino-group acceptors. Kinetic analysis of human KAT II demonstrated its catalytic efficiency for individual amino-group donors and acceptors, providing information as to its preferred substrate affinity. Structural analysis of the human KAT II complex with alpha-oxoglutaric acid revealed a conformational change of an N-terminal fraction, residues 15-33, that is able to adapt to different substrate sizes, which provides a structural basis for its broad substrate specificity.  相似文献   

11.
Acylation of aspartate aminotransferase   总被引:1,自引:1,他引:0       下载免费PDF全文
1. Acetylation of aspartate aminotransferase from pig heart inhibits completely the enzymic activity when the coenzyme is in the amino form (pyridoxamine phosphate) or when the coenzyme has been removed, but not when the coenzyme is in the aldehyde form (pyridoxal phosphate). 2. The group the acylation of which is responsible for the inhibition has been identified with the in-amino group of a lysine residue at the coenzyme-binding site. Moreover, in the pyridoxamine-enzyme the amino group of the coenzyme is also acetylated. 3. The reactivity of the coenzyme-binding lysine residue is greatly different in the pyridoxamine-enzyme and in the apoenzyme, suggesting the possibility of an interaction of its in-amino group with pyridoxamine or with other groups on the protein.  相似文献   

12.
Photoinactivation of aspartate aminotransferase   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
15.
16.
Aspartate aminotransferase from Lactobacillus murinus is thermostable, its activity being not changed for two months at temperatures between 4 and -70 degrees C. Maximum activity was observed at 40 degrees C and pH 7.3 in phosphate buffer (30 mmol/L). delta G* Value of 26.3 kJ/mol was calculated from the Arrhenius plot. The Km values for L-aspartate and 2-oxoglutarate at pH 7.3 were 25 and 100 mmol/L, respectively. Sodium maleate and glutamate acted as inhibitors of the enzyme activity. The Ki values for sodium maleate with L-aspartate of 2-oxoglutarate as variable substrates were 1.1 and 0.5 mmol/L, respectively. The Ki values for glutamate with L-aspartate or 2-oxoglutarate were 8.0 and 4.0 mmol/L, respectively. An inhibitory effect was observed with 1 mM Hg2+ ions (1 mmol/L). The activity of the enzyme was diminished by only 12% in the absence of pyridoxal 5'-phosphate.  相似文献   

17.
18.
Genes argD and ARG8, encoding the acetylornithine aminotransferase (ACOAT) subunit in Escherichia coli and Saccharomyces cerevisiae, respectively, have been cloned and sequenced. The deduced amino acid sequences show substantial similarity. Moreover, they resemble ornithine aminotransferase (OAT) sequences (i.e., those from yeast, rat and man); the observed similarities are statistically significant, indicating that the enzymes are homologous. However, in contrast to OATs, which appear to be substrate (i.e., ornithine)-specific, S. cerevisiae ACOAT transaminates ornithine about as efficiently as E. coli does. The evolutionary relationship between ACOATs and OATs is discussed in terms of substrate ambiguity.  相似文献   

19.
The subcellular distributions of alanine-glyoxylate aminotransferase and serine-pyruvate aminotransferase in the particulate fraction of dog liver were examined by centrifugation in a sucrose density gradient. Most of both enzyme activities in the particulate fraction were localized in the mitochondria, but not in the peroxisomes.  相似文献   

20.
Alanine aminotransferase (AlaAT, EC 2.6.1.2) and glycine aminotransferase (GlyAT, EC 2.6.1.4), two different enzymes catalyzing transamination reactions with L-alanine as the amino-acid substrate, were examined in maize in which alanine participates substantially in nitrogen transport. Preparative PAGE of a partially purified preparation of aminotransferases from maize leaves gave 6 fractions differing in electrophoretic mobility. The fastest migrating fraction I represents AlaAT specific for L-alanine as amino donor and 2-oxoglutarate as amino acceptor. The remaining fractions showed three aminotransferase activities: L-alanine-2-oxoglutarate, L-alanine-glyoxylate and L-glutamate-glyoxylate. By means of molecular sieving on Zorbax SE-250 two groups of enzymes were distinguished in the PAGE fractions: of about 100 kDa and 50 kDa. Molecular mass of 104 kDa was ascribed to AlaAT in fraction I, while the molecular mass of the three enzymatic activities in 3 fractions of the low electrophoretic mobility was about 50 kDa. The response of these fractions to: aminooxyacetate, 3-chloro-L-alanine and competing amino acids prompted us to suggest that five out of the six preparative PAGE fractions represented GlyAT isoforms, differing from each other by the L-glutamate-glyoxylate:L-alanine-glyoxylate:L-alanine-2-oxoglutarate activity ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号