首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using intra- and extracellular recording techniques we examined the spontaneous discharge and membrane properties of respiratory-related neurons in isolated brainstem preparations of the frogs Rana catesbeiana and Rana pipiens that display spontaneous respiratory related activity in vitro. We observed neurons that depolarize during the fictive lung ventilation cycle as well as neurons that depolarize during the non-lung ventilation phase. Respiratory-related neurons demonstrated significant decreases in membrane input resistance during the fictive lung ventilation cycle but showed no evidence of voltage-dependent membrane conductances activated near resting membrane potential. Furthermore, respiratory neurons showed little spike frequency adaptation, their oscillatory activity was not dissociated from the global respiratory motor output following imposed changes in membrane potential, and spontaneous fluctuations in membrane potential were not observed following reversible interruption of respiratory burst activity by application of solutions low in calcium and high in magnesium. Taken together these results suggest that bulbar respiratory neurons in the isolated frog brainstem sampled in our study do not display endogenous bursting characteristics. Rather, they are strongly influenced by synaptic input. Accepted: 20 March 1997  相似文献   

2.
Using microinjection techniques, we have explored the isolated, complete midline sectioned brainstem of the frog (Rana catesbeiana) to identify regions that influence the endogenous respiratory-related motor activity. Ten-nanoliter injections of lidocaine (1%), GABA (100 mM) and glutamate (10 and 100 mM) into discrete regions of the rostral and the caudal brainstem produced different effects on the phasic neural discharge. In the rostral site lidocaine, GABA and glutamate injections altered neural burst frequency with little or no effect on burst amplitude. In the caudal site, responses to lidocaine and GABA injections consisted primarily of decreases in neural burst amplitude, often, but not always associated with minor decreases in burst frequency. In this same region, the response to glutamate was characterized by a temporary interruption of the rhythmic neural burst activity. The largest responses to substance injection in both regions were obtained at sites ranging between 200 and 500 m from the ventral surface, in the ventral medullary reticular formation. The results reveal the existence of two areas in the frog brainstem that influence respiratory motor output, one related to the respiratory burst frequency and the other related to the amplitude of the motor output.Abbreviations V trigeminal nerve - VI abducens nerve - VII facial nerve - VIII auditory nerve - X vagal nerve - H hypoglossal nerve - VRG ventral respiratory group - NTS nucleus of the solitary tract  相似文献   

3.
Location of the lung respiratory rhythm generator (RRG) in the bullfrog brainstem was investigated by examining neurokinin-1 and μ-opioid receptor (NK1R, μOR) colocalization by immunohistochemistry and characterizing the role of these receptors in lung rhythm and episodic pattern generation. NK1R and μOR occurred in brainstems from all developmental stages. In juvenile bullfrogs a distinct area of colocalization was coincident with high-intensity fluorescent labeling of μOR; high-intensity labeling of μOR was not distinctly and consistently localized in tadpole brainstems. NK1R labeling intensity did not change with development. Similarity in colocalization is consistent with similarity in responses to substance P (SP, NK1R agonist) and DAMGO (μOR agonist) when bath applied to bullfrog brainstems of different developmental stages. In early stage tadpoles and juvenile bullfrogs, SP increased and DAMGO decreased lung burst frequency. In juvenile bullfrogs, SP increased lung burst frequency, episode frequency, but decreased number of lung bursts per episode and lung burst duration. In contrast, DAMGO decreased lung burst frequency and burst cycle frequency, episode frequency, and number of lung bursts per episode but increased all other lung burst parameters. Based on these results, we hypothesize that NK1R and μOR colocalization together with a metamorphosis-related increase in μOR intensity marks the location of the lung RRG but not necessarily the lung episodic pattern generator.  相似文献   

4.
5.
Prenatal nicotine exposure with continued exposure through breast milk over the first week of life (developmental nicotine exposure, DNE) alters the development of brainstem circuits that control breathing. Here, we test the hypothesis that DNE alters the respiratory motor response to endogenous and exogenous acetylcholine (ACh) in neonatal rats. We used the brainstem‐spinal cord preparation in the split‐bath configuration, and applied drugs to the brainstem compartment while measuring the burst frequency and amplitude of the fourth cervical ventral nerve roots (C4VR), which contain the axons of phrenic motoneurons. We applied ACh alone; the nicotinic acetylcholine receptor (nAChR) antagonist curare, either alone or in the presence of ACh; and the muscarinic acetylcholine receptor (mAChR) antagonist atropine, either alone or in the presence of ACh. The main findings include: (1) atropine reduced frequency similarly in controls and DNE animals, while curare caused modest slowing in controls but no consistent change in DNE animals; (2) DNE greatly attenuated the increase in C4VR frequency mediated by exogenous ACh; (3) stimulation of nAChRs with ACh in the presence of atropine increased frequency markedly in controls, but not DNE animals; (4) stimulation of mAChRs with ACh in the presence of curare caused a modest increase in frequency, with no treatment group differences. DNE blunts the response of the respiratory central pattern generator to exogenous ACh, consistent with reduced availability of functionally competent nAChRs; DNE did not alter the muscarinic control of respiratory motor output. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1138–1149, 2016  相似文献   

6.
This study tested the hypothesis that voltage-dependent, respiratory-related activity in vitro, inferred from changes in [K(+)](o), changes during development in the amphibian brainstem. Respiratory-related neural activity was recorded from cranial nerve roots in isolated brainstem-spinal cord preparations from 7 premetamorphic tadpoles and 10 adults. Changes in fictive gill/lung activity in tadpoles and buccal/lung activity in adults were examined during superfusion with artificial CSF (aCSF) with [K(+)](o) ranging from 1 to 12 mM (4 mM control). In tadpoles, both fictive gill burst frequency (f(gill)) and lung burst frequency (f(lung)) were significantly dependent upon [K(+)](o) (r(2) > 0.75; p < 0.001) from 1 to 10 mM K(+), and there was a strong correlation between f(gill) and f(lung) (r(2) = 0.65; p < 0.001). When [K(+)](o) was raised to 12 mM, there was a reversible abolition of fictive breathing. In adults, fictive buccal frequency (f(buccal)), was significantly dependent on [K(+)](o) (r(2) = 0.47; p < 0.001), but [K(+)](o) had no effect on f(lung) (p > 0.2), and there was no significant correlation between f(buccal) and f(lung). These data suggest that the neural networks driving gill and lung burst activity in tadpoles may be strongly voltage modulated. In adults, buccal activity, the proposed remnant of gill ventilation in adults, also appears to be voltage dependent, but is not correlated with lung burst activity. These results suggest that lung burst activity in amphibians may shift from a "voltage-dependent" state to a "voltage-independent" state during development. This is consistent with the hypothesis that the fundamental mechanisms generating respiratory rhythm in the amphibian brainstem change during development. We hypothesize that lung respiratory rhythm generation in amphibians undergoes a developmental change from a pacemaker to network-driven process.  相似文献   

7.
Nitric oxide (NO) is a unique interneuronal neurotransmitter and/or neuromodulator that is involved in a variety of physiological functions within the central nervous system (CNS). In neural tissue, NO is generated from an oxygen-dependent, constitutive NO synthase (NOS) by glutamatergic stimulation of N-methyl-D-aspartate (NMDA) receptors. Recent studies indicate that NO has excitatory effects on breathing within the CNS and mediates a central component of the hypoxic ventilatory reflex in mammals. Because NMDA receptors are important in central respiratory rhythmogenesis, we hypothesized that NO would have significant effects on the central pattern generator (CPG) for breathing in the brainstem. To test this hypothesis, the effects of NO on respiratory-related neural activity were investigated using an in vitro brainstem preparation from North American bullfrogs (Rana catesbeiana). Extracellular recordings of respiratory-related burst activity were made from cranial nerves V, X and XII before and during superfusion of the brainstem with NO-generating compounds, or inhibitors of NO synthesis. Addition of the NO donor, sodium nitroprusside (SNP; 0.1-1.0 mM), or the amino acid precursor for NO synthesis, L-arginine (L-Arg; 0.01-1.0 mM), caused significant increases in respiratory-related burst frequency. Inhibition of NOS with N omega-nitro-L-arginine (L-NA; 5-10 mM), a non-selective NOS inhibitor, caused a significant reduction in burst frequency or reversibly abolished neural activity. Brainstem perfusion with the specific neuronal NOS (nNOS) inhibitor, 7-nitro indazole (7-NI), produced significant, dose-dependent reversible reductions in burst frequency at concentrations of 0.1, 0.5 and 1.0 mM. These results suggest that production of NO, probably via nNOS, provides an excitatory input to the respiratory CPG in the amphibian brainstem. Our results suggest that NO may be a necessary inter- or intracellular messenger for neurotransmission and/or neuromodulation of central respiratory drive to motor effectors in the bullfrog.  相似文献   

8.
Frog metamorphosis includes transition from water breathing to air breathing but the extent to which such a momentous change in behavior requires fundamental changes in the organization of the brainstem respiratory circuit is unknown. Here, we combine a vertically mounted isolated brainstem preparation, “the Sheep Dip,” with a search algorithm used in computer science, to identify essential rhombomeres for generation of ventilatory motor bursts in metamorphosing bullfrog tadpoles. Our data suggest that rhombomere 7, which in mammals hosts the PreBötC (PreBötzinger Complex; the likely inspiratory oscillator), is essential for gill and buccal bursts. Whereas rhombomere 5, in close proximity to a brainstem region associated with the mammalian expiratory oscillator, is essential for lung bursts at both stages. Therefore, we conclude there is no rhombomeric translocation of respiratory oscillators in bullfrogs as previously suggested. In premetamorphic tadpoles, functional ablation of rhombomere 7 caused ectopic expression of precocious lung bursts, suggesting the gill oscillator suppresses an otherwise functional lung oscillator in early development. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 888–898, 2013  相似文献   

9.
A new model for aspects of the control of respiration in mammals has been developed. The model integrates a reduced representation of the brainstem respiratory neural controller together with peripheral gas exchange and transport mechanisms. The neural controller consists of two components. One component represents the inspiratory oscillator in the pre-Bötzinger complex (pre-BötC) incorporating biophysical mechanisms for rhythm generation. The other component represents the ventral respiratory group (VRG), which is driven by the pre-BötC for generation of inspiratory (pre)motor output. The neural model was coupled to simplified models of the lungs incorporating oxygen and carbon dioxide transport. The simplified representation of the brainstem neural circuitry has regulation of both frequency and amplitude of respiration and is done in response to partial pressures of oxygen and carbon dioxide in the blood using proportional (P) and proportional plus integral (PI) controllers. We have studied the coupled system under open and closed loop control. We show that two breathing regimes can exist in the model. In one regime an increase in the inspiratory frequency is accompanied by an increase in amplitude. In the second regime an increase in frequency is accompanied by a decrease in amplitude. The dynamic response of the model to changes in the concentration of inspired O2 or inspired CO2 was compared qualitatively with experimental data reported in the physiological literature. We show that the dynamic response with a PI-controller fits the experimental data better but suggests that when high levels of CO2 are inspired the respiratory system cannot reach steady state. Our model also predicts that there could be two possible mechanisms for apnea appearance when 100% O2 is inspired following a period of 5% inspired O2. This paper represents a novel attempt to link neural control and gas transport mechanisms, highlights important issues in amplitude and frequency control and sets the stage for more complete neurophysiological control models.  相似文献   

10.
Steroid hormones modulate motor circuits in both vertebrates and invertebrates. The insect Manduca sexta, with its well-characterized developmental and endocrinological history, is a useful model system in which to study these effects. Wandering is a stage-specific locomotor behavior triggered by the steroid hormone 20-hydroxyecdysone (20E), consisting of crawling and burrowing movements as the animal searches for a pupation site. This study was undertaken to determine whether the wandering motor pattern is activated by direct action of 20E on the CNS. 20E acts on the isolated larval nervous system to induce a fictive motor pattern showing features of crawling and burrowing. The latency of the response to 20E is long, suggestive of a genomic mechanism of action. The abdominal motoneurons or segmental pattern generating circuits are unlikely to be the primary targets of 20E action in inducing fictive wandering. Exposure of the segmental ganglia alone to hormone did not evoke fictive wandering. Therefore, as suggested by an earlier study, the likely site of 20E action is within the brain.  相似文献   

11.
Using decerebrate frogs (Rana catesbeiana), we investigated the role of vagal and laryngeal sensory feedback in controlling motor activation of the larynx. Vagal and laryngeal nerve afferents were activated by electrical stimulation of the intact vagal and laryngeal nerves. Pulmonary afferents were activated by lung inflation. Reflex responses were recorded by measuring efferent activity in the laryngeal branch of the vagus (Xℓ) and changes in glottal aperture. Two glottic closure reflexes were identified, one evoked by lung inflation or electrical stimulation of the main branch of the vagus (Xm), and the other by electrical stimulation of Xℓ. Lung inflation evoked a decrementing burst of Xℓ efferent activity and electrical stimulation of Xm resulted in a brief burst of Xℓ action potentials. Electrical stimulation of Xℓ evoked a triphasic mechanical response, an abrupt glottal constriction followed by glottal dilatation followed by a long-lasting glottal constriction. The first phase was inferred to be a direct (nonreflex) response to the stimulus, whereas the second and third represent reflex responses to the activation of laryngeal afferents. Intracellular recordings of membrane potential of vagal motoneurons of lung and nonlung types revealed EPSPs in both types of neurons evoked by stimulation of Xm or Xℓ, indicating activation of glottal dilator and constrictor motoneurons. In summary, we have identified two novel reflexes producing glottic closure, one stimulated by activation of pulmonary receptors and the other by laryngeal receptors. The former may be part of an inspiratory terminating reflex and the latter may represent an airway protective reflex. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 213–222, 1997  相似文献   

12.
Anuran metamorphosis, the transition from aquatic larvae to terrestrial juveniles, is accompanied by significant morphological, physiological, and behavioral changes. Timing of metamorphosis and final size, which can influence adult fitness, may depend on sufficient energy accumulated during the larval period to support metamorphosis. However, only two species of anurans have been examined for energetic costs of metamorphosis, Rana tigrina and Anaxyrus terrestris. Based on these species, it has been hypothesized that differences in energy expenditure are related to duration of metamorphosis. To compare energetic costs of metamorphosis among species and examine this hypothesis, we quantified the total energy required for metamorphosis of Lithobates palustris tadpoles by measuring oxygen consumption rates over the duration of metamorphic climax using closed-circuit respirometry. Total energy costs for L. palustris were positively related to tadpole mass and duration of metamorphic climax. However, larger tadpoles completed metamorphosis more efficiently because they used proportionally less total energy for metamorphic climax than smaller counterparts. Costs were intermediate to R. tigrina, a larger species with similar metamorphic duration, and A. terrestris, a smaller species with shorter metamorphic climax. The results supported the hypothesis that amphibian species with more slowly developing tadpoles, such as ranids, require more absolute energy for metamorphosis in comparison to more rapidly developing species like bufonids.  相似文献   

13.
N. G. Wolf  D. L. Kramer 《Oecologia》1987,73(1):127-132
Summary The behavior of dwarf gouramis (Colisa lalia, Pisces, Belontiidae) and their vulnerability to predation by snakeheads (Channa micropeltes, Pisces, Channidae) were observed at four dissolved oxygen concentrations. When the oxygen level was near saturation (8 ppm) or only moderately reduced (3 ppm), the gouramis rarely breathed air and spent most of their time in a patch of artificial vegetation. At extremely low oxygen concentrations (1 and 0 ppm) the gouramis increased their air-breathing frequency and spent less time in cover. Gouramis were more likely to be captured by the snakeheads when out of the vegetation, and thus were caught more quickly at lower oxygen levels, even though their air-breathing frequency declined and use of cover increased in the presence of the predators. These results indicate that dissolved oxygen concentration, which varies considerably in many fish habitats, can affect use of cover and risk of predation in fishes.  相似文献   

14.
Chemical substrates, central sites and central mechanisms underlying the regulation of breathing in lower vertebrates have not been well characterized. The present study was undertaken to determine the effect of pH changes and cholinergic agents on the central control of respiration in the cane toad, Bufo marinus. Adult toads were anesthetized, catheterized and unidirectionally ventilated before exposing the brainstem. An airtight buccal cannula was also inserted through the tympanum to record buccal pressure. The animal was decerebrated, anesthetic removed and the responses to pH changes of solutions bathing the ventral surface of the medulla (VSM) were tested by superfusing the VSM with mock cerebrospinal fluid (mCSF) of pH 7.8-normal, 7.2-acidic and 8.4-basic. The acidic solution increased respiratory activity, the basic solution decreased activity and the normal solution had no effect. In addition, cholinergeric agents (acetylcholine-ACh, physostigmine-Phy, nicotine-Nic, and atropine-Atr) dissolved in mCSF were applied bilaterally onto the VSM using filter paper pledgets. ACh, Phy and Nic increased episodic breathing frequency by 14.3+/-9.7, 9.4+/-5.4 and 29.1+/-11.8 %, respectively, whereas, Atr caused a decrease (-26.6+/-16.6%). These agents had no effect on blood pressure. It is therefore, concluded that the VSM is pH sensitive and a cholinergic mechanism is involved in the central modulation of respiration in Bufo.  相似文献   

15.
Summary Cell adhesion was studied during primary embryonic induction. The disaggregation rate and reaggregation patterns were analysed in the ectoderm cells of various developing Cynopus gastrulae and neurulae. The neurectoderm cells disaggregated more slowly with gastrulation, and the neural plate cells of early neurula showed a lesser capacity for disaggregation. Although no differences in reaggregation were found between dorsal and ventral ectoderm at the early gastrula stage, there were significant differences between the induced neurectoderm and the non-induced ventral epidermal cells at the late gastrula stage. Neural plate cells of the early neurula stage were seen to form a chain-like reaggregate, but the ventral epidermal cells of the same embryo formed a cluster-like spherical reaggregate. Scanning electron microscope observations of reaggregates also showed significant differences in adhesive properties between induced neurectoderm and non-induced epidermal cells. The adhesion field of the induced neurectoderm cells was smooth, differing from the distinct ridges of the non-induced epidermal cells. These results suggest that changes in the cell adhesion system, resulting in the formation of a columnar cell shape, may occur immediately after a neural-inducing action.  相似文献   

16.
In order to analyze the respiratory, cardiovascular, and ECG responses to acute hypoxic hypoxia, three experimental series were carried out in a randomized manner on 11 healthy, unacclimatized volunteers at rest during standardized stepwise exposure to 6000 m (PAO2 35.2 +/- 2.9 mmHg/4.7 +/- 0.4 kPa) in a low-pressure chamber a) without (control), b) with propranolol, and c) with atropine combined with propranolol. The results show that hypoxic hyperventilation and alveolar gases are not affected by activation of the sympatho-adrenal axis or by parasympathetic withdrawal. Sympathetic activity, however, increases heart rate, stroke volume (pulse pressure), estimated cardiac output and systolic blood pressure, whereas decreased parasympathetic activity increases heart rate and estimated cardiac output, but lowers stroke volume. The fall in peripheral resistance, observed during progressive hypoxia in all three groups, is thought to be due to hypoxia-induced depression of the vasomotor center. At altitude catecholamine secretion and vagal withdrawal synergistically account in the ECG for the R-R shortening, the relative Q-T lengthening, the elevation of the P wave and the ST-T flattening. Probable direct hypoxic effects on the heart are the increase in P-Q duration and the minor but still significant depression of the T wave. It is concluded that at altitude increased sympatho-adrenal and decreased parasympathetic activity is without effect on hypoxic hyperventilation, but accounts for most of the cardiovascular and ECG changes. Diminution of sympathetic activity and imminent vagotonia arising after acute ascent to 6000 m probably reflect hypoxia of the central nervous system.  相似文献   

17.
18.
辣椒素引起脑干内心血管活动相关核团中c-fos的表达   总被引:1,自引:0,他引:1  
Xue BJ  Zhang XX  Shi GM  He RR 《生理学报》2000,52(2):159-162
在16只切断两侧缓冲神经的大鼠,观察颈总动脉注射辣椒素对脑干内心血管活动相关核团c-fos原癌基因表达的影响。在剂对照组大鼠脑干,仅见少数Fos蛋白样免疫反应(FLI)神经元。与对照组相比,颈总动脉注射辣椒素(10μmol,0.1ml)时,脑干内巨细胞旁外侧核(PGL)、蓝斑(LC)、最后区(AP)和孤束核(NTS)等部位的FLI神经元显著增加,而中脑中央灰质(PAG)和中缝核群(RN)的FLI神  相似文献   

19.
In anuran amphibians, respiratory rhythm is generated within the central nervous system (CNS) and is modulated by chemo- and mechanoreceptors located in the vascular system and within the CNS. The site for central respiratory rhythmogenesis and the role of various neurotransmitters and neuromodulators is described. Ventilatory air flow is generated by a positive pressure, buccal force pump driven by efferent motor output from cranial nerves. The vagus (cranial nerve X) also controls heart rate and pulmocutaneous arterial resistance that, in turn, affect cardiac shunts within the undivided anuran ventricle; however, little is known about the control of central vagal motor outflow to the heart and pulmocutaneous artery. Anatomical evidence indicates a close proximity of the centers responsible for respiratory rhythmogenesis and the vagal motoneurons involved in cardiovascular regulation. Furthermore, anurans in which phasic feedback from chemo- and mechanoreceptors is prevented by artificial ventilation exhibit cardiorespiratory interactions that appear similar to those of conscious animals. These observations indicate interactions between respiratory and cardiovascular centers within the CNS. Thus, like mammals and other air-breathing vertebrates, the cardio-respiratory interactions in anurans result from both feedback and feed-forward mechanisms.  相似文献   

20.
This study aimed to determine the effects of melatonin on irradiation-induced apoptosis and oxidative stress in the brainstem region of Wistar rats. Therefore, the animals underwent whole-brain X-radiation with a single dose of 25 Gy in the presence or absence of melatonin pretreatment at a concentration of 100 mg/kg BW. The rats were allocated into four groups (10 rats in each group): namely, vehicle control (VC), 100 mg/kg of melatonin alone (MLT), irradiation-only (RAD), and irradiation plus 100 mg/kg of melatonin (RAM). An hour before irradiation, the animals received intraperitoneal (IP) melatonin and then were killed after 6 hr, followed by measurement of nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and total antioxidant capacity (TAC) in the brainstem region. Furthermore, the western blot analysis technique was performed to assess the caspase-3 expression level. Results showed significantly higher MDA and NO levels in the brainstem tissues for the RAD group when compared with the VC group (p < .001). Moreover, the irradiated rats exhibited a significant decrease in the levels of CAT, SOD, GPx, and TAC (p < .01, p < .001, p < .001, and p < .001, respectively) in comparison to the VC group. The results of apoptosis assessment revealed that the expression level of caspase-3 significantly rose in the RAD group in comparison with the VC group (p < .001). Pretreatment with melatonin ameliorated the radiation-induced adverse effects by decreasing the MDA and NO levels (p < .001) and increasing the antioxidant enzyme activities (p < .001). Consequently, the caspase-3 protein expression level in the RAM group showed a significant reduction in comparison with the RAD group (p < .001). In conclusion, melatonin approximately showed a capacity for neuroprotective activity in managing irradiation-induced oxidative stress and apoptosis in the brainstem of rats; however, the use of melatonin as a neuroprotective agent in humans requires further study, particularly clinical trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号