首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Key message

Using bulked segregant analysis combined with next-generation sequencing, we delimited the Brnye1 gene responsible for the stay-green trait of nye in pakchoi. Sequence analysis identified Bra019346 as the candidate gene.

Abstract

“Stay-green” refers to a plant trait whereby leaves remain green during senescence. This trait is useful in the cultivation of pakchoi (Brassica campestris L. ssp. chinensis), which is marketed as a green leaf product. This study aimed to identify the gene responsible for the stay-green trait in pakchoi. We identified a stay-green mutant in pakchoi, which we termed “nye”. Genetic analysis revealed that the stay-green trait is controlled by a single recessive gene, Brnye1. Using the BSA-seq method, a 3.0-Mb candidate region was mapped on chromosome A03, which helped us localize Brnye1 to an 81.01-kb interval between SSR markers SSRWN27 and SSRWN30 via linkage analysis in an F2 population. We identified 12 genes in this region, 11 of which were annotated based on the Brassica rapa annotation database, and one was a functionally unknown gene. An orthologous gene of the Arabidopsis gene AtNYE1, Bra019346, was identified as the potential candidate for Brnye1. Sequence analysis revealed a 40-bp insertion in the second exon of Bra019346 in nye, which generated the TAA stop codon. A candidate gene-specific Indel marker in 1561 F2 individuals showed perfect cosegregation with Brnye1 in the nye mutant. These results provide a foundation for uncovering the molecular mechanism of the stay-green trait in pakchoi.
  相似文献   

2.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

3.
Primary transformants of SR1 Nicotiana tabacum plants with RNA interference-based silencing of the gene for extracellular ribonuclease Nk1 were obtained. It was demonstrated that the profiles of ribonuclease activities of leaf protein extracts from these plants lacked ribonuclease with electrophoretic mobility corresponding to that of the Nk1 protein. Primary transformants did not differ phenotypically from control plants. They represent a new model for investigation of the biological role of extracellular ribonucleases, including the molecular mechanisms of resistance to pathogens.  相似文献   

4.
A comprehensive, multi-generation, allele test, carried out in this study, suggests that the tomato mutations dark-green (dg) and high pigment 2(j) (hp-2(j)) are allelic. The hp-2(j) mutant is caused by a mutation in the tomato homolog of the DEETIOLATED1 (DET1) gene, involved in the signal transduction cascade of light perception and morphogenesis. This suggestion is in agreement with the exaggerated photomorphogenic de-etiolation response of homozygous dg mutants grown under modulated light conditions. Sequence analysis of the DET1 gene was carried out in dg mutants representing two different lines, and revealed a single A-to-T base transversion in the second exon of the DET1 gene in comparison with the normal wild-type sequence. This transversion results in a conserved Asparagine(34)-to-Isoleucine(34) amino-acid substitution, and eliminates a recognition site for the AclI restriction endonuclease, present in the wild-type and in the other currently known tomato mutants at the DET1 locus. This polymorphism was used to develop a PCR-based DNA marker, which enables an early genotypic selection for breeding lycopene-rich tomatoes. Using this marker and sequence analysis we demonstrate that an identical base transversion also exists in dg mutants of the cultivar Manapal, in which the natural dg mutation was originally discovered. A linkage analysis, carried out in a F(2) population, shows a very strong linkage association between the DET1 locus of dg mutant plants and the photomorphogenic response of the seedlings, measured as hypocotyl length (12 < LOD Score < 13, R(2) = 51.1%). The results presented in this study strongly support the hypothesis that the tomato dg mutation is a novel allele of the tomato homolog of the DET1 gene.  相似文献   

5.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

6.
7.
8.
Heparan sulfate proteoglycans play a vital role in signaling of various growth factors in both Drosophila and vertebrates. In Drosophila, mutations in the tout velu (ttv) gene, a homolog of the mammalian EXT1 tumor suppressor gene, leads to abrogation of glycosaminoglycan (GAG) biosynthesis. This impairs distribution and signaling activities of various morphogens such as Hedgehog (Hh), Wingless (Wg), and Decapentaplegic (Dpp). Mutations in members of the exostosin (EXT) gene family lead to hereditary multiple exostosis in humans leading to bone outgrowths and tumors. In this study, we provide genetic and biochemical evidence that the human EXT1 (hEXT1) gene is conserved through species and can functionally complement the ttv mutation in Drosophila. The hEXT1 gene was able to rescue a ttv null mutant to adulthood and restore GAG biosynthesis.  相似文献   

9.
10.
11.
Pathogenicity of Candida albicans is associated with its capacity switch from yeast-like to hyphal growth. The hyphal form is capable to penetrate the epithelial surfaces and to damage the host tissues. Therefore, many investigations have focused on mechanisms that control the morphological transitions of C. albicans. Recently, certain studies have showed that non-albicans Candida species can reduce the capacity of C. albicans to form biofilms and to develop candidiasis in animal models. Then, the objective of this study was to evaluate the effects of Candida krusei and Candida glabrata on the morphogenesis of C. albicans. Firstly, the capacity of reference and clinical strains of C. albicans in forming hyphae was tested in vitro. After that, the expression of HWP1 (hyphal wall protein 1) gene was determined by quantitative real-time PCR (polymerase chain reaction) assay. For both reference and clinical strains, a significant inhibition of the hyphae formation was observed when C. albicans was incubated in the presence of C. krusei or C. glabrata compared to the control group composed only by C. albicans. In addition, the culture mixed of C. albicans-C. krusei or C. albicans-C. glabrata reduced significantly the expression of HWP1 gene of C. albicans in relation to single cultures of this specie. In both filamentation and gene expression assays, C. krusei showed the higher inhibitory activity on the morphogenesis of C. albicans compared to C. glabrata. C. krusei and C. glabrata are capable to reduce the filamentation of C. albicans and consequently decrease the expression of the HWP1 gene.  相似文献   

12.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

13.
14.
The B subfamily of ATP-binding cassette (ABC) proteins (ABCB) plays a vital role in auxin efflux. However, no systematic study has been done in apple. In this study, we performed genomewide identification and expression analyses of the ABCB family in Malus domestica for the first time. We identified a total of 25 apple ABCBs that were divided into three clusters based on the phylogenetic analysis. Most ABCBs within the same cluster demonstrated a similar exon–intron organization. Additionally, the digital expression profiles of ABCB genes shed light on their functional divergence. ABCB1 and ABCB19 are two well-studied auxin efflux carrier genes, and we found that their expression levels are higher in young shoots of M106 than in young shoots of M9. Since young shoots are the main source of auxin synthesis and auxin efflux involves in tree height control. This suggests that ABCB1 and ABCB19 may also take a part in the auxin efflux and tree height control in apple.  相似文献   

15.
RBP1 is an important splicing factor involved in alternative splicing of the pre-mRNA of Drosophila sex-determining gene dsx. In this work, the Bombyx mori homologue of the rbp1 gene, Bmrbp1, was cloned. The pre-mRNA of Bmrbp1 gene is alternatively spliced to produce four mature mRNAs, named Bmrbp1-PA, Bmrbp1-PB, Bmrbp1-PC and Bmrbp1-PD, with nucleotide lengths of 799 nt, 1,316 nt, 894 nt and 724 nt, coding for 142 aa, 159 aa, 91 aa and 117 aa, respectively. BmRBP1-PA and BmRBP1-PD contain a N terminal RNA recognization motif (RRM) and a C terminal arginine/serine-rich domain, while BmRBP1-PB and BmRBP1-PC only share a RRM. Amino acid sequence alignments showed that BmRBP1 is conserved with its homologues in other insects and with other SR family proteins. The RT-PCR showed that Bmrbp1-PA was strongly expressed in all examined tissues and development stages, but Bmrbp1-PB was weakly expressed in these tissues and stages. The expression of both Bmrbp1-PA and Bmrbp1-PB showed no obvious sex difference. While the Bmrbp1-PC and Bmrbp1-PD were beyond detection by RT-PCR very likely due to their tissue/stage specificity. These results suggested that Bmrbp1 should be a member of SR family splicing factors, whether it is involved in the sex-specific splicing of Bmdsx pre-mRNA needs further research.  相似文献   

16.
17.
18.
19.
In this study, a genomic library of Magnetospirillum gryphiswaldense MSR-1 strain was constructed and a fur-like gene (encoding Fur protein, ferric uptake regulator) was isolated and sequenced. This gene consisted of 420 bp and encoded 139 amino acid residues. To investigate the function of this gene in MSR-1, a fur mutant was generated by double crossover with a kanamycin cassette inserted into its coding region. Iron uptake and magnetosome formation were dramatically inhibited by disruption of fur. Iron content analysis of the fur mutant indicated that it contained approximately 0.037% by dry weight, which was at least 10-fold less than that observed in the wild type. Electron microscopy revealed the absence of a magnetosome in the fur mutant, although it was able to tolerate 1 mM H2O2 at 10-fold higher level than wild-type. These data suggest that Fur protein may possess a novel function in magnetic bacteria. Published in Russian in Biokhimiya, 2007, Vol. 72, No. 11, pp. 1532–1539.  相似文献   

20.
Plants have evolved several defense mechanisms, including resistance genes. Resistance to the root-knot nematode Meloidogyne incognita has been found in wild plant species. The molecular basis for this resistance has been best studied in the wild tomato Solanum peruvianum and it is based on a single dominant gene, Mi-1.2, which is found in a cluster of seven genes. This nematode attacks fiercely several crops, including potatoes. The genomic arrangement, number of copies, function and evolution of Mi-1 homologs in potatoes remain unknown. In this study, we analyzed partial genome sequences of the cultivated potato species S. tuberosum and S. phureja and identified 59 Mi-1 homologs. Mi-1 homologs in S. tuberosum seem to be arranged in clusters and located on chromosome 6 of the potato genome. Previous studies have suggested that Mi-1 genes in tomato evolved rapidly by frequent sequence exchanges among gene copies within the same cluster, losing orthologous relationships. In contrast, Mi-1 homologs from cultivated potato species (S. tuberosum and S. phureja) seem to have evolved by a birth-and-death process, in which genes evolve mostly by mutations and interallelic recombinations in addition to sequence exchanges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号