首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice   总被引:1,自引:0,他引:1  
Mirza R  Koh TJ 《Cytokine》2011,56(2):256-264
The hypothesis of this study was that cells of the monocyte/macrophage lineage (Mo/Mp) exhibit an impaired transition from pro-inflammatory to pro-healing phenotypes in wounds of diabetic mice, which contributes to deficient healing. Mo/Mp isolated from excisional wounds in non-diabetic db/+ mice exhibited a pro-inflammatory phenotype on day 5 post-injury, with high level expression of the pro-inflammatory molecules interleukin-1β, matrix metalloprotease-9 and inducible nitric oxide synthase. Wound Mo/Mp exhibited a less inflammatory phenotype on day 10 post-injury, with decreased expression of the pro-inflammatory molecules and increased expression of the alternative activation markers CD206 and CD36. In contrast, in db/db mice, the pro-inflammatory phenotype persisted through day 10 post-injury and was associated with reduced expression of insulin-like growth factor-1, transforming growth factor-β1 and vascular endothelial growth factor. Reduced levels of these growth factors in wounds of db/db mice may have contributed to impaired wound closure, reduced granulation tissue formation, angiogenesis and collagen deposition. The persistent pro-inflammatory wound Mo/Mp phenotype in db/db mice may have resulted from elevated levels of pro-inflammatory interleukin-1β and interferon-γ and reduced levels of anti-inflammatory interleukin-10 in the wound environment. Our findings are consistent with the hypothesis that dysregulation of Mo/Mp phenotypes contributes to impaired healing of diabetic wounds.  相似文献   

2.
Irrespective of underlying chronic wound pathology, delayed wound healing is normally characterised by impaired new tissue formation at the site of injury. It is thought that this impairment reflects both a reduced capacity to synthesize new tissue and the antagonistic activities of high levels of proteinases within the chronic wound environment. Historically, wound dressings have largely been passive devices that offer the wound interim barrier function and establish a moist healing environment. A new generation of devices, designed to interact with the wound and promote new tissue formation, is currently being developed and tested. This study considers one such device, oxidised regenerated cellulose (ORC) /collagen, in terms of its ability to promote fibroblast migration and proliferation in vitro and to accelerate wound repair in the diabetic mouse, a model of delayed wound healing. ORC/collagen was found to promote both human dermal fibroblasts proliferation and cell migration. In vivo studies considered the closure and histological characteristics of diabetic wounds treated with ORC/collagen compared to those of wounds given standard treatment on both diabetic and non-diabetic mice. ORC/collagen was found to significantly accelerate diabetic wound closure and result in a measurable improvement in the histological appearance of wound tissues. As the diabetic mouse is a recognised model of impaired healing, which may share some characteristics of human chronic wounds, the results of this in vivo study, taken together with those relating the positive effects of ORC/collagen in vitro, may predict the beneficial use of this device in the clinical setting.  相似文献   

3.
Impaired wound healing can lead to scarring, and aesthetical and functional problems. The cytoprotective haem oxygenase (HO) enzymes degrade haem into iron, biliverdin and carbon monoxide. HO‐1 deficient mice suffer from chronic inflammatory stress and delayed cutaneous wound healing, while corneal wound healing in HO‐2 deficient mice is impaired with exorbitant inflammation and absence of HO‐1 expression. This study addresses the role of HO‐2 in cutaneous excisional wound healing using HO‐2 knockout (KO) mice. Here, we show that HO‐2 deficiency also delays cutaneous wound closure compared to WT controls. In addition, we detected reduced collagen deposition and vessel density in the wounds of HO‐2 KO mice compared to WT controls. Surprisingly, wound closure in HO‐2 KO mice was accompanied by an inflammatory response comparable to WT mice. HO‐1 induction in HO‐2 deficient skin was also similar to WT controls and may explain this protection against exaggerated cutaneous inflammation but not the delayed wound closure. Proliferation and myofibroblast differentiation were similar in both two genotypes. Next, we screened for candidate genes to explain the observed delayed wound closure, and detected delayed gene and protein expression profiles of the chemokine (C‐X‐C) ligand‐11 (CXCL‐11) in wounds of HO‐2 KO mice. Abnormal regulation of CXCL‐11 has been linked to delayed wound healing and disturbed angiogenesis. However, whether aberrant CXCL‐11 expression in HO‐2 KO mice is caused by or is causing delayed wound healing needs to be further investigated.  相似文献   

4.
Acute ethanol exposure represents an increased risk factor for morbidity and mortality associated with surgical or traumatic injury. Despite clinical observations suggesting that ethanol exposure before injury alters tissue repair processes, little direct evidence about the mechanism by which ethanol affects the wound healing process is available. In this study, excisional wounds from female BALB/c mice with or without circulating ethanol levels of 100 mg/dl were used to assess wound closure, angiogenesis, and collagen content. Ethanol exposure resulted in a significant but transient delay in wound closure at day 2 postwounding (28 +/- 4% vs. 17 +/- 1%). In addition, total collagen content was significantly reduced by up to 37% in wounds from ethanol-treated mice compared with controls. The most significant effect of ethanol exposure on wounds was on vascularity because angiogenesis was reduced by up to 61% in wounds from ethanol-treated mice. The reduction in vessel density occurred despite near-normal levels of proangiogenic factors VEGF and FGF-2, suggesting a direct effect of ethanol exposure on endothelial cell function. Further evidence for a direct effect was observed in an in vitro angiogenesis assay because the exposure of endothelial cells to ethanol reduced angiogenic responsiveness to just 8.33% of control in a cord-forming assay. These studies provide novel information regarding the effect of a single dose of ethanol on multiple parameters of the wound healing process in vivo and suggest a potential mechanism by which ethanol impairs healing after traumatic injury.  相似文献   

5.
Long and persistent uncontrolled diabetes tends to degenerate the immune system and increase the incidence of infections in diabetic patients. A serious complication of diabetes is impaired healing, which diminishes physical activity and, in some cases, leads to chronic wounds and limb amputation. Whey proteins (WPs) enhance immunity during early development and have a protective role in some immune disorders. The effect of camel WPs on wound healing in a streptozotocin-induced type 1 diabetic mice model was investigated. Sixty male mice were equally distributed into 3 experimental groups: group 1, non-diabetic control mice; group 2, diabetic mice; and group 3, diabetic mice that were orally supplemented with undenatured WP (100 mg/kg body weight/day for 1 month through oral gavage). We observed that the diabetic mice exhibited delayed wound closure characterized by a significant reduction in collagen deposition, prolonged elevation in inflammatory cytokines, aberrant activation of STAT3 and reduction in the activation of Akt and NF-κB when compared with the control mice. Moreover, in the diabetic mice, the wound-resident macrophages were dysfunctional and demonstrated increased apoptosis, a significant reduction in their phagocytotic ability, aberrant activation of STAT3 and a marked reduction in the activation of Akt. Interestingly, the supplementation of diabetic mice with WP significantly enhanced the collagen deposition, limited the inflammatory stimuli, restored the activation of STAT3, Akt and NF-κB and greatly improved the closure of diabetic wounds compared with the control mice. Most important, the supplementation of diabetic mice with WP rescued functional, long-lived wound-resident macrophages. Our data reveal the benefits of WP supplementation in improving the healing and closure of diabetic wounds.  相似文献   

6.
7.
《Cytotherapy》2021,23(8):672-676
Background aimsThe treatment and care of human wounds represent an enormous burden on the medical system and patients alike. Chronic or delayed healing wounds are characterized by the inability to form proper granulation tissue, followed by deficiencies in keratinocyte migration and wound re-epithelialization, leading to increased likelihood of infection and poor wound outcomes. Human reticular acellular dermal matrix (HR-ADM) is one type of tissue graft developed to enhance closure of delayed healing wounds that has demonstrated clinical utility through accelerating closure of lower extremity diabetic ulcers, but the mechanisms underlying this clinical success are not well understood.MethodsThe authors utilized a diabetic murine splinted excisional wound model to investigate the effects of HR-ADM application on wound closure.ResultsThe authors demonstrate that application of HR-ADM served as a dermal scaffold and promoted rapid re-epithelialization and keratinocyte proliferation, resulting in accelerated wound closure while minimizing granulation tissue formation. HR-ADM-applied wounds also demonstrated evidence of cellular infiltration, neovascularization and collagen remodeling by the host organism.ConclusionsThese data suggest that HR-ADM supports epidermal closure in delayed healing wounds and remodeling of the matrix into host tissue, lending further support to the clinical success of HR-ADM described in clinical reports.  相似文献   

8.
Chronic, nonhealing wounds result in patient morbidity and disability. Reactive oxygen species (ROS) and nitric oxide (NO) are both required for normal wound repair, and derangements of these result in impaired healing. Xanthine oxidoreductase (XOR) has the unique capacity to produce both ROS and NO. We hypothesize that XOR contributes to normal wound healing. Cutaneous wounds were created in C57Bl6 mice. XOR was inhibited with dietary tungsten or allopurinol. Topical hydrogen peroxide (H2O2, 0.15%) or allopurinol (30 μg) was applied to wounds every other day. Wounds were monitored until closure or collected at d 5 to assess XOR expression and activity, cell proliferation and histology. The effects of XOR, nitrite, H2O2 and allopurinol on keratinocyte cell (KC) and endothelial cell (EC) behavior were assessed. We identified XOR expression and activity in the skin and wound edges as well as granulation tissue. Cultured human KCs also expressed XOR. Tungsten significantly inhibited XOR activity and impaired healing with reduced ROS production with reduced angiogenesis and KC proliferation. The expression and activity of other tungsten-sensitive enzymes were minimal in the wound tissues. Oral allopurinol did not reduce XOR activity or alter wound healing but topical allopurinol significantly reduced XOR activity and delayed healing. Topical H2O2 restored wound healing in tungsten-fed mice. In vitro, nitrite and H2O2 both stimulated KC and EC proliferation and EC migration. These studies demonstrate for the first time that XOR is abundant in wounds and participates in normal wound healing through effects on ROS production.  相似文献   

9.
Wound healing consists of a complex, dynamic and overlapping process involving inflammation, proliferation and tissue remodeling. A better understanding of wound healing process at the molecular level is needed for the development of novel therapeutic strategies. Receptor-interacting protein kinase 3 (RIPK3) controls programmed necrosis in response to TNF-α during inflammation and has been shown to be highly induced during cutaneous wound repair. However, its role in wound healing remains to be demonstrated. To study this, we created dorsal cutaneous wounds on male wild-type (WT) and RIPK3-deficient (Ripk3 -/-) mice. Wound area was measured daily until day 14 post-wound and skin tissues were collected from wound sites at various days for analysis. The wound healing rate in Ripk3 -/- mice was slower than the WT mice over the 14-day course; especially, at day 7, the wound size in Ripk3 -/- mice was 53% larger than that of WT mice. H&E and Masson-Trichrome staining analysis showed impaired quality of wound closure in Ripk3 -/- wounds with delayed re-epithelialization and angiogenesis and defected granulation tissue formation and collagen deposition compared to WT. The neutrophil infiltration pattern was altered in Ripk3 -/- wounds with less neutrophils at day 1 and more neutrophils at day 3. This altered pattern was also reflected in the differential expression of IL-6, KC, IL-1β and TNF-α between WT and Ripk3 -/- wounds. MMP-9 protein expression was decreased with increased Timp-1 mRNA in the Ripk3 -/- wounds compared to WT. The microvascular density along with the intensity and timing of induction of proangiogenic growth factors VEGF and TGF-β1 were also decreased or delayed in the Ripk3 -/- wounds. Furthermore, mouse embryonic fibroblasts (MEFs) from Ripk3 -/- mice migrated less towards chemoattractants TGF-β1 and PDGF than MEFs from WT mice. These results clearly demonstrate that RIPK3 is an essential molecule to maintain the temporal manner of the normal progression of wound closure.  相似文献   

10.
Normal wound healing is a carefully controlled balance of destructive processes necessary to remove damaged tissue and repair processes which lead to new tissue formation. Proteases and growth factors play a pivotal role in regulating this balance, and if disrupted in favour of degradation then delayed healing ensues; a trait of chronic wounds. Whilst there are many types of chronic wounds, biochemically they are thought to be similar in that they are characterised by a prolonged inflammatory phase, which results in elevated levels of proteases and diminished growth factor activity. This increase in proteolytic activity and subsequent degradation of growth factors is thought to contribute to the net tissue loss associated with these chronic wounds.

In this study, we describe a new wound treatment, comprising oxidised regenerated cellulose and collagen (ORC/collagen), which can redress this imbalance and modify the chronic wound environment. We demonstrate that ORC/collagen can inactivate potentially harmful factors such as proteases, oxygen free radicals and excess metal ions present in chronic wound fluid, whilst simultaneously protecting positive factors such as growth factors and delivering them back to the wound.

These characteristics suggest a beneficial role for this material in helping to re-balance the chronic wound environment and therefore promote healing.  相似文献   


11.

Background

Wound healing is a highly dynamic process that requires signaling from the extracellular matrix to the fibroblasts for migration and proliferation, and closure of the wound. This rate of wound closure is impaired in diabetes, which may be due to the increased levels of the precursor for advanced glycation end products, 3-deoxyglucosone (3DG). Previous studies suggest a differential role for p38 mitogen-activated kinase (MAPK) during wound healing; whereby, p38 MAPK acts as a growth kinase during normal wound healing, but acts as a stress kinase during diabetic wound repair. Therefore, we investigated the signaling cross-talk by which p38 MAPK mediates wound healing in fibroblasts cultured on native collagen and 3DG-collagen.

Methodology/Principal Findings

Using human dermal fibroblasts cultured on 3DG-collagen as a model of diabetic wounds, we demonstrated that p38 MAPK can promote either cell growth or cell death, and this was dependent on the activation of AKT and ERK1/2. Wound closure on native collagen was dependent on p38 MAPK phosphorylation of AKT and ERK1/2. Furthermore, proliferation and collagen production in fibroblasts cultured on native collagen was dependent on p38 MAPK regulation of AKT and ERK1/2. In contrast, 3DG-collagen decreased fibroblast migration, proliferation, and collagen expression through ERK1/2 and AKT downregulation via p38 MAPK.

Conclusions/Significance

Taken together, the present study shows that p38 MAPK is a key signaling molecule that plays a significantly opposite role during times of cellular growth and cellular stress, which may account for the differing rates of wound closure seen in diabetic populations.  相似文献   

12.
Whether myocardial contractile impairment contributes to orthostatic intolerance (OI) is controversial. Accordingly, we used transient bilateral carotid occlusion (TBCO) to compare the in vivo pressor, chronotropic, and inotropic responses (parts 1 and 2) to open-loop selective carotid baroreceptor unloading in anesthetized mice. In part 3, in vitro myocyte responses to isoproterenol in mice exposed to hindlimb unweighting (HLU) for approximately 2 wk were determined. Heart rate (HR) and mean arterial pressure (MAP) responses to TBCO were measured. In control mice, TBCO increased HR (15 +/- 2 beats/min, P < 0.05) and MAP (17 +/- 2 mmHg, P < 0.05). These responses were markedly potentiated in denervated control (DC) mice, in which the aortic depressor nerve and sympathetic trunk were sectioned before measurement. Baroreflex responses to TBCO were eliminated by blockade with hexamethonium bromide (10 microg/kg). In HLU (denervated) mice, HR and MAP responses were reduced approximately 70% compared with DC mice. In part 2, myocardial contractile responses to TBCO were measured with a left ventricular micromanometer-conductance catheter. TBCO in DC mice increased the slope of the end-systolic pressure-volume relation (end-systolic elastance) by 86 +/- 13%. This inotropic response was attenuated (14 +/- 10%, P < 0.005) after HLU. In part 3, contractile responses to isoproterenol were impaired in myocytes isolated from HLU mice. In conclusion, selective carotid baroreceptor unloading stimulates HR, blood pressure, and myocardial contractility, and HLU attenuates each response. These findings have important implications for the management of OI in astronauts, the elderly, and individuals subjected to prolonged bed rest.  相似文献   

13.
The ability of single growth factors to promote healing of normal and compromised wounds has been well described, but wound healing is a process requiring the coordinated action of multiple growth factors. Only the synergistic effect on wound healing of combinations containing at most two individual growth factors has been reported. We sought to assess the ability of a novel milk-derived growth factor-enriched preparation ?mitogenic bovine whey extract (MBWE), which contains six known growth factors, to promote repair processes in organotypic in vitro models and incisional wounds in vivo. MBWE stimulated the contraction of fibroblast-populated collagen lattices in a dose-dependent fashion and promoted the closure of excisional wounds in embryonic day 17 fetal rat skin. Application of MBWE increased incisional wound strength in normal animals on days 3, 5, 7, and 10 and reversed the decrease in wound strength observed following steroid treatment. Wound histology showed increased fibroblast numbers in wounds from normal and steroid-compromised animals. These data suggest the mixture of factors present in bovine milk exerts a direct action on the cells of cutaneous wound repair to enhance both normal and compromised healing.  相似文献   

14.
An increasing number of patients are being treated with growth hormone (GH) for the enhancement of body growth but also as an anti-aging strategy. However, the side effects of GH have been poorly defined. In this study we determined the effect of GH on wound repair and its mechanisms of action at the wound site. For this purpose, we performed wound healing studies in transgenic mice overexpressing GH. Full thickness incisional and excisional wounds of transgenic animals developed extensive, highly vascularized granulation tissue. However, wound bursting strength was not increased. Wound closure was strongly delayed as a result of enhanced granulation tissue formation and impaired wound contraction. The latter effect is most likely due to a significantly reduced number of myofibroblasts at the wound site. By using in vitro studies with stressed collagen lattices, we identified GH as an inhibitor of transforming growth factor beta-induced myofibroblast differentiation, resulting in a reduction in fibroblast contractile activity. These results revealed novel roles of GH in angiogenesis and myofibroblast differentiation, which are most likely not mediated via insulin-like growth factors at the wound site. Furthermore, our data suggested that systemic GH treatment is detrimental for wound healing in healthy individuals.  相似文献   

15.
In this study, we investigated the role of nerve growth factor (NGF)-incorporated collagen on wound healing in rats. Full-thickness excision wounds were made on the back of female rats weighing about 150-160 g. Topical application of NGF-incorporated collagen, at a concentration of 1 microg/1.2 mg collagen/cm(2), once a day, for 10 days resulted in complete healing of wounds on the 15th day. The concentrations of collagen, hexosamine and uronic acid in the granulation tissue were determined. The NGF-incorporated collagen-treated rats required shorter duration for the healing with an increased rate of wound contraction. Histological and electron microscopical evaluations were also performed, which reveal the activation of fibroblasts and endoplasmic reticulum and therefore increased level of collagen synthesis due to NGF application. These results clearly indicate that the topical application of NGF-incorporated collagen enhanced the rate of healing of excision wounds.  相似文献   

16.
Wound healing is a highly ordered process, requiring complex and coordinated interactions involving peptide growth factors of which transforming growth factor-beta (TGF-beta) is one of the most important. Nitric oxide is also an important factor in healing and its production is regulated by inducible nitric oxide synthase (iNOS). We have earlier shown that curcumin (diferuloylmethane), a natural product obtained from the plant Curcuma longa, enhances cutaneous wound healing in normal and diabetic rats. In this study, we have investigated the effect of curcumin treatment by topical application in dexamethasone-impaired cutaneous healing in a full thickness punch wound model in rats. We assessed healing in terms of histology, morphometry, and collagenization on the fourth and seventh days post-wounding and analyzed the regulation of TGF-beta1, its receptors type I (tIrc) and type II (tIIrc) and iNOS. Curcumin significantly accelerated healing of wounds with or without dexamethasone treatment as revealed by a reduction in the wound width and gap length compared to controls. Curcumin treatment resulted in the enhanced expression of TGF-beta1 and TGF-beta tIIrc in both normal and impaired healing wounds as revealed by immunohistochemistry. Macrophages in the wound bed showed an enhanced expression of TGF-beta1 mRNA in curcumin treated wounds as evidenced by in situ hybridization. However, enhanced expression of TGF-beta tIrc by curcumin treatment observed only in dexamethasone-impaired wounds at the 7th day post-wounding. iNOS levels were increased following curcumin treatment in unimpaired wounds, but not so in the dexamethasone-impaired wounds. The study indicates an enhancement in dexamethasone impaired wound repair by topical curcumin and its differential regulatory effect on TGF-beta1, it's receptors and iNOS in this cutaneous wound-healing model.  相似文献   

17.
Endostatin, the C-terminal fragment of collagen XVIII, is known to suppress tumour growth and angiogenesis by inhibiting endothelial cell proliferation and migration. We have previously shown that endostatin and its precursor are important for the structural organization of basement membranes (BM). The aim of this study was to investigate cutaneous wound healing in mice overexpressing endostatin in keratinocytes (ES-tg) and in mice lacking collagen XVIII (Col18a1(-/-)). Excisional wounds were made on the dorsal skin of mice, the wound areas were measured and the wounds were collected for further analyses after 3, 6 or 14 days. The healing of the wounds was delayed in the ES-tg mice and accelerated in the Col18a1(-/-) mice, and the vascularisation rate was accelerated in the Col18a1(-/-) mice, but not affected in the ES-tg mice. Abnormal capillaries with swollen endothelial cells and narrowed lumens were observed in the wounds of the ES-tg mice. In these mice also the formation of the epidermal BM was delayed, and the structure of the epidermal and capillary BMs was more disorganised. Moreover, detachment of the epidermis from the granulation tissue was observed in half (n=10) of the 6-day-old ES-tg wounds, but in none of the controls, suggesting an increased fragility of the epidermal-dermal junction in the presence of an excess of endostatin.  相似文献   

18.
Heme oxygenase-1 (HO-1), a cytoprotective, pro-angiogenic and anti-inflammatory enzyme, is strongly induced in injured tissues. Our aim was to clarify its role in cutaneous wound healing. In wild type mice, maximal expression of HO-1 in the skin was observed on the 2nd and 3rd days after wounding. Inhibition of HO-1 by tin protoporphyrin-IX resulted in retardation of wound closure. Healing was also delayed in HO-1 deficient mice, where lack of HO-1 could lead to complete suppression of reepithelialization and to formation of extensive skin lesions, accompanied by impaired neovascularization. Experiments performed in transgenic mice bearing HO-1 under control of keratin 14 promoter showed that increased level of HO-1 in keratinocytes is enough to improve the neovascularization and hasten the closure of wounds. Importantly, induction of HO-1 in wounded skin was relatively weak and delayed in diabetic (db/db) mice, in which also angiogenesis and wound closure were impaired. In such animals local delivery of HO-1 transgene using adenoviral vectors accelerated the wound healing and increased the vascularization. In summary, induction of HO-1 is necessary for efficient wound closure and neovascularization. Impaired wound healing in diabetic mice may be associated with delayed HO-1 upregulation and can be improved by HO-1 gene transfer.  相似文献   

19.
Topical application of platelet-derived growth factor-BB (PDGF-BB) is considered to accelerate tissue repair of impaired chronic wounds. However, the vast literature is plagued with conflicting reports of its efficacy in animal models and this is often influenced by a wide array of experimental variables making it difficult to compare the results across the studies. To mitigate the confounding variables that influence the efficacy of topically applied PDGF-BB, we used a controlled full thickness splinted excisional wound model in db/db mice (type 2 diabetic mouse model) for our investigations. A carefully-defined silicone-splinted wound model, with reduced wound contraction, controlled splint and bandage maintenance, allowing for healing primarily by reepithelialization was employed. Two splinted 8 mm dorsal full thickness wounds were made in db/db mice. Wounds were topically treated once daily with either 3 µg PDGF-BB in 30 µl of 5% PEG-PBS vehicle or an equal volume of vehicle for 10 days. Body weights, wound contraction, wound closure, reepithelialization, collagen content, and wound bed inflammation were evaluated clinically and histopathologically. The bioactivity of PDGF-BB was confirmed by in vitro proliferation assay. PDGF-BB, although bioactive in vitro, failed to accelerate wound healing in vivo in the db/db mice using the splinted wound model. Considering that the predominant mechanism of wound healing in humans is by re-epeithelialization, the most appropriate model for evaluating therapeutics is one that uses splints to prevent excessive wound contraction. Here, we report that PDGF-BB does not promote wound closure by re-epithelialization in a murine splinted wound model. Our results highlight that the effects of cytoactive factors reported in vivo ought to be carefully interpreted with critical consideration of the wound model used.  相似文献   

20.
Using cell‐based engineered skin is an emerging strategy for treating difficult‐to‐heal wounds. To date, much endeavor has been devoted to the fabrication of appropriate scaffolds with suitable biomechanical properties to support cell viability and growth in the microenvironment of a wound. The aim of this research was to assess the impact of adipose tissue‐derived mesenchymal stem cells (AD‐MSCs) and keratinocytes on gelatin/chitosan/β‐glycerol phosphate (GCGP) nanoscaffold in full‐thickness excisional skin wound healing of rats. For this purpose, AD‐MSCs and keratinocytes were isolated from rats and GCGP nanoscaffolds were electrospun. Through an in vivo study, the percentage of wound closure was assessed on days 7, 14, and 21 after wound induction. Samples were taken from the wound sites in order to evaluate the density of collagen fibers and vessels at 7 and 14 days. Moreover, sampling was done on days 7 and 14 from wound sites to assess the density of collagen fibers and vessels. The wound closure rate was significantly increased in the keratinocytes‐AD‐MSCs‐scaffold (KMS) group compared with other groups. The expressions of vascular endothelial growth factor, collagen type 1, and CD34 were also significantly higher in the KMS group compared with the other groups. These results suggest that the combination of AD‐MSCs and keratinocytes seeded onto GCGP nanoscaffold provides a promising treatment for wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号