首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiosequence analysis of peptide fragments of the estrogen receptor (ER) from MCF-7 human breast cancer cells has been used to identify cysteine 530 as the site of covalent attachment of an estrogenic affinity label, ketononestrol aziridine (KNA), and an antiestrogenic affinity label, tamoxifen aziridine (TAZ). ER from MCF-7 cells was covalently labeled with [3H]TAZ or [3H]KNA and purified to greater than 95% homogeneity by immunoadsorbent chromatography. Limit digest peptide fragments, generated by prolonged exposure of the labeled receptor to trypsin, cyanogen bromide, or Staphylococcus aureus V8 protease, were purified to homogeneity by high performance liquid chromatography (HPLC), and the position of the labeled residue was determined by sequential Edman degradation. With both aziridines, the labeled residue was at position 1 in the tryptic peptide, position 2 in the cyanogen bromide peptide, and position 7 in the V8 protease peptide. This localizes the site of labeling to a single cysteine at position 530 in the receptor sequence. The identity of cysteine as the site of labeling was confirmed by HPLC comparison of the TAZ-labeled amino acid (as the phenylthiohydantoin and phenylthiocarbamyl derivatives) and the KNA-labeled amino acid (as the phenylthiocarbamyl derivative) with authentic standards prepared by total synthesis. Cysteine 530 is located in the hormone binding domain of the receptor, near its carboxyl terminus. This location is consistent with earlier studies using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to analyze the size of the proteolytic fragments containing the covalent labeling sites for TAZ and KNA and the antigen recognition sites for monoclonal antibodies. The fact that both the estrogenic and antiestrogenic affinity labeling agents react covalently with the same cysteine indicates that differences in receptor-agonist and receptor-antagonist complexes do not result in differential covalent labeling of amino acid residues in the hormone binding domain.  相似文献   

2.
A new antiestrogen affinity ligand for the covalent labeling of estrogen receptors, [3H]desmethylnafoxidine aziridine, has been used to investigate the salt- and temperature-independent formation of DNA-binding estrogen receptor forms from untransformed (300 kilodaltons) receptor. Calf uterine estrogen receptor proteins labeled with [3H]estradiol or [3H]desmethylnafoxidine aziridine were quantitatively transformed (greater than 90%) to their DNA-binding configuration in low ionic strength buffers by brief exposure to 3 M urea at 0 C. The urea effect was hormone-dependent and partially reversible. The transformed receptors were purified (ca 250-fold) by affinity chromatography on single-stranded DNA-agarose in the continued presence of 3 M urea to prevent transformation reversal. Scatchard analyses revealed a single class of high affinity radioligand binding sites (Kd = 0.34 nM) unchanged by urea-induced transformation and purification. The DNA-binding receptor form labeled with [3H]desmethylnafoxidine aziridine was stable as a probable dimer in 3 M urea with 0.4 M KCl and displayed no evidence of size (Stokes radius 7.3 to 7.5 nm; 4.2 to 4.3 S; Mr = 136,800) heterogeneity. Sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis indicated the presence of an intact 67 kDa steroid-binding receptor subunit. Reverse-phase chromatography of the covalently labeled receptor on C4 and phenyl stationary phases revealed no evidence of structural heterogeneity. The surface charge of the estrogen- and antiestrogen-receptor complexes, however, was distinctly different in both the presence and absence of 3 M urea. Thus, exposure to urea was an effective salt- and temperature-independent means for achieving the complete transformation of receptor to its stable DNA-binding dimer configuration. The ligand-induced differences in receptor surface charge and the urea effects on DNA-binding (but not hormone-binding) suggest that both electrostatic and hydrophobic or hydrogen bonding receptor domains are influenced by ligand binding.  相似文献   

3.
Calf uterine estrogen receptor was covalently labeled with [3H]tamoxifen aziridine during affinity chromatography purification. After carboxymethylation, affinity labeled receptor was digested with trypsin under limit conditions and the labeled peptides were fractionated by reversed-phase high performance liquid chromatography into one major and two minor components. Sequence analysis of the dominant labeled fragment indicated the facile cleavage of label during Edman degradation but identified two peptides, both derived from the extreme carboxyl terminus of the steroid-binding domain. The 17 residues of one peptide were fully conserved in all estrogen receptors. This fragment contained five nucleophilic amino acids and was considered as the more favored interaction site for tamoxifen aziridine. A corresponding region of the glucocorticoid receptor has recently been identified as one of three major contact sites for glucocorticoids (Carlstedt-Duke, J., Str?mstedt, P.-E., Persson, B., Cederlund, E., Gustafsson, J.-A., and J?rnvall, H. (1988) J. Biol. Chem. 263, 6842-6846). A comparison of amino acid physical characteristics in the hormone-binding domains of human estrogen and glucocorticoid receptors demonstrated an excellent structural correlation between the two regions and delineated elements in the estrogen receptor which may be directly involved in estradiol binding.  相似文献   

4.
In MCF-7 breast cancer cells, hydroxytamoxifen (OH-Tam) up-regulates the estrogen receptor (ER) in a form unable to bind [(3)H]estradiol (E(2)). We show here that this property is not restricted to this antiestrogen. [(3)H]E(2) binding assays (whole cell assays, DCC assays on cell extracts) and enzyme immunoassays (Abbott) performed in parallel, establish the permanent presence of such unusual ERs in the absence of any exposure of the cells to a ligand. E(2) and the pure antiestrogen RU 58 668, which down-regulate ER, also decrease [(3)H]E(2) binding. In control cells, these ERs represent about the half of the whole receptor population; they also display a tendency to stabilize within the cell nucleus. Loss of E(2) binding ability appears irreversible, since we failed to label receptor accumulated under OH-Tam with [(3)H]E(2) or [(3)H]tamoxifen aziridine (TAZ). Cycloheximide (CHX), which blocks E(2)-induced down regulation of ER, failed to stabilize [(3)H]E(2) binding (whole cell assay) after an [(3)H]E(2) pulse (1 h), confirming that regulation of E(2) binding and peptide level are related to different regulatory mechanisms. Loss of binding ability could not be ascribed to any ER cleavage as demonstrated by Western blotting with a panel of ER antibodies raised against its various domains (67 kDa ER solely detected). We propose that loss of E(2) binding ability is related to the aging process of the receptor, i.e. it is progressively converted to a form devoted to degradation after it has accomplished its physiological role. Ligands may favor (E(2), RU 58 668) or impede (OH-Tam) this elimination process.  相似文献   

5.
Iododesethyl tamoxifen aziridine (I-Tam-Az), an analog of the estrogen receptor-affinity label tamoxifen aziridine (Tam-Az) in which the ethyl group has been replaced by an iodine, has been prepared by two routes: (a) metallation of a bromotriarylethylene system, followed by reaction with iodine, and aziridinylation, and (b) direct iodination of a trimethylstannyl triarylethylene system that is the immediate precursor of I-Tam-Az. The latter method can be used to prepare [125I]I-Tam-Az rapidly and in good yield, both at carrier-added and no-carrier-added levels; specific activities greater than 200 Ci/mmol have been obtained. In competitive radiometric binding assays with the estrogen receptor, I-Tam-Az has an apparent affinity of ca. 20%, equivalent to that of Tam-Az. It also undergoes rapid and selective time-dependent, irreversible binding to the estrogen receptor. [125I]I-Tam-Az reacts covalently with estrogen receptor in uterine cytosol preparations; its attachment is rapid and efficient, but somewhat less selective than that of Tam-Az. Estrogen receptor in intact MCF-7 human breast cancer cells can also be labeled with [125I]I-Tam-Az, and autoradiographic analysis of salt extracts of labeled nuclear estrogen receptor on SDS-polyacrylamide slab gels shows highly selective labeling of a 65K protein. [125I]I-Tam-Az is an efficient, selective affinity label for the estrogen receptor, available at high specific activity, and should be useful in studies on estrogen receptor structure, dynamics, and chromatin interactions.  相似文献   

6.
S Koike  A Nii  M Sakai  M Muramatsu 《Biochemistry》1987,26(9):2563-2568
For the purpose of characterizing the estrogen binding domain of porcine estrogen receptor (ER), we have made use of affinity labeling of partially purified ER with [3H]tamoxifen aziridine. The labeling is very efficient and selective particularly after partial purification of ER. A 65,000-dalton (65-kDa) band was detected on the fluorogram of a sodium dodecyl sulfate-polyacrylamide gel, together with a 50-kDa band and a few more smaller bands. The 50-kDa protein appears to be a degradation product of the 65-kDa protein in view of the similar peptide map. ER was affinity labeled before or after controlled limited proteolysis with either trypsin, papain, or alpha-chymotrypsin. The labeling patterns of limited digests indicate that a fragment of about 30 kDa is relatively resistant to proteases and has a full and specific binding activity to estrogen, whereas smaller fragments have lost much of the binding activity. This fragment is very hydrophobic and probably corresponds to the carboxy half of ER.  相似文献   

7.
Desmethylnafoxidine aziridine (Naf-Az), an affinity label for the estrogen receptor based structurally on the antiestrogen nafoxidine, has been prepared in unlabeled and in high specific activity, tritium-labeled form and has been evaluated for its apparent competitive binding, and time-dependent irreversible, covalent attachment to the estrogen receptor. Naf-Az was synthesized through a key 1,2-diaryl-3,4-dihydronaphthalene intermediate that was prepared from 6-methoxy-1-tetralone by two routes involving alternate strategies for arylation. Conversion of the diaryldihydronaphthalene to Naf-Az through a series of deprotection-activation reactions culminated in ethyleneimine displacement of a methanesulfonate. The tritium-labeled material was prepared by tritium-iodine exchange on an iodinated methanesulfonate precursor, followed by ethyleneimine displacement. Compared to our previously-prepared reagent tamoxifen aziridine (Tam-Az), Naf-Az has a higher apparent competitive binding affinity, and it reacts with the estrogen receptor in cytosol preparations and in intact MCF-7 breast cancer cells rapidly and with at least comparable efficiency and selectivity. SDS-polyacrylamide gel electrophoretic analysis confirms its selective labeling of the Mr 66,000 estrogen receptor. Naf-Az should prove to be useful in studies aimed at characterizing the properties and structure of estrogen receptors.  相似文献   

8.
Size-exclusion high-performance liquid chromatography was used to characterize the hydrodynamic molecular properties of estrogen receptors complexed with estradiol and the antiestrogen 4-hydroxytamoxifen. Cytoplasmic estrogen receptors complexed with [3H]-4-hydroxytamoxifen did not undergo reductions in hydrodynamic size after exposure to KCl or urea. Nuclear receptors complexed with 4-hydroxytamoxifen eluted as hydrodynamically larger molecules than nuclear receptors complexed with estradiol. Because identical hydrodynamic characterizations were obtained with the covalent ligand [3H]tamoxifen aziridine, these differences in chromatographic behavior are due to differences in ligand-mediated receptor properties and are not the result of ligand dissociation. When estrogen receptors, complexed with either [3H]estradiol or [3H]-4-hydroxytamoxifen, were exposed to trypsin, the receptors complexed with 4-hydroxytamoxifen eluted as larger hydrodynamic forms than receptors complexed with estradiol. These observations are interpreted to indicate that estradiol and 4-hydroxytamoxifen mediate contrasting transitions in the molecular orientation of estrogen receptors. The consequences of the transitions mediated by 4-hydroxytamoxifen appear to be that intermolecular associations become difficult to disrupt with KCl or urea and that the accessibility of trypsin-sensitive proteolytic sites becomes altered. Chromatin fractionation using DNase I and hypotonic Mg2+ solubilization identified a chromatin region that was less readily penetrated by receptors complexed with 4-hydroxytamoxifen than receptors complexed with estradiol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The possibility that estrogen receptors may exist in uterine plasma membranes was investigated by covalent labeling of estrogen receptors in mouse uterine cells with [3H]tamoxifen aziridine (TA). Isolated epithelial and stromal cells of immature mice were incubated with [3H]TA in the presence or absence of unlabeled tamoxifen, homogenized and separated into nuclear, cytosolic and microsomal fractions by differential centrifugation. These fractions were subjected to SDS-polyacrylamide gel electrophoresis and the proteins labeled covalently with TA were visualized by autoradiography. Proteins labeled specifically with [3H]TA were observed almost exclusively in the nuclear fraction of both epithelial and stromal cells. In contrast, very little labeled protein was detected in the cytosolic or microsomal fraction. Although these data do not preclude the possibility that estrogen binding sites are present in plasma membranes of uterine cells, this cellular fraction is definitely not labeled to a significant extent by [3H]TA. Thus, if membrane estrogen binding sites exist, their structural conformations may be different from that of nuclear estrogen receptors.  相似文献   

10.
We have used limited proteolysis of affinity-labeled estrogen receptors (ER), coupled with antireceptor antibody immunoreactivity, to assess structural features of ER and the relatedness of ER from MCF-7 human breast cancer and rat uterine cells. MCF-7 ER preparations covalently labeled with [3H]tamoxifen aziridine [( 3H]TAZ) were treated with trypsin (T), alpha-chymotrypsin (C), or Staphylococcus aureus V8 protease prior to electrophoresis on sodium dodecyl sulfate gels. Fluorography revealed a distinctive ladder of ER fragments containing TAZ for each protease generated from the Mr 66,000 ER: for T, fragments of 50K, 38K, 36K, 31K, 29K, and 28K that with longer exposure generated a 6K fragment; for C, fragments of 50K, 38K, 35K, 33K, 31K, 19K, and 18K that with longer exposure generated 14K and 6K fragments; and for V8, ca. 10 fragments between 62K and 28K. Two-dimensional gels revealed charge heterogeneity (two to three spots between pI 5.5 and 6.2) of the 66K ER and the T-generated 28K meroreceptor form. Immunoblot detection with the primate-specific antibody D75P3 gamma revealed that all immunoreactive fragments corresponded to TAZ-labeled fragments but that some small TAZ-labeled fragments (V8-generated forms less than 47K and T-generated forms less than 31K) were no longer immunoreactive. In contrast, use of the antibody H222Sp gamma revealed a correspondence between TAZ-labeled and immunoreactive fragments down to the smallest fragments generated, ca. 6K for T and C and 28K for V8. MCF-7 nuclear and cytosol ER showed very similar digest patterns, and there was a remarkable similarity in the TAZ-labeled and H222-immunoreactive fragments generated by proteolysis of both MCF-7 and rat uterine ER. These findings reveal great structural similarities between the human (breast cancer) and rat (uterine) ER and between nuclear and cytosol ER, indicate charge heterogeneity of ER, and allow a comparison of the immunoreactive and hormone attachment site domains of the ER. The observation that T and C generate a ca. 6K TAZ-labeled fragment that is also detectable with the H222 antibody should be of interest in studies determining the hormone binding domain of the ER and in amino acid sequencing of this region.  相似文献   

11.
Target size analysis of the D2 dopamine receptor in the bovine striatum revealed the presence of two populations of this receptor, in terms of apparent molecular size. The size of large target was approximately 150 X 10(4) daltons, while that of small target was 11 X 10(4) daltons. The antagonist [3H]spiperone labeled both large and small sized D2 receptors, while agonist [3H]n-propylapomorphine (NPA) labeled only the former. In addition, the apparent molecular size of a functional unit for the GTP effect was calculated to be 150 X 10(4) daltons, such appearing to be identical to that of large target sized D2 dopamine receptors. Therefore, the large sized D2 receptor, probably an oligomeric complex consisting of D2 receptor recognition protein and guanine nucleotide regulatory protein, has a high affinity for both agonist and antagonist, while the small sized receptor, probably a monomeric or dimeric receptor recognition protein, has a high affinity for only the antagonist.  相似文献   

12.
The binding of [3H]estradiol and [3H]hydroxytamoxifen to the cytosol and microsomal fractions of several human breast tumors was investigated. By washing microsomal membranes with a KCl-free or a KCl-containing medium we could distinguish between intrinsic, extrinsic and contaminant estradiol binding sites in these membranes. We observed that treatment of the microsomes with low salt medium removes about 80% of the total estradiol binding sites, whereas 20% are not extractable. The concentration of unextractable [3H]estradiol binding sites in the microsomes varies in proportion to the level of cytosolic estrogen receptors (ER). About 10% of the total extranuclear specific estrogen binding sites was consistently found tightly associated to the microsomal fraction, which displays an affinity for estradiol (Kd = 0.1-0.6 nM) similar to that of the cytosolic ER. The displacement of [3H]estradiol with unlabeled hormone or with the antiestrogens, nafoxidine, enclomiphene and tamoxifen (TAM) exhibits identical IC50 values either in the cytosol or in the microsomal membranes. On the other hand, the microsomal fraction of breast tumors also binds [3H]hydroxyTAM, but with higher capacity and lower affinity than those of the cytosolic fraction. Furthermore, we did not observe correlation between the concentrations of ER and of antiestrogen binding sites (AEBS) in the tumors. These results indicate that microsomal membranes of human breast tumors contain estrogen binding sites which may be related to the cytosol ER recycling and that specific AEBS are predominantly localized in this membrane system. Furthermore, it is shown that the magnitude of estradiol binding to microsomes depends on the ER positive degree of the tumors, whereas the magnitude of the antiestrogen binding to the microsomes is independent of the ER status of the tumors.  相似文献   

13.
Immobilized metal ions have been used to characterize and locate metal ion-specific binding domains on the surface of the DNA-binding form of the estrogen receptor protein. Soluble estrogen receptors in calf uterine cytosol were labeled with [3H]estradiol and transformed to the DNA-binding configuration by brief exposure (30 min) to 3 M urea at 0-4 degrees C. The transformed receptors were purified in the presence of 3 M urea using single-stranded calf thymus DNA-agarose and characterized by high-performance size-exclusion chromatography (Stokes radius of 7.0-7.5 nm) and sucrose density gradient centrifugation (4.25 S) as dimers of 130,000 Da. Such receptor preparations subsequently labeled with [3H]desmethylnafoxidine aziridine by ligand exchange revealed one major peak of radioactivity (67 kDa) by sodium dodecyl sulfate polyacrylamide gradient gel electrophoresis. When analyzed by immobilized metal ion affinity chromatography on iminodiacetate (IDA)-agarose loaded with Cu(II), Ni(II), or Zn(II) ions, the receptor was bound with various degrees of affinity and metal interaction heterogeneity even in the presence of 0.5 M NaCl to neutralize electrostatic interactions. The intact DNA-binding receptor dimers were most tightly bound to IDA-Cu(II) and IDA-Ni(II), but were eluted with 100-200 nM imidazole. The receptors were bound less tightly to IDA-Zn(II), and four separate peaks of receptor activity were resolved by elution with 10, 15, 30, and 100 mM imidazole (n = 27). Limited trypsin digestion of the DNA-binding receptor forms resulted in the generation of a 2.8-nm fragment with both the DNA-binding and metal-binding domains removed or destroyed. These results demonstrate that DNA-binding estrogen receptor dimers have high affinity metal ion-binding sites which are located at the DNA-binding domain. We have found (Zn(II) interaction chromatography to be unique thus far in its ability to resolve separate DNA-binding receptor forms.  相似文献   

14.
We have examined the effects of reversibly and irreversibly binding estrogenic and antiestrogenic ligands for the estrogen receptor on pS2 RNA accumulation in MCF-7 human breast cancer cells and on pS2-chloramphenicol acetyl transferase (CAT) fusion gene expression in transfected MCF-7 cells. In MCF-7 cells grown in the absence of estrogens, the reversibly binding estrogen, estradiol, and the affinity labeling estrogen, ketononestrol aziridine, KNA, evoked a 13-fold increase in pS2 RNA level. The reversibly binding antiestrogen trans-hydroxytamoxifen and the affinity labeling antiestrogens tamoxifen aziridine or desmethylnafoxidine aziridine behaved as partial agonists/antagonists. In thymidine kinase-chloramphenicol acetyltransferase (tk-CAT) fusion genes containing a 1000 base pair fragment of the pS2 5'-flanking region encompassing the estrogen responsive element of the gene [pS2 (-1100/-90) tk-CAT], estradiol and ketononestrol aziridine evoked a marked stimulation of CAT activity and, in transfected cells grown in both the presence or absence of the weak estrogen phenol red, the antiestrogens behaved as partial agonists/antagonists. This pS2 5'-flanking region displayed both estrogen-dependent and estrogen-independent enhancer activity as monitored by stimulation of CAT activity. Hormonal regulation of the transfected pS2 fusion gene was similar to that observed in the native pS2 gene of MCF-7 cells; however, antiestrogens, while still partial agonists-antagonists, were relatively more agonistic on the transfected fusion gene than on the native gene. One antiestrogen (ICI 164,384) that behaved as a pure estrogen antagonist on the native gene was a partial agonist-antagonist of pS2 gene expression in the plasmid. This study illustrates that the hormonal regulation of the pS2 gene, as characterized by the agonist-antagonist balance of estrogens and antiestrogens, is influenced by the DNA context of the pS2 estrogen responsive element. Also, the fact that estrogens and antiestrogens that form covalent bonds with the estrogen receptor modulate activity of the native pS2 gene and the pS2-tk-CAT fusion gene in a manner similar to that of their reversibly binding counterparts suggests that it may be possible to use these irreversibly binding ligands to follow the interaction of hormone-receptor complexes with regions regulating estrogenic stimulation of the pS2 gene.  相似文献   

15.
We have previously shown, in the estrogen-unresponsive C3H mouse mammary tumor that the affinity of the estrogen receptor (ER) for calf thymus DNA in vitro is four-times higher than that of uterine ER [Baskevitch, P. P., Vignon, F., Bousquet, C. and Rochefort, H. (1983) Cancer Res. 43, 2290]. By mixing cytosols from this tumor and uterus, we describe a tumor factor capable of increasing ER affinity for DNA, as assayed by DNA-cellulose chromatography and saturation studies. The activity of this factor was inhibited by alpha-chymotrypsin-inhibitors such as N-tosylphenylalanylchloromethane and chymostatin. Using the fluorogenic substrate glutarylglycylglycylphenylalanyl-N-naphthylamide, we assayed such a protease in the C3H mammary tumor cytosol. This protease and the factor altering ER-DNA binding were eluted together from chromatography on DEAE-cellulose, AcA 44, and carboline-agarose and were sensitive to the same inhibitors. The partially purified factor decreases the molecular mass of the estrogen receptor as seen by denaturing electrophoresis after covalent labelling of the ER with [3H]tamoxifen aziridine. We suggest that the increase of ER affinity for DNA and the decrease of ER molecular size are due to the same protease with an alpha-chymotrypsin-like specificity.  相似文献   

16.
Muscarinic acetylcholine receptors (mAChR) were purified from rat brain and labeled either with the site-directed affinity label [3H]propylbenzilylcholine mustard (PrBCM) or with the sulfhydryl-specific label [3H]N-ethylmaleimide (NEM), using a protocol designed to give selective incorporation of the label into disulfide-bonded cysteines. m1 mAChRs were purified from CHO-K1 cells stably expressing the cloned receptor sequence and labeled with [3H]PrBCM. The labeled receptors were cleaved with the lysine-specific protease Lys-C and, after fractionation of the products, subcleaved with cyanogen bromide. Two major CNBr cleavage products were found with a molecular mass of approximately 3.9 and approximately 2.4 kDa, labeled either by [3H]PrBCM or [3H]NEM. The results obtained from CNBr cleavage of purified forebrain receptors were consistent with those obtained from the purified cloned m1 mAChR. Edman degradation was applied to the CNBr peptides. The results were compatible with the attachment of the [3H]PrBCM label to a conserved aspartic acid residue in transmembrane helix 3 of the mAChR (corresponding to Asp-105, m1 sequence) and of [3H]NEM to a conserved cysteine residue (corresponding to Cys-98, m1 sequence). These results support the hypothesis that the cysteine residue participates in a disulfide bond on the extracellular surface of the mAChRs and related G-protein-coupled receptors, while the aspartic acid residue is involved in binding the positively charged headgroup of muscarinic antagonists.  相似文献   

17.
The steroid and the DNA bindings of the estrogen receptor of the MtTF4 tumor whose growth is inhibited by estradiol where characterized and compared to those of uterine estrogen receptors. In the tumor cytosol: E protects its binding sites against thermal denaturation, depending on the effects of sodium molybdate upon the dissociation rate of [3H]E at 20 degrees C and the ability of receptor to bind to DNA, the activation (or transformation) process, supposed to be necessary for the full action of estrogen ligand, occurs on estrogen receptor complexes and the calf thymus DNA interacts with estrogen receptor with an affinity similar to that of uterine estrogen receptor. Kinetic and equilibrium studies with 17 alpha-[3H]E both in uterus and tumor indicate that this ligand is fast-associating, fast-dissociating and that its affinity for ER is 2- to 4-fold lower than that of 17 beta-[3H]estradiol one. Competition experiments between 17 beta-[3H]estradiol and the unlabelled 17 alpha epimer reveal, in both uterus and tumor, a time-dependent decrease of the apparent potency of 17 alpha-E to inhibit the binding of [3H]E. It is concluded that the estrogen receptors are very similar in MtTF4 tumor and uterus and the diversity of the response of cell growth to E is due rather to differences at the post-receptor level.  相似文献   

18.
Muscarinic acetylcholine receptors were purified from rat forebrain and labeled with [3H]N-(2-chloroethyl)N-(2',3'-[3H2]propyl)-2-aminoethylbenzilate. Cleavage of the labeled muscarinic acetylcholine receptors with a lysine-specific protease yielded labeled, glycosylated peptides about 130 and 200 residues in length, which came from different receptor sequences. The probable cleavage sites are in the second intracellular loop and in the second extracellular or third intracellular loop. The N-terminal 130 residues are disulfide-bonded to another part of the receptor structure, supporting the presence of a link between the second and third extracellular loops. The [3H]propylbenzilylcholine mustard-receptor link is cleaved by nucleophiles, acids, and bases under denaturing conditions, suggesting modification of an acidic residue. Cyanogen bromide cleavage points to transmembrane helix 3 as the site of label attachment.  相似文献   

19.
20.
Abstract

We have attempted to convert 4 S uterine nuclear estrogen receptors obtained after in vitro labeling with [3H]antiestrogens to 3 S, the form observed after in vitro exchange with [3H]estradiol, in order to examine the possible relationship between these forms. Treatment of nuclear extracts labeled with the high affinity antiestrogen, [3H]4-hydroxytamoxifen, with a variety of nucleases, phosphatases, or proteases either had no effect on the 4 S antiestrogen-receptor complex or led to loss of ligand binding. The sulfhydryl reducing agents, cysteine or reduced glutathione, on the other hand, brought about conversion of 4 S estrogen receptors to components sedimenting at about 3 S. Conversely, when oxidized glutathione was included in all buffers used for preparation and labeling of nuclear estrogen receptors with [3H]estradiol, more rapidly sedimenting (?4.6 S) forms of estrogen-receptor complex predominated. Cysteine still effected the 4 S to 3 S conversion when nuclear estrogen receptors, partially purified by sucrose gradient centrifugation, were used as substrate, suggesting a direct action of the sulfhydryl reagents on receptor molecules. From these results we propose that nuclear estrogen and antiestrogen-receptor complexes may differ in conformation such that the former may be more sensitive to the action of an endogenous reducing agent which contributes to formation of 3 S [3H]estradiol-receptor complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号