首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luo LJ  Li ZK  Mei HW  Shu QY  Tabien R  Zhong DB  Ying CS  Stansel JW  Khush GS  Paterson AH 《Genetics》2001,158(4):1755-1771
The genetic basis underlying inbreeding depression and heterosis for three grain yield components of rice was investigated in five interrelated mapping populations using a complete RFLP linkage map, replicated phenotyping, and the mixed model approach. The populations included 254 F(10) recombinant inbred lines (RILs) derived from a cross between Lemont (japonica) and Teqing (indica), two backcross (BC) and two testcross populations derived from crosses between the RILs and the parents plus two testers (Zhong413 and IR64). For the yield components, the RILs showed significant inbreeding depression and hybrid breakdown, and the BC and testcross populations showed high levels of heterosis. The average performance of the BC or testcross hybrids was largely determined by heterosis. The inbreeding depression values of individual RILs were negatively associated with the heterosis measurements of the BC or testcross hybrids. We identified many epistatic QTL pairs and a few main-effect QTL responsible for >65% of the phenotypic variation of the yield components in each of the populations. Most epistasis occurred between complementary loci, suggesting that grain yield components were associated more with multilocus genotypes than with specific alleles at individual loci. Overdominance was also an important property of most loci associated with heterosis, particularly for panicles per plant and grains per panicle. Two independent groups of genes appeared to affect grain weight: one showing primarily nonadditive gene action explained 62.1% of the heterotic variation of the trait, and the other exhibiting only additive gene action accounted for 28.1% of the total trait variation of the F(1) mean values. We found no evidence suggesting that pseudo-overdominance from the repulsive linkage of completely or partially dominant QTL for yield components resulted in the overdominant QTL for grain yield. Pronounced overdominance resulting from epistasis expressed by multilocus genotypes appeared to explain the long-standing dilemma of how inbreeding depression could arise from overdominant genes.  相似文献   

2.
Quantitative trait loci (QTL) mapping provides a powerful tool for unraveling the genetic basis of yield and yield components as well as heterosis in upland cotton. In this research, a molecular linkage map of Xiangzamian 2 (Gossypium hirsutum L.)-derived recombinant inbred lines (RILs) was reconstructed based on increased expressed sequence tag–simple sequence repeat markers. Both the RILs and immortalized F2s (IF2) developed through intermating between RILs were grown under multiple environments. Yield and yield components including seed-cotton yield, lint yield, bolls/plant, boll weight, lint percentage, seed index, lint index and fruit branch number were measured and their QTL were repeatedly identified across environments by the composite interval mapping (CIM) method. From a total of 111 non-redundant QTL, 23 were detected in both two populations. In the meantime, multi-marker joint analyses showed that 16 of these QTL had significant environmental interaction. QTL for correlated traits tended to be collocated and most of the QTL for seed-cotton yield and lint yield were associated with QTL for at least one yield component, consistent with the results observed in correlation analyses. For many QTL with significant additive effects, positive alleles from CRI12, the inferior parent with lower yield performance, were associated with trait improvement. Trait performance of IF2s and the large number of QTL with positive dominant effects implied that dominance plays an important role in the genetic basis of heterosis in Xiangzamian 2 and that non-additive inheritance is also an important genetic mode for lint percentage in the population. These QTL can provide the bases for marker-assisted breeding programs of upland cotton.  相似文献   

3.
Identification of stable quantitative trait loci (QTLs) across different environments and mapping populations is a prerequisite for marker-assisted selection (MAS) for cotton yield and fiber quality. To construct a genetic linkage map and to identify QTLs for fiber quality and yield traits, a backcross inbred line (BIL) population of 146 lines was developed from a cross between Upland cotton (Gossypium hirsutum) and Egyptian cotton (Gossypium barbadense) through two generations of backcrossing using Upland cotton as the recurrent parent followed by four generations of self pollination. The BIL population together with its two parents was tested in five environments representing three major cotton production regions in China. The genetic map spanned a total genetic distance of 2,895 cM and contained 392 polymorphic SSR loci with an average genetic distance of 7.4 cM per marker. A total of 67 QTLs including 28 for fiber quality and 39 for yield and its components were detected on 23 chromosomes, each of which explained 6.65–25.27 % of the phenotypic variation. Twenty-nine QTLs were located on the At subgenome originated from a cultivated diploid cotton, while 38 were on the Dt subgenome from an ancestor that does not produce spinnable fibers. Of the eight common QTLs (12 %) detected in more than two environments, two were for fiber quality traits including one for fiber strength and one for uniformity, and six for yield and its components including three for lint yield, one for seedcotton yield, one for lint percentage and one for boll weight. QTL clusters for the same traits or different traits were also identified. This research represents one of the first reports using a permanent advanced backcross inbred population of an interspecific hybrid population to identify QTLs for fiber quality and yield traits in cotton across diverse environments. It provides useful information for transferring desirable genes from G. barbadense to G. hirsutum using MAS.  相似文献   

4.
A large number of quantitative trait loci (QTL) for resistance to late blight of potato have been reported with a "conventional" method in which each phenotypic trait reflects the cumulative genetic effects for the duration of the disease process. However, as genes controlling response to disease may have unique contributions with specific temporal features, it is important to consider the phenotype as dynamic. Here, using the net genetic effects evidenced at consecutive time points during disease development, we report the first conditional mapping of QTL underlying late blight resistance in potato under five environments in Peru. Six conditional QTL were mapped, one each on chromosome 2, 7 and 12 and three on chromosome 9. These QTL represent distinct contributions to the phenotypic variation at different stages of disease development. By comparison, when conventional mapping was conducted, only one QTL was detected on chromosome 9. This QTL was the same as one of the conditional QTL. The results imply that conditional QTL reflect genes that function at particular stages during the host-pathogen interaction. The dynamics revealed by conditional QTL mapping could contribute to the understanding of the molecular mechanism of late blight resistance and these QTL could be used to target genes for marker development or manipulation to improve resistance.  相似文献   

5.
Ma CX  Yu Q  Berg A  Drost D  Novaes E  Fu G  Yap JS  Tan A  Kirst M  Cui Y  Wu R 《Genetics》2008,179(1):627-636
The differences of a phenotypic trait produced by a genotype in response to changes in the environment are referred to as phenotypic plasticity. Despite its importance in the maintenance of genetic diversity via genotype-by-environment interactions, little is known about the detailed genetic architecture of this phenomenon, thus limiting our ability to predict the pattern and process of microevolutionary responses to changing environments. In this article, we develop a statistical model for mapping quantitative trait loci (QTL) that control the phenotypic plasticity of a complex trait through differentiated expressions of pleiotropic QTL in different environments. In particular, our model focuses on count traits that represent an important aspect of biological systems, controlled by a network of multiple genes and environmental factors. The model was derived within a multivariate mixture model framework in which QTL genotype-specific mixture components are modeled by a multivariate Poisson distribution for a count trait expressed in multiple clonal replicates. A two-stage hierarchic EM algorithm is implemented to obtain the maximum-likelihood estimates of the Poisson parameters that specify environment-specific genetic effects of a QTL and residual errors. By approximating the number of sylleptic branches on the main stems of poplar hybrids by a Poisson distribution, the new model was applied to map QTL that contribute to the phenotypic plasticity of a count trait. The statistical behavior of the model and its utilization were investigated through simulation studies that mimic the poplar example used. This model will provide insights into how genomes and environments interact to determine the phenotypes of complex count traits.  相似文献   

6.
Local adaptation, defined as higher fitness of local vs. nonlocal genotypes, is commonly identified in reciprocal transplant experiments. Reciprocally adapted populations display fitness trade‐offs across environments, but little is known about the traits and genes underlying fitness trade‐offs in reciprocally adapted populations. We investigated the genetic basis and adaptive significance of freezing tolerance using locally adapted populations of Arabidopsis thaliana from Italy and Sweden. Previous reciprocal transplant studies of these populations indicated that subfreezing temperature is a major selective agent in Sweden. We used quantitative trait locus (QTL) mapping to identify the contribution of freezing tolerance to previously demonstrated local adaptation and genetic trade‐offs. First, we compared the genomic locations of freezing tolerance QTL to those for previously published QTL for survival in Sweden, and overall fitness in the field. Then, we estimated the contributions to survival and fitness across both field sites of genotypes at locally adaptive freezing tolerance QTL. In growth chamber studies, we found seven QTL for freezing tolerance, and the Swedish genotype increased freezing tolerance for five of these QTL. Three of these colocalized with locally adaptive survival QTL in Sweden and with trade‐off QTL for overall fitness. Two freezing tolerance QTL contribute to genetic trade‐offs across environments for both survival and overall fitness. A major regulator of freezing tolerance, CBF2, is implicated as a candidate gene for one of the trade‐off freezing tolerance QTL. Our study provides some of the first evidence of a trait and gene that mediate a fitness trade‐off in nature.  相似文献   

7.
Drought is a major abiotic stress limiting rice production and yield stability in rainfed ecosystems. Identifying quantitative trait loci (QTL) for rice yield and yield components under water limited environments will help to develop drought resilient cultivars using marker assisted breeding (MAB) strategy. A total of 232 recombinant inbred lines of IR62266/Norungan were used to map QTLs for plant phenology and production traits under rainfed condition in target population of environments. A total of 79 QTLs for plant phenology and production traits with phenotypic variation ranging from 4.4 to 72.8% were detected under non-stress and drought stress conditions across two locations. Consistent QTLs for phenology and production traits were detected across experiments and water regimes. The QTL region, RM204-RM197-RM217 on chromosome 6 was linked to days to 50% flowering and grain yield per plant under both rainfed and irrigated conditions. The same genomic region, RM585-RM204-RM197 was also linked to harvest index under rainfed condition with positive alleles from Norungan, a local landrace. QTLs for plant production and drought resistance traits co-located near RM585-RM204-RM197-RM217 region on chromosome 6 in several rice genotypes. Thus with further fine mapping, this region may be useful as a candidate QTL for MAB, map-based cloning of genes and functional genomics studies for rainfed rice improvement.  相似文献   

8.
QTL mapping and the genetic basis of adaptation: recent developments   总被引:6,自引:0,他引:6  
Zeng ZB 《Genetica》2005,123(1-2):25-37
Quantitative trait loci (QTL) mapping has been used in a number of evolutionary studies to study the genetic basis of adaptation by mapping individual QTL that explain the differences between differentiated populations and also estimating their effects and interaction in the mapping population. This analysis can provide clues about the evolutionary history of populations and causes of the population differentiation. QTL mapping analysis methods and associated computer programs provide us tools for such an inference on the genetic basis and architecture of quantitative trait variation in a mapping population. Current methods have the capability to separate and localize multiple QTL and estimate their effects and interaction on a quantitative trait. More recent methods have been targeted to provide a comprehensive inference on the overall genetic architecture of multiple traits in a number of environments. This development is important for evolutionary studies on the genetic basis of multiple trait variation, genotype by environment interaction, host–parasite interaction, and also microarray gene expression QTL analysis.  相似文献   

9.
In many species, temperature‐sensitive phenotypic plasticity (i.e., an individual's phenotypic response to temperature) displays a positive correlation with latitude, a pattern presumed to reflect local adaptation. This geographical pattern raises two general questions: (a) Do a few large‐effect genes contribute to latitudinal variation in a trait? (b) Is the thermal plasticity of different traits regulated pleiotropically? To address the questions, we crossed individuals of Plantago lanceolata derived from northern and southern European populations. Individuals naturally exhibited high and low thermal plasticity in floral reflectance and flowering time. We grew parents and offspring in controlled cool‐ and warm‐temperature environments, mimicking what plants would encounter in nature. We obtained genetic markers via genotype‐by‐sequencing, produced the first recombination map for this ecologically important nonmodel species, and performed quantitative trait locus (QTL) mapping of thermal plasticity and single‐environment values for both traits. We identified a large‐effect QTL that largely explained the reflectance plasticity differences between northern and southern populations. We identified multiple smaller‐effect QTLs affecting aspects of flowering time, one of which affected flowering time plasticity. The results indicate that the genetic architecture of thermal plasticity in flowering is more complex than for reflectance. One flowering time QTL showed strong cytonuclear interactions under cool temperatures. Reflectance and flowering plasticity QTLs did not colocalize, suggesting little pleiotropic genetic control and freedom for independent trait evolution. Such genetic information about the architecture of plasticity is environmentally important because it informs us about the potential for plasticity to offset negative effects of climate change.  相似文献   

10.
Four-way cross (4WC) involving four different inbred lines frequently appears in the cotton breeding programs. However, linkage analysis and quantitative trait loci (QTL) mapping with molecular markers in cotton has largely been applied to populations derived from a cross between two inbred lines, and few results of QTL dissection were conducted in a 4WC population. In this study, an attempt was made to construct a linkage map and identify QTL for yield and fiber quality traits in 4WC derived from four different inbred lines in Gossypium hirsutum L. A linkage map was constructed with 285 SSR loci and one morphological locus, covering 2113.3 cM, approximately 42% of the total recombination length of the cotton genome. A total of 31 QTL with 5.1–25.8% of the total phenotypic variance explained were detected. Twenty-four common QTL across environments showed high stability, and six QTL were environment-specific. Several genomic segments affecting multiple traits were identified. The advantage of QTL mapping using a 4WC were discussed. This study presents the first example of QTL mapping using a 4WC population in upland cotton. The results presented here will enhance the understanding of the genetic basis of yield and fiber quality traits and enable further marker-assisted selection in cultivar populations in upland cotton.  相似文献   

11.
Understanding genetic variation for complex traits in heterogeneous environments is a fundamental problem in biology. In this issue of Molecular Ecology, Fournier‐Level et al. ( 2013 ) analyse quantitative trait loci (QTL) influencing ecologically important phenotypes in mapping populations of Arabidopsis thaliana grown in four habitats across its native European range. They used causal modelling to quantify the selective consequences of life history and morphological traits and QTL on components of fitness. They found phenology QTL colocalizing with known flowering time genes as well as novel loci. Most QTL influenced fitness via life history and size traits, rather than QTL having direct effects on fitness. Comparison of phenotypes among environments found no evidence for genetic trade‐offs for phenology or growth traits, but genetic trade‐offs for fitness resulted because flowering time had opposite fitness effects in different environments. These changes in QTL effects and selective consequences may maintain genetic variation among populations.  相似文献   

12.
Quantitative variation for leaf trichome number is observed within and among Gossypium species, varying from glabrous to densely pubescent phenotypes. Moreover, economically important cotton lint fibers are modified trichomes. Earlier studies have mapped quantitative trait loci (QTLs) affecting leaf pubescence in Gossypium using allotetraploids. In this study, we mapped genes responsible for leaf trichome density in a diploid A genome cross. We were able to map 3 QTLs affecting leaf pubescence based on trichome counts obtained from young leaves (YL) and mature leaves (ML). When the F(2) progeny were classified as pubescent versus glabrous, their ratio did not deviate significantly from a 3:1 model, suggesting that glabrousness is inherited in a simple Mendelian fashion. The glabrous mutation mapped to linkage group A3 at the position of major QTL YL1 and ML1 and appeared orthologous to the t1 locus of the allotetraploids. Interestingly, a fiber mutation, sma-4(ha), observed in the same F(2) population cosegregated with the glabrous marker, which indicates either close linkage or common genetic control of lint fiber and leaf trichomes. Studies of A genome diploids may help to clarify the genetic control of trichomes and fiber in both diploid and tetraploid cottons.  相似文献   

13.
Quantitative trait loci (QTL) mapping of forest productivity traits was performed using an open pollinated half-sib family of Eucalyptus grandis. For volume growth, a sequential QTL mapping approach was applied using bulk segregant analysis (BSA), selective genotyping (SG) and cosegregation analysis (CSA). Despite the low heritability of this trait and the heterogeneous genetic background employed for mapping. BSA detected one putative QTL and SG two out of the three later found by CSA. The three putative QTL for volume growth were found to control 13.7% of the phenotypic variation, corresponding to an estimated 43.7% of the genetic variation. For wood specific gravity five QTL were identified controlling 24.7% of the phenotypic variation corresponding to 49% of the genetic variation. Overlapping QTL for CBH, WSG and percentage dry weight of bark were observed. A significant case of digenic epistasis was found, involving unlinked QTL for volume. Our results demonstrate the applicability of the within half-sib design for QTL mapping in forest trees and indicate the existence of major genes involved in the expression of economically important traits related to forest productivity in Eucalyptus grandis. These findings have important implications for marker-assisted tree breeding.  相似文献   

14.
Recent developments in sequencing technologies have facilitated genomewide mapping of phenotypic variation in natural populations. Such mapping efforts face a number of challenges potentially leading to low reproducibility. However, reproducible research forms the basis of scientific progress. We here discuss the options for replication and the reasons for potential nonreproducibility. We then review the evidence for reproducible quantitative trait loci (QTL) with a focus on natural animal populations. Existing case studies of replication fall into three categories: (i) traits that have been mapped to major effect loci (including chromosomal inversion and supergenes) by independent research teams; (ii) QTL fine‐mapped in discovery populations; and (iii) attempts to replicate QTL across multiple populations. Major effect loci, in particular those associated with inversions, have been successfully replicated in several cases within and across populations. Beyond such major effect variants, replication has been more successful within than across populations, suggesting that QTL discovered in natural populations may often be population‐specific. This suggests that biological causes (differences in linkage patterns, allele frequencies or context‐dependencies of QTL) contribute to nonreproducibility. Evidence from other fields, notably animal breeding and QTL mapping in humans, suggests that a significant fraction of QTL is indeed reproducible in direction and magnitude at least within populations. However, there is also a large number of QTL that cannot be easily reproduced. We put forward that more studies should explicitly address the causes and context‐dependencies of QTL signals, in particular to disentangle linkage differences, allele frequency differences and gene‐by‐environment interactions as biological causes of nonreproducibility of QTL, especially between populations.  相似文献   

15.
Evolutionary quantitative genetics has recently advanced in two distinct streams. Many biologists address evolutionary questions by estimating phenotypic selection and genetic (co)variances ( G matrices). Simultaneously, an increasing number of studies have applied quantitative trait locus (QTL) mapping methods to dissect variation. Both conceptual and practical difficulties have isolated these two foci of quantitative genetics. A conceptual integration follows from the recognition that QTL allele frequencies are the essential variables relating the G -matrix to marker-based mapping experiments. Breeding designs initiated from randomly selected parental genotypes can be used to estimate QTL-specific genetic (co)variances. These statistics appropriately distill allelic variation and provide an explicit population context for QTL mapping estimates. Within this framework, one can parse the G -matrix into a set of mutually exclusive genomic components and ask whether these parts are similar or dissimilar in their respective features, for example the magnitude of phenotypic effects and the extent and nature of pleiotropy. As these features are critical determinants of sustained response to selection, the integration of QTL mapping methods into G -matrix estimation can provide a concrete, genetically based experimental program to investigate the evolutionary potential of natural populations.  相似文献   

16.
Naturally existing colored cotton was far from perfection due to having genetic factors for lower yield, poor fiber quality and monotonous color. These factors posed a challenge to colored cotton breeding and innovation. To identify novel quantitative trait loci (QTL) for fiber color along with understanding of correlation between fiber color and quality in colored cotton, a RIL and two F2 populations were generated from crosses among Zong128 (Brown fiber cotton) and two white fiber cotton lines which were then analyzed in four environments. Two stable and major QTLs (qLC-7-1, qFC-7-1) for fiber lint and fuzz color were detected accounting for 16.01%-59.85% of the phenotypic variation across multiple generations and environments. Meanwhile, some minor QTLs were also identified on chromosomes 5, 14, 21 and 24 providing low phenotypic variation (<5%) from only F2 populations, not from the RILs population. Especially, a multiple-effect locus for fiber color and quality has been detected between flanking markers NAU1043 and NAU3654 on chromosome 7 (A genome) over multiple environments. Of which, qLC-7-1, qFC-7-1 were responsible for positive effects and improved fiber color in offsprings. Meanwhile, the QTLs (qFL-7-1, qFU-7-1, qFF-7-1, qFE-7-1, and qFS-7-1) for fiber quality had negative effects and explained 2.19%-8.78% of the phenotypic variation. This multiple-effect locus for fiber color and quality may reveal the negative correlation between the two types of above traits, so paving the way towards cotton genetic improvement.  相似文献   

17.
Leaf size is an important factor contributing to the photosynthetic capability of wheat plants. It also significantly affects various agronomic traits. In particular, the flag leaves contribute significantly to grain yield in wheat. A recombinant inbred line (RIL) population developed between varieties with significant differences in flag leaf traits was used to map quantitative trait loci (QTL) of flag leaf length (FLL) and to evaluate its pleiotropic effects on five yield-related traits, including spike length (SL), spikelet number per spike (SPN), kernel number per spike (KN), kernel length (KL), and thousand-kernel weight (TKW). Two additional RIL populations were used to validate the detected QTL and reveal the relationships in different genetic backgrounds. Using the diversity arrays technology (DArT) genetic linkage map, three major QTL for FLL were detected, with single QTL in different environments explaining 8.6–23.3% of the phenotypic variation. All the QTL were detected in at least four environments, and validated in two related populations based on the designed primers. These QTL and the newly developed primers are expected to be valuable for fine mapping and marker-assisted selection in wheat breeding programs.  相似文献   

18.
We have explored the genetic basis of variation in vernalization requirement and response in Arabidopsis accessions, selected on the basis of their phenotypic distinctiveness. Phenotyping of F2 populations in different environments, plus fine mapping, indicated possible causative genes. Our data support the identification of FRI and FLC as candidates for the major-effect QTL underlying variation in vernalization response, and identify a weak FLC allele, caused by a Mutator-like transposon, contributing to flowering time variation in two N. American accessions. They also reveal a number of additional QTL that contribute to flowering time variation after saturating vernalization. One of these was the result of expression variation at the FT locus. Overall, our data suggest that distinct phenotypic variation in the vernalization and flowering response of Arabidopsis accessions is accounted for by variation that has arisen independently at relatively few major-effect loci.  相似文献   

19.
In hexaploid wheat, single-locus and two-locus quantitative trait loci (QTL) analyses for grain protein content (GPC) were conducted using two different mapping populations (PI and PII). Main effect QTLs (M-QTLs), epistatic QTLs (E-QTLs) and QTL x environment interactions (QE, QQE) were detected using two-locus analyses in both the populations. Only a few QTLs were common in both the analyses, and the QTLs and the interactions detected in the two populations differed, suggesting the superiority of two-locus analysis and the need for using several mapping populations for QTL analysis. A sizable proportion of genetic variation for GPC was due to interactions (28.59% and 54.03%), rather than to M-QTL effects (7.24% and 7.22%), which are the only genetic effects often detected in the majority of QTL studies. Even E-QTLs made a marginal contribution to genetic variation (2.68% and 6.04%), thus suggesting that the major part of genetic variation is due to changes in gene networks rather than the presence or absence of specific genes. This is in sharp contrast to the genetic dissection of pre-harvest sprouting tolerance conducted by us earlier, where interaction effects were not substantial, suggesting that the nature of genetic variation also depends on the nature of the trait.  相似文献   

20.
Combining ecophysiological modelling and genetic mapping has increasingly received attention from researchers who wish to predict complex plant or crop traits under diverse environmental conditions. The potential for using this combined approach to predict flowering time of individual genotypes in a recombinant inbred line (RIL) population of spring barley (Hordeum vulgare L.) was examined. An ecophysiological phenology model predicts preflowering duration as affected by temperature and photoperiod, based on the following four input traits: f(o) (the minimum number of days to flowering at the optimum temperature and photoperiod), theta1 and theta2 (the development stages for the start and the end of the photoperiod-sensitive phase, respectively), and delta (the photoperiod sensitivity). The model-input trait values were obtained from a photoperiod-controlled greenhouse experiment. Assuming additivity of QTL effects, a multiple QTL model was fitted for the model-input traits using composite interval mapping. Four to seven QTL were identified for each trait. Each trait had at least one QTL specific to that trait alone. Other QTL were shared by two or all traits. Values of the model-input traits predicted for the RILs from the QTL model were fed back into the ecophysiological model. This QTL-based ecophysiological model was subsequently used to predict preflowering duration (d) for eight field trial environments. The model accounted for 72% of the observed variation among 94 RILs and 94% of the variation among the two parents across the eight environments, when observations in different environments were pooled. However, due to the low percentage (34-41%) of phenotypic variation accounted for by the identified QTL for three model-input traits (theta1, theta2 and delta), the QTL-based model accounted for somewhat less variation among the RILs than the model using original phenotypic input trait values. Nevertheless, days to flowering as predicted from the QTL-based ecophysiological model were highly correlated with days to flowering as predicted from QTL-models per environment for days to flowering per se. The ecophysiological phenology model was thus capable of extrapolating (QTL) information from one environment to another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号