首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermophilic bacterium Bacillus sp. strain TB-1 was isolated in association with the yeast Debaryomyces vanriji from hot springs at 46°C. It was shown that TB-1 excreted thiamine into the culture broth, which not only promoted D. vanriji growth in mixed culture but also increased the maximal temperature for yeast growth.  相似文献   

2.
The investigation of the effect of the cytochrome oxidase inhibitors sodium cyanide and sodium azide on the thermotolerance of the yeasts Rhodotorula rubra, Debaryomyces vanriji, and Saccharomyces cerevisiae showed that these inhibitors diminish the thermotolerance of R. rubra and D. vanriji, but do not affect the thermotolerance of S. cerevisiae. Taking into account the fact that, unlike the latter yeast, R. rubra and D. vanriji are nonfermentative yeasts, the difference in the effects of the inhibitors on the yeast thermotolerance can be readily explained by the different types of glucose utilization (either oxidative or fermentative) in these yeasts. The data obtained also provide evidence that there is a correlation between the functional activity of mitochondria and the thermotolerance of yeast cells.  相似文献   

3.
Summary The productivity ofEscherichia coli biomass and recombinant beta-galactosidase was increased in Luria broth (LB) enriched with yeast extract. In flask culture under conditions of LB limitation, yeast extract suplementation gave the highest biomass (strain HB101/pRW756) stimulation per unit of component added compared with supplementation by various amounts of amino acids, vitamins, minerals, purines/pyrimidines, tryptone, casamino acids, casein peptone or gelatin peptone. The biomass production ofE. coli HB101/pRW756, XL-1 blue/puc118, XL-1 Blue FF/puc118 and TB-1/p1034 cells was stimulated in fermentor-scale experiments with additional yeast extract in LB. Total beta-galactosidase production from plasmid genes in fermentor-scale experiments was increased 105.4% in XL-1 blue/puc118 cells, 365.5% in XL-1 blue FF/puc118 cells and 421.4% in TB-1/p1034 cells by 0.5%, 1% and 1% weight per volume of additional yeast extract in LB, respectively. Depending on different strains, the increase of the enzyme production was obtained either by increased biomass, or the combination of enhanced gene expression and increased biomass. Neither the biomass nor beta-galactosidase production was stimulated in N4830/p1034 cells by the increase in yeast extract concentration in the medium.  相似文献   

4.
The pretreatment of Saccharomyces cerevisiae and Debaryomyces vanriji with sodium azide was found to induce thermotolerance in both yeasts, whereas sodium azide used in combination with heat shock enhanced the thermotolerance of S. cerevisiae and substantially decreased the thermotolerance of D. vanriji. It is suggested that the different responses of the yeasts to sodium azide during heat shock are due to the different functional organizations of their mitochondrial apparatus.  相似文献   

5.
Growth factor receptors activate tyrosine kinases and undergo endocytosis. Recent data suggest that tyrosine kinase inhibition can affect growth factor receptor internalization. The type 1 angiotensin II receptor (AT1R) which is a G-protein-coupled receptor, also activates tyrosine kinases and undergoes endocytosis. Thus, we examined whether tyrosine kinase inhibition affected AT1R internalization. To verify protein tyrosine phosphorylation, both LLCPKCl4 cells expressing rabbit AT1R (LLCPKAT1R) and cultured rat mesangial cells (MSC) were treated with angiotensin II (Ang II) [1-100 nM] then solubilized and immunoprecipitated with antiphosphotyrosine antisera. Immunoblots of these samples demonstrated that Ang II stimulated protein tyrosine phosphorylation in both cell types. Losartan [1 microM], an AT1R antagonist, inhibited Ang II-stimulated protein tyrosine phosphorylation. LLCPKAT1R cells displayed specific 125I-Ang II binding at apical (AP) and basolateral (BL) membranes, and both AP and BL AT1R activated tyrosine phosphorylation. LLCPKAT1R cells, incubated with genistein (Gen) [200 microM] or tyrphostin B-48 (TB-48) [50 microM], were assayed for acid-resistant specific 125I-Ang II binding, a measure of Ang II internalization. Both Gen (n = 7) and TB-48 (n = 3) inhibited AP 125I-Ang II internalization (80+/-7% inhibition; p<0.025 vs. control). Neither compound affected BL internalization. TB-1, a non-tyrosine kinase-inhibiting tyrphostin, did not affect AP 125I-Ang II endocytosis (n = 3), suggesting that the TB-48 effect was specific for tyrosine kinase inhibition. Incubating MSC with Gen (n = 5) or herbimycin A [150 ng/ml] (n = 4) also inhibited MSC 125I-Ang II internalization (82+/-11% inhibition; p<0.005 vs. control). Thus, tyrosine kinase inhibition prevented Ang II internalization in MSC and selectively decreased AP Ang II internalization in LLCPKAT1R cells suggesting that AP AT1R in LLCPKAT1R cells and MSC AT1R have similar endocytic phenotypes, and tyrosine kinase activity may play a role in AT1R internalization.  相似文献   

6.
Intracellular recordings of membrane potentials of mudpuppy lingual cells were made with micropipette electrodes. Three types of cells were distinguished by their responses to chemical stimulation. Surface epithelial (SE) cells outside of taste buds responded with large membrane potential and resistance changes to a variety of stimuli representing the four taste qualities. Salts and acids evoked particularly large potential changes, and MgCl2, acids, and quinine greatly increased the membrane resistance. One type of taste bud cell (TB-1) was characterized by large depolarizations to K salts, and the other type of taste bud cell (TB-2) characteristically hyperpolarized to MgCl2, acid, and sugar solutions. Membrane resistance changes accompanying TB-1 and TB-2 cell responses were relatively small compared to those of SE cells. Electrotonic coupling was observed between pairs of SE and TB-2 cells but not for pairs of TB-1 cells nor cells of different types. After recording cell responses, dye-marking allowed verification of results in situ and histologically. From the identification of cells in section, it is hypothesized the TB-1 and TB- 2 cells correspond to light and dark cells, respectively. Responses of TB-1 cells imply a taste receptive function; wheras TB 2-cell responses suggest secretory, supportive, and (or) receptive functions. Factors affecting cellular characteristics, non-taste bud cell responsiveness, response mechanisms, and function of electrotonic coupling are discussed in relation to taste reception.  相似文献   

7.
Summary Four recombinant strains ofEscherichia coli were examined for the effects of the dissolved oxygen level on the level of biomass, the plasmid content, and the level of recombinant protein at the stationary phase of batch growth. Strains JM101/pYEJ001, and TB-1/pYEJ001 (encoding chloramphenicol acetyltransferase), and strain TB-1/p1034, and TB-1/pUC19 (encoding -galactosidase) were grown at the constant dissolved oxygen levels of 0, 50, and 100% air saturation, as well as in the absence of dissolved, oxygen control. The biomass of all strains under constant aerobic conditions was 12–36 times higher than that under anaerobic conditions, but was the same as or slightly higher than that without dissolved oxygen control. The plasmid content in all strains under anaerobic conditions was 2.9–11.7 times higher than that under aerobic conditions. The optimal dissolved oxygen concentration for the specific activity of recombinant proteins was dependent upon the strain. In no strain were constant aerobic conditions optimal. However, because of the effect on biomass, controlled aerobic conditions were optimal for the volumetric activity of recombinant protein in all but one strain.  相似文献   

8.
A method for the detection of T-2 metabolites was developed and applied to analysis of metabolites in excreta of broiler chickens administered 3H-labeled T-2 toxin. The method used acetonitrile extraction and partitioning with petroleum ether followed by chromatography on Amberlite XAD-2, Florisil, and Sep-Pak C18. The recovery of T-2 toxin added to the chicken excreta was 73% at a concentration of 0.2 microgram/g. About 80% of orally administered 3H-labeled T-2 toxin was rapidly metabolized to more polar derivatives and eliminated in the excreta within 48 h. T-2 toxin, HT-2 toxin, neosolaniol, and T-2 tetraol were detected at 0.06 to 1.13% of the total dose, 48 h after administration. Eight unknown derivatives, named TB-1 to TB-8, were quantitatively more significant than the metabolites above. TB-3 and TB-9 represented about 12 and 25% of the total dose, respectively. One of the metabolites (TB-6), 1.5% of the total dose, was identified as 4-deacetylneosolaniol (15-acetyl-3 alpha, 4 beta, 8 alpha-trihydroxy-12, 13-epoxytrichothec-9-ene).  相似文献   

9.
Chen CM  Cheng WT  Chang YC  Chang TJ  Chen HL 《Life sciences》2000,67(17):2103-2115
In present study the methylotrophic yeast, Pichia pastoris, was used to express a recombinant growth hormone (rGH) gene of swine. A synthetic secretion cassette was constructed using the promoter of the alcohol oxidase1 gene (AOX1), and a alpha-factor signal peptide. After electroporatic transformation and zeocin selection, several clones exhibited high levels of rGH protein expression constituting more than 20% of total yeast protein. Over 95% of rGH was shown to be export into the culture supernatant. Yeast transformant containing the highest recombinant growth hormone level (rGH yeast) and native GS115 Pichia pastoris (non-rGH yeast, as a control) were separately cultured, harvested and adsorbed by wheat bran. Yeast cultures of four dosages (0.05, 0.1, 0.2, and 0.4%) were mixed respectively with chick basal diet and fed to simulated country chickens for 9 weeks. The results showed that, when compared to control chicks, the percentage of body weight gain was improved significantly (P<0.05) in chicks fed with diets containing 0.1 or 0.2% rGH-rich yeast culture at brooding stage, and in chicks fed with 0.4% rGH-rich yeast culture at growing stage. The average weight gain in rGH yeast treated groups for the full-term (0 to 63d) and short term (43 to 63d) of growth were 10.6 and 9.4%, respectively, better than the non-rGH yeast control group. These experimental data suggest that the use of rGH-containing yeast as a supplement in fed provided an alternative approach for growth improvement in simulated country chickens.  相似文献   

10.
The influence of dilution rate on the production of biomass, ethanol, and invertase in an aerobic culture of Saccharomyces carlsbergensis was studied in a glucose-limited chemostat culture. A kinetic model was developed to analyze the biphasic growth of yeast on both the glucose remaining and the ethanol produced in the culture. The model assumes a double effect where glucose regulates the flux of glucose catabolism (respiration and aerobic fermentation) and the ethanol utilization in yeast cells. The model could successfully demonstrate the experimental results of a chemostat culture featuring the monotonic decrease of biomass concentration with an increase of dilution rate higher than 0.2 hr?1 as well as the maximum ethanol concentration at a particular dilution rate around 0.5 hr?1. Some supplementary data were collected from an ethanol-limited aerobic chemostat culture and a glucose-limited anaerobic chemostat culture to use in the model calculation. Some parametric constants of cell growth, ethanol production, and invertase formation were determined in batch cultures under aerobic and anaerobic states as summarized in a table in comparison with the chemostat data. Using the constants, a prediction of the optimal control of a glucose fed-batch yeast culture was conducted in connection with an experiment for harvesting a high yield of yeast cells with high invertase activity.  相似文献   

11.
Microorganisms isolated from soil samples were screened for their ability to degrade various biodegradable polyester-based plastics. The most active strain, designated as strain TB-13, was selected as the best strain for degrading these plastics. From its phenotypic and genetic characteristics, strain TB-13 was closely related to Paenibacillus amylolyticus. It could degrade poly(lactic acid), poly(butylene succinate), poly(butylene succinate-co-adipate), poly(caprolactone) and poly(ethylene succinate) but not poly(hydroxybutylate-co-valerate). However, it could not utilize these plastics as sole carbon sources. Both protease and esterase activities, which may be involved in the degradation of plastic, were constitutively detected in the culture broth.  相似文献   

12.
The study of the growth of the yeasts Rhodotorula rubra, Saccharomyces cerevisiae, and Debaryomyces vanriji at elevated temperatures and their survival after transient lethal heat shock showed that the ability of these yeasts to grow at supraoptimal temperatures (i.e., their thermoresistance) and their ability to tolerate lethal heat shocks (i.e., their thermotolerance) are determined by different mechanisms. The thermotolerance of the yeasts is suggested to be mainly determined by the division rate of cells before their exposure to heat shock.  相似文献   

13.
The growth of the Spodoptera frugiperda cell line Sf9 was studied in batch and continuous culture. The results of batch cultivations showed that glucose was the preferred energy and carbon source limiting the cell density in both TNM-FH and IPL-41 media. Continuous culture using IPL-41-based feeding medium with different glucose (2.5, 5 and 10 g l−1) and yeast extract concentrations (4, 8 and 16 g l−1) showed that in serum-supplemented medium the maximum cell density was limited by glucose and yeast extract concentration. The transition to glucose limitation caused a decrease in growth rate and viability. A high cell density culture (18 × 106 ml−1) was obtained using a glucose concentration of 10 g l−1 and a yeast extract concentration of 8 g l−1 in the feeding medium. A yeast extract concentration of 16 g l−1 inhibited growth. Unlike mammalian cell cultures, lactate, alanine and ammonia were not involved in growth inhibition. Lactate did not accumulate under aerobic conditions. Ammonia accumulation, if observed, was insignificant. The level of alanine synthesized and excreted into the culture medium never reached an inhibitory level. During glucose limitation alanine did not accumulate and ammonia was released. However, even in the presence of glucose significant amounts of Asp, Glu, Gln, Asn, Ser, Arg and Met were utilized for energy production. The amino groups of these amino acids were transferred to pyruvate or used for nucleic acid synthesis and excreted in the form of alanine into the culture medium. The consumption of His, Lys, Thr, Gly, Val, Leu, Phe, Tyr, Trp and Ile by growing Sf-9 cells was almost equal to their concentration in the biomass.  相似文献   

14.
AIMS: The objective of the present study was to investigate the optimal culture requirements for mycelial growth and exopolysaccharide production by Cordyceps jiangxiensis JXPJ 0109 in submerged culture. METHODS AND RESULTS: The effects of medium ingredients (i.e. carbon and nitrogen sources, and growth factor) and other culture requirements (i.e. initial pH, temperature, etc.) on the production of mycelia and exopolysaccharide were observed using a one-factor-at-a-time method. More suitable culture requirements for mycelial growth and exopolysaccharide production were proved to be maltose, glycerol, tryptone, soya bean steep powder, yeast extract, medium capacity 200 ml in a 500-ml flask, agitation rate 180 rev min(-1), seed age 4-8 days, inoculum size 2.5-7.5% (v/v), etc. The optimal temperatures and initial pHs for mycelial growth and exopolysaccharide production were at 26 degrees C and pH 5 and at 28 degrees C and pH 7, respectively, and corresponding optimal culture age were observed to be 8 and 10 days respectively. According to the primary results of the one-factor-at-a-time experiments, the optimal medium for the mycelial growth and exopolysaccharide production were obtained using an orthogonal layout method to optimize further. Herein the effects of medium ingredients on the mycelial growth of C. jiangxiensis JXPJ 0109 were in the order of yeast extract > tryptone > maltose > CaCl2 > glycerol > MgSO4 > KH2PO4 and the optimal concentration of each composition was 15 g maltose (food-grade), 10 g glycerol, 10 g tryptone, 10 g yeast extract, 1 g KH2PO4, 0.2 g MgSO4, and 0.5 g CaCl2 in 1 l of distilled water, while the order of effects of those components on exopolysaccharide production was yeast extract > maltose > tryptone > glycerol > KH2PO4 > CaCl2 > MgSO4, corresponding to the optimal concentration of medium was as follows: 20 g maltose (food-grade), 8 g glycerol, 5 g tryptone, 10 g yeast extract, 1 g KH2PO4, and 0.5 g CaCl2 in 1 l of distilled water. CONCLUSIONS: Under the optimal culture requirements, the maximum exopolysaccharide production reached 3.5 g l(-1) after 10 days of fermentation, while the maximum production of mycelial growth achieved 14.5 g l(-1) after 8 days of fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report on the submerged culture requirements for mycelial growth and exopolysaccharide in C. jiangxiensis, and this two-step optimization strategy in this study can be widely applied to other microbial fermentation processes.  相似文献   

15.
Aggregation of the yeast Kluyveromyces bulgaricus is mediated by the galactose-specific lectin KbCWL1. This lectin contains hydrophobic amino acids and its activity is calcium dependent. A specific fluorescent probe, 1-anilinonaphthalene-8-sulfonic acid in the free acid form (ANS; Sigma Chemical Co., St. Louis, Missouri), was used to study the hydrophobic areas on the cellular surface of K. bulgaricus. Changes in surface hydrophobicity during the growth and aggregation of yeast cells were studied. Surface hydrophobicity increased during growth and depended on the amount of yeast cells in the culture medium. During growth, the size of the hydrophobic areas on the cell surface was measured using ANS and was found to increase with the percentage of flocculating yeasts. Our results strongly suggest that the hydrophobic areas of the cell walls of yeast cells are involved in the aggregation of K. bulgaricus.  相似文献   

16.
The growth pattern of Saccharomyces cerevisiae and Propionibacterium freudenreichii ssp. shermanii (P. shermanii; propionic acid bacteria, PABs) during cocultivation in liquid media depended on the ratio of the cells in the inoculum. An increase in the growth rate of S. cerevisiae was observed at a PAB to yeast ratio of approximately 3 : 1; higher ratios exerted adverse effects on yeast growth. The culture liquid of 18- to 24-h (young) cultures of PABs stimulated yeast growth. Although yeast growth-stimulating exometabolites of PABs were not high-molecular-weight compounds, they were thermolabile. When present in the medium at concentrations of up to 1.5%, the antimicrobial agent sodium propionate did not interfere with S. cerevisiae growth; however, it completely inhibited the growth of B. subtilis at a concentration of 0.2%.  相似文献   

17.
The involvement of potassium ions in the action of some antineoplastic drugs on the growth of Saccharomyces cerevisiae was studied by incubating yeast cells in the presence of drugs at various concentrations and KC1 at concentrations of 50 mmol 1-1 and 100 mmol 1-1. The presence of 6.25–50 μg m1-1 amsacrine or melphalan alone in the culture medium had no significant effect on yeast growth. Addition of KC1 significantly increased the sensitivity to these drugs. On the contrary, incubation of yeast cells with KC1 had no effect on the cytotoxic action of doxorubicin, methotrexate or 5-fluorouracil.  相似文献   

18.
Strain PA-1 (S. Barik, W.J. Brulla, and M.P. Bryant, Appl. Environ. Microbiol. 50:304-310, 1985) is an anaerobic, gram-negative rod that in pure culture decarboxylates succinate to propionate and that grows syntrophically as an acetogen with the H2 utilizer Methanospirillum hungatei if glucose, pyruvate, aspartate, or fumarate is provided. In pure culture, strain PA-1 grows optimally in a medium containing 5% ruminal fluid, 0.1% yeast extract, a 4:1 N2-CO2 gas phase, and 20 mM succinate. With the PA-1 plus M. hungatei coculture, good growth was obtained with 7.5 mM glucose and tryptophan could replace the yeast extract. Strain PA-1 in pure culture grew quite well in glucose medium if the large headspace was flushed intermittently with N2. Flushing with H2 inhibited this growth.  相似文献   

19.
Strain PA-1 (S. Barik, W.J. Brulla, and M.P. Bryant, Appl. Environ. Microbiol. 50:304-310, 1985) is an anaerobic, gram-negative rod that in pure culture decarboxylates succinate to propionate and that grows syntrophically as an acetogen with the H2 utilizer Methanospirillum hungatei if glucose, pyruvate, aspartate, or fumarate is provided. In pure culture, strain PA-1 grows optimally in a medium containing 5% ruminal fluid, 0.1% yeast extract, a 4:1 N2-CO2 gas phase, and 20 mM succinate. With the PA-1 plus M. hungatei coculture, good growth was obtained with 7.5 mM glucose and tryptophan could replace the yeast extract. Strain PA-1 in pure culture grew quite well in glucose medium if the large headspace was flushed intermittently with N2. Flushing with H2 inhibited this growth.  相似文献   

20.
红酵母NZ-01发酵条件的优化   总被引:5,自引:1,他引:5  
以红酵母菌株NZ-01为试验菌株,研究其发酵工艺与中试生产。采用摇瓶发酵优化的方式,研究培养基组分与发酵工艺条件对该菌发酵的影响,并进行中试放大生产。结果显示,该菌最适生长培养基组分为葡萄糖10g/L,蔗糖10g/L,酵母膏10g/L,牛肉膏2.5g/L;色素合成最适培养基组分为葡萄糖15g/L,蔗糖10g/L,酵母膏2.5g/L,牛肉膏5g/L。最适生长起始pH值为6.0,最适接种量为8%,生长周期为44h;最适色素合成起始pH值为7.0,最适色素合成接种量为8%,色素合成周期为48h。发酵优化后的色素产量3.88μg/mL较优化前1.71μg/mL提高了127%。中试产量达3.05μg/mL。红酵母菌NZ-01优化后的发酵条件可以应用于中试生产虾青素,有规模化生产应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号