首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Escherichia coli-expressed a hybrid xylanase, Btx, encoded by a designed hybrid xylanase gene Btx was purified. The molecular mass of the enzyme was estimated to be 22 kDa. The K(m) and k(cat) values for Btx were 1.9 mg/ml and 140 s(-1), respectively. It hydrolyzed xylan principally to xylobiose and xylotriose, and was functionally similar to family 11 xylanases. As some differences were found in the hydrolytic products between birchwood xylan and wheat bran insoluble xylan, the xylan binding domains in xylanase Btx must have different effects on soluble and insoluble xylan.  相似文献   

2.
A hybrid gene, btx, encoding a thermostable xylanase, Btx, was constructed by substituting the 31 N-terminal amino acid residues of the Thermomonospora fusca xylanase A (TfxA) for the corresponding region of 22 amino acid residues of the Bacillus subtilis xylanase A (BsxA). The btx gene was expressed in Escherichia coli BL21. The halo size produced by xylanase Btx on a Remanzol brilliant blue R (RBB) xylan plate at 60°C and pH 6.0 was larger than those of BsxA and TfxA. The molecular weight of Btx was 22 kDa. Temperature and pH optima for Btx were at 50–60°C and 6.0, respectively. Btx showed activity over 80% over a pH range of 5.0–9.0, which was wider than that of BsxA, and was also more acid-resistant than TfxA. Btx exhibited significant thermostability compared with BsxA. The results show the importance of the N-terminal sequence of TfxA in thermostability.  相似文献   

3.
To obtain the protein expression of a hybrid xylanase in yeast, the gene encoding it was modified according to the codon bias of Pichia pastoris and expressed extracellularly in this yeast as an active xylanase, MBtx, exhibited a molecular mass of approximately 35 kDa on SDS–PAGE. The pH behavior of MBtx in terms of both activity and stability was similar to that of Btx, original gene product in Escherichia coli, while a certain difference was observed in optimal temperature for activity and in thermal stability. HPLC analysis revealed the xylan in wheat could be hydrolyzed by MBtx and the major hydrolysis product was xylotriose. These results showed codon usage played a key role in regulating the expression of the hybrid xylanase in P. pastoris and the recombinant hybrid xylanase, MBtx, produced by P. pastoris could be potentially useful in feed industry.  相似文献   

4.
Xylanase A of Thermotoga neapolitana contains binding domains both at the N- and C-terminal ends of the catalytic domain. In the N-terminal position it contains two carbohydrate-binding modules (CBM) which belong to family 22. These CBMs bind xylan but not to cellulose. The gene encoding the mature peptide of these CBMs was fused with an alkaline active GH10 xylanase from Bacillus halodurans S7 and expressed in Escherichia coli. The (His)6 tagged hybrid protein was purified by immobilized metal affinity chromatography and characterized. Xylan binding by the chimeric protein was influenced by NaCl concentration and pH of the binding medium. Binding increased with increasing salt concentration up to 200 mM. Higher extent of binding was observed under acidic conditions. The fusion of the CBM structures enhanced the hydrolytic efficiency of the xylanase against insoluble xylan, but decreased the stability of the enzyme. The optimum temperature and pH for the activity of the xylanase did not change.  相似文献   

5.
Highly thermostable β-xylanase produced by newly isolated Thermomyces lanuginosus THKU-49 strain was purified in a four-step procedure involving ammonium sulfate precipitation and subsequent separation on a DEAE-Sepharose fast flow column, hydroxylapatite column, and Sephadex G-100 column, respectively. The enzyme purified to homogeneity had a specific activity of 552 U/mg protein and a molecular weight of 24.9 kDa. The optimal temperature of the purified xylanase was 70°C, and it was stable at temperatures up to 60°C at pH 6.0; the optimal pH was 5.0–7.0, and it was stable in the pH range 3.5–8.0 at 4°C. Xylanase activity was inhibited by Mn2+, Sn2+, and ethylenediaminetetraacetic acid. The xylanase showed a high activity towards soluble oat spelt xylan, but it exhibited low activity towards insoluble oat spelt xylan; no activity was found to carboxymethylcellulose, avicel, filter paper, locust bean gum, cassava starch, and p-nitrophenyl β-d-xylopyranoside. The apparent K m value of the xylanase on soluble oat spelt xylan and insoluble oat spelt xylan was 7.3 ± 0.236 and 60.2 ± 6.788 mg/ml, respectively. Thin-layer chromatography analysis showed that the xylanase hydrolyzed oat spelt xylan to yield mainly xylobiose and xylose as end products, but that it could not release xylose from the substrate xylobiose, suggesting that it is an endo-xylanase.  相似文献   

6.
The gene encoding a xylanase from Geobacillus sp. 71 was isolated, cloned, and sequenced. Purification of the Geobacillus sp 7.1 xylanase, XyzGeo71, following overexpression in E. coli produced an enzyme of 47 kDa with an optimum temperature of 75°C. The optimum pH of the enzyme is 8.0, but it is active over a broad pH range. This protein showed the highest sequence identity (93%) with the xylanase from Geobacillus thermodenitrificans NG80-2. XyzGeo71 contains a catalytic domain that belongs to the glycoside hydrolase family 10 (GH10). XyzGeo71 exhibited good pH stability, remaining stable after treatment with buffers ranging from pH 7.0 to 11.0 for 6 h. Its activity was partially inhibited by Al3+ and Cu2+ but strongly inhibited by Hg2+. The enzyme follows Michaelis–Menten kinetics, with Km and Vmax values of 0.425 mg xylan/ml and 500 μmol/min.mg, respectively. The enzyme was free from cellulase activity and degraded xylan in an endo fashion. The action of the enzyme on oat spelt xylan produced xylobiose and xylotetrose.  相似文献   

7.
This study reports the regulation of multiple xylanases produced by Myceliophthora sp. IMI 387099. Fructose was found to positively regulate the expression of multiple xylanase when used as sole carbon source. The xylanases (EX1 and EX2) of acidic pI were expressed in the presence of simple sugars (glucose, arabinose, and xylose), whereas xylanase of both acidic as well as basic pI (EX1, EX2, EX3, and EX5) were expressed in the presence of fructose, xylan, and combination of xylan and alcohol. The combination of fructose and xylan also led to expression of an additional xylanase (EX4). The positional isomer (iso-X4) was found to be the key transglycosylation product when cultures were grown in the presence of fructose and xylan. In the presence of alcohols, the higher expression of xylanase was ascribed to the synergistic effect of alkyl glycoside and other transglycosylation products present in the culture extracts.  相似文献   

8.
The thermophilic, xylanolytic, anaerobic organism, Dictyoglomus sp. B1, was cultivated in batch and continuous cultures in media containing insoluble beech-wood xylan. The extracellular xylanase activity levels obtained for the two cultivation methods were compared. Experiments were performed separately to determine the optimum substrate concentration, dilution rate, pH and temperature for xylanase production. Maximum xylanase activity was found at a substrate concentration of 1.5 g xylan/l, a dilution rate of 0.112 h–1, pH 8.0 and at 7°C. Different combinations of these optimum values were used in a 23 factorial experiment to investigate whether an increase in the xylanase production/activity could be achieved. A maximum xylanase activity of 2312 U/l was found when fermentors were operated at 73°C with a substrate concentration of 1.5 g xylan/l, pH 8.0, and a dilution rate of 0.112 h–1. Thus, the optimum xylanase activity in the factorial experiment was obtained when the conditions that gave the maximum xylanase activities in the individual experiments were combined. Optimum xylanase activity obtained in the 23 factorial experiment was 6.2 times higher than the activity found in the initial batch culture (373 U/l) and 3.0 times higher than the activity of a batch culture (783 U/l) grown at the same optimum conditions as the factorial experiment. The higher specific xylanase activity (217 U/mg protein) found in the 23 factorial experiment was 4.1 times higher than the specific activity in the initial batch culture (53 U/mg protein).  相似文献   

9.
Summary An extracellular xylanase was purified to homogeneity from the culture filtrate of a thermophilic Bacillus sp. The molecular weight of the purified xylanase was 44 kDa, as analysed by SDS/PAGE. The enzyme reaction followed Michaelis–Menten kinetics with Kmapp and Vmax values of 0.025 mg/ml and 450 U/mg protein, respectively, as obtained from a Lineweaver–Burk plot. The xylanase contained no other enzyme activity except for the hydrolysis of xylan substrate. The optimal temperature of the enzyme assay was 50 °C. The optimum pH for the xylanase activity was at three peaks 6.5, 8.5 and 10.5, respectively and the enzyme was stable over a broad range of pH from pH 6 to 10.5. Metal ions tested with demetalized enzyme had no effect, with the exception of Hg2+ and Pb2+ (both strong inhibitors). Inhibition of the enzyme activity by N-bromosuccinimide (amino acid modifier) indicated the role of tryptophan residues in the catalytic function of the enzyme. Due to these outstanding properties, the xylanase of Bacillussp. finds potential applications in biopulping, biobleaching and de-inking of recycled paper and other industrial processes.  相似文献   

10.
Thermoalkaliphilic Bacillus sp. strain TAR-1 isolated from soil produced an extracellular xylanase. The enzyme (xylanase R) was purified to homogeneity by ammonium sulfate fractionation and anion-exchange chromatography. The molecular mass of xylanase R was 40 kDa and the isoelectric point was 4.1. The enzyme was most active over the range of pH 5.0 to 10.0 at 50°C. The optimum temperatures for activity were 75°C at pH 7.0 and 70°C at pH 9.0. Xylanase R was stable up to 65°C at pH 9.0 for 30 min in the presence of xylan. Mercury(ll) ion at 1 mM concentration abolished all the xylanase activity. The predominant products of xylan-hydrolysate were xylobiose, xylotriose, and higher oligosaccharides, indicating that xylanase R was an endo-acting enzyme. Xylanase R had a Km of 0.82 mg/ml and a Vmax of 280 μmol min−1 mg−1 for xylan at 50°C and pH 9.0.  相似文献   

11.
A metagenomic library containing ca. 3.06 × 108 bp insert DNA was constructed from a rice straw degrading enrichment culture. A xylanase gene, umxyn10A, was cloned by screening the library for xylanase activity. The encoded enzyme Umxyn10A showed 58% identity and 73% similarity with a xylanase from Thermobifida fusca YX. Sequence analyses showed that Umxyn10A contained a glycosyl hydrolase family 10 catalytic domain. The gene was expressed in Escherichia coli, and the recombinant enzyme was purified and characterized biochemically. Recombinant Umxyn10A was highly active toward xylan. However, the purified enzyme could slightly hydrolyze β-1,3/4-glucan and β-1,3/6-glucan. Umxyn10A displayed maximal activity toward oat spelt xylan at a high temperature (75°C) and weak acidity (pH 6.5). The K m and V max of Umxyn10A toward oat spelt xylan were 3.2 mg ml−1 and 0.22 mmol min−1 mg−1 and were 2.7 mg ml−1 and 1.0 mmol min−1 mg−1 against birchwood xylan, respectively. Metal ions did not appear to be required for the catalytic activity of this enzyme. The enzyme Umxyn10A could efficiently hydrolyze birchwood xylan to release xylobiose as the major product and a negligible amount of xylose. The xylanase identified in this work may have potential application in producing xylobiose from xylan.  相似文献   

12.
Summary A third extracellular xylanase produced by Streptomyces lividans 66 was isolated from a clone obtained by shotgun cloning through functional complementation of a xylanase- and cellulase-negative mutant using the multicopy vector pIJ702. This enzyme, designated xylanase C, has a relative molecular mass of 22000 and acts on xylan similarly to xylanase B as an endo-type xylanase producing short-chain oligoxylosides. Its specific activity determined at 1100 IU·mg–1 of protein corresponds on a molecular basis to that of xylanase B and is about three times that of xylanase A. The enzyme shows optimal activity at pH 6.0 and 57°C, values that correspond closely to those observed previously for xylanase A and B. Xylanase C appears not to be glycosylated and has a pI > 10.25. Its K m and V max on birchwood xylan are 4.1 mg·ml–1 and 3.0 mol·min–1·mg–1 of enzyme respectively. Whereas specific antibodies raised against xylanase A show no cross-reaction with either xylanase B or with xylanase C, the anti-(xylanase C) antibodies react slightly with xylanase B but not with xylanase A. A comparison of hydrolysis products obtained by reacting individually the three enzymes with birchwood xylan showed characteristic endo-activity patterns for xylanases B and C, whereas xylanase A hydrolysed the substrate preferentially into xylobiose and xylotriose. Sequential xylanase action on the same substrates showed synergistic hydrolysis only when endo-xylanase activity was followed by that of xylanase A.  相似文献   

13.
Two strains (O and X2) of the hyperthermophilic crenarchaeon Sulfolobus solfataricus strain MT4 were selected and isolated for their ability to grow on xylan. O and X2, grown on media containing oat spelt xylan and birchwood xylan as the sole nutrient source, respectively, produced the same thermostable xylanase that was demonstrated to be inducible in xylan cultures. In an oat spelt medium, S. solfataricus O underwent interesting morphological changes in the cell envelope, exhibiting mobile appendages not present in the typical coccal shape. The enzyme was prevalently membrane associated and showed a molecular mass of approximately 57.0 kDa. It was also highly thermostable, with a half-life of 47 min at 100°C, and exhibited an optimal temperature and pH of 90°C and 7.0, respectively. Xylo-oligosaccharides were the enzymatic products of xylan hydrolysis, and the smallest degradation product was xylobiose, thus indicating that the enzyme was an endoxylanase. The enzyme was able to bind weakly to crystalline cellulose (Avicel) and more strongly to insoluble xylan in a substrate amount-and temperature-dependent manner.Communicated by G. Antranikian  相似文献   

14.
Xylan is the major component of hemicellulose, and xylan should be fully utilized to improve the efficiencies of a biobased economy. There are a variety of industrial reaction conditions in which an active xylanase enzyme would be desired. As a result, xylanase enzymes with different activity profiles are of great interest. We isolated a xylanase gene (xyn10) from a Flavobacterium sp. whose sequence suggests that it is a glycosyl hydrolase family 10 member. The enzyme has a temperature optimum of 30°C, is active at cold temperatures, and is thermolabile. The enzyme has an apparent Km of 1.8 mg/ml and kcat of 100 sec−1 for beechwood xylan, attacks highly branched native xylan substrates, and does not have activity against glucans.  相似文献   

15.
An alkaliphilic bacterium, Bacillus sp. strain K-1, produces extracellular xylanolytic enzymes such as xylanases, β-xylosidase, arabinofuranosidase, and acetyl esterase when grown in xylan medium. One of the extracellular xylanases that is stable in an alkaline state was purified to homogeneity by affinity adsorption-desorption on insoluble xylan. The enzyme bound to insoluble xylan but not to crystalline cellulose. The molecular mass of the purified xylan-binding xylanase was estimated to be approximately 23 kDa. The enzyme was stable at alkaline pHs up to 12. The optimum temperature and optimum pH of the enzyme activity were 60°C and 5.5, respectively. Metal ions such as Fe2+, Ca2+, and Mg2+ greatly increased the xylanase activity, whereas Mn2+ strongly inhibited it. We also demonstrated that the enzyme could hydrolyze the raw lignocellulosic substances effectively. The enzymatic products of xylan hydrolysis were a series of short-chain xylooligosaccharides, indicating that the enzyme was an endoxylanase.  相似文献   

16.
Xylanase inhibitor TAXI-I gene was cloned from wheat (Triticum aestivum L.) and then TAXI-I encoding sequence was expressed in Escherichia coli. The recombinant TAXI-I protein inhibited glycoside hydrolase (GH) family 11 xylanases in Aspergillus niger (Anx; a fungal xylanase), and Thermomonospora fusca (Tfx; a bacterial xylanase), and also inhibited hybrid xylanases Atx (a hybrid xylanase whose parents are T. fusca and A. niger) and Btx (a hybrid xylanase whose parents are T. fusca and Bacillus subtilis). Among the tested xylanases, A. niger xylanase was the most inhibited one by wheat xylanase inhibitor TAXI-I, while T. fusca xylanase was the least inhibited one. The profile of TAXI-I gene expression in wheat in response to phytohormones was also investigated. TAXI-I gene expression was drastically induced by methyl jasmonate (MeJa), and hardly detected in gibberellic acid (GA) treatment. Therefore, TAXI-I might be involved in plant defense against fungal and bacteria xylanases.  相似文献   

17.
Aspergillus fumigatus andA. oryzae were cultivated in laboratory fermenters on media containing xylan as the main carbon source.A. fumigatus produced xylanase on unsubstituted, insoluble beech xylan but growth and enzyme production on soluble xylo-oligosaccharides from the steaming of hardwood were poor due to the presence of inhibitors. An essential prerequisite for good xylanase production byA. fumigatus was decrease in the pH of the cultivation below 3.0 At higher pH values, the production of proteolytic enzymes caused degradation of the xylanase activity already produced.A. oryzae produced rather less xylanase activity thanA. fumigatus on the beech xylan medium but, after adaptation, was capable of efficient enzyme production on the steamed substrate.M.J. Bailey and L. Viikari are with the VTT, Biotechnical Laboratory, PO Box 202, SF-02151 Espoo, Finland  相似文献   

18.
Summary An amyloglucosidase from a mycelial culture of the mushroom Termitomyces clypeatus hydrolysed larch wood xylan independently and synergistically with an endo-(14) xylanase of the same fungus. The glucoamylase saccharified xylan predigested with xylanase at a faster rate compared to that of xylanase acting on amylase-digested xylan. However, overall saccharification of xylan in both cases was the same. Only glucose was liberated from xylan by amylase digestion whereas xylose, xylobiose and other oligosaccharides were liberated during xylanase digestion. The synergistic response of enzyme combinations was reflected in the liberation of glucose from xylan, rather than xylose. Glucoamylase and xylanase activities on soluble and insoluble fractions of larch wood xylan with different xylose and glucose contents suggested that synergism in xylanolysis by the presence of glucoamylase was dependent on the activity of the participating xylanase on the xylan preparation. It is suggested that possibly -glucosidic linkages are present in xylan and that amyloglucosidase might be involved in xylanolysis. Correspondence to: S. Sengupta  相似文献   

19.
An acidic xylanase from a culture filtrate of Aspergillus nidulans grown on oat-spelt xylan was purified to apparent homogeneity. The purified enzyme showed a single band on sodium dodecyl sulphate-polyacrylamide gel electrophoresis with a molecular mass of 34,000 Da and had an isoelectric point of approximately 3.4. The enzyme was a non-debranching endoxylanase highly specific for xylans. The xylanase showed an optimal activity at pH 6.0 and 56° C and had a Michaelis constant Km of 0.97 mg oat-spelt xylan (soluble fraction) ml and a maximed reaction velocity (Vmax) of 1,091 mol min–1 (mg–1protein)–1. Using polyclonal antibodies raised against the purified enzyme, the regulation of its synthesis has been studied. The xylanase production is repressed by glucose and induced by oat-spelt xylan, arabinoxylan, 4-O-methylglucurono-xylan, birchwood xylan and xylose.  相似文献   

20.
Hemicellulose represents a rich source of biomass that can be converted into useful chemical feedstocks. One of the main components of hemicellulose is xylan, a polymer of xylose residues. Xylanase enzymes that hydrolyze xylan are therefore of great commercial interest. We have cloned a gene (xyn11A) that encodes a 283-amino acid xylanase enzyme from the fungus Lentinula edodes. The enzyme has a pI of 4.6 and belongs to the highly conserved glycosyl hydrolase family 11. The xylanase gene was cloned into a Pichia pastoris expression vector that secretes active enzyme into both solid and liquid media. The optimal reaction conditions were at pH 4.5 and 50°C. The enzyme had a Km of 1.5 mg/ml and a Vmax of 2.1 mmol/min/mg. Xyn11A produced primarily xylobiose, xylotriose, and xylotetraose from a birchwood xylan substrate. This is the first report on the cloning of a hemicellulase gene from L. edodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号