首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Arisaema serratum is a perennial herb capable of changing sex expression from year to year. We developed five polymorphic microsatellite markers for A. serratum to estimate male reproductive success. Variability at these loci was examined in two populations, one at Horigane and one at Kanazawa Japan; the number of alleles per locus ranged from five to 35 (the mean 21.4) in Horigane and from three to 36 (22.0) in Kanazawa. This high allelic diversity indicates that our markers are suitable for the study of male reproductive success in A. serratum.  相似文献   

2.
Abstract The evolutionary stability of the sex-changing habit of Arisaema serratum was examined. To evaluate reproductive success through male functioin properly, the mathematical formulation of Kakehashi and Harada (1987) was employed. Individuals were classified by both their size and sexual state, and the genetic contribution of individuals was estimated by calculating their reproductive value. It was shown that in the size classes where sex change actually occurs, the reproductive values of males and females are basically the same. This means that the genetic contribution of individuals in these size classes is the same whether they are male or female, and no selection pressure is working to change the male ratio in these classes. Thus, it is concluded that the size at which sex change occurs is evolutionarily stable. The adaptive significance of the size of first reproduction was also discussed.  相似文献   

3.
Received 8 June 2000/ Accepted in revised form 7 July 2000  相似文献   

4.
性别分化是遗传学、进化生物学和生殖行为生态学研究的重要领域之一,对于研究生物的遗传与进化关系、分析生物种群数量动态具有重要意义。对韭菜迟眼蕈蚊BradysiaodoriphagaYangetZhang的性别分化研究结果表明,韭菜迟眼蕈蚊的生殖对策主要以产单性别方式为主,其次是产优势性别方式,2种方式占92%,且产雌产雄的比例基本呈对称现象。用雌雄试虫都来自单性别的种群,连续繁殖3代,其性别分化如同上述,每一代种群的性比基本保持在1∶1。用双性别后代雌虫所产的雌雄虫进行近亲繁殖,连续繁殖3代,结果表明双性别后代的比例明显增大。鉴于以上实验结果,对韭菜迟眼蕈蚊生殖对策的生态与进化意义进行了分析。  相似文献   

5.
Arisaema species exhibit gender diphasy, or sex change, where individual plants produce either male, monoecious or female inflorescences depending on their size. Three basic sex-change patterns have been described in Arisaema. Type I species change between male and monoecious phases, type II species change between male, monoecious and female phases, while type III species change between male and female phases. Theoretical models suggest that sex ratios should be biased toward males, the sex with the lowest cost of reproduction. The goal of this study was to examine sex-ratio variation among Arisaema species that differ in sex-change patterns. Data from an extensive literature review, consisting of all available studies reporting Arisaema sex ratios, were combined with data from extensive field surveys of Arisaema dracontium and Arisaema triphyllum in southern Indiana, USA. This data set contains nearly 30 000 plants from 12 species. All species conformed to either the type I or type III pattern of sex change. There was little evidence for a distinct type II pattern of sex change, given that plants with monoecious inflorescences were rare relative to plants with pistillate inflorescences. The mean sex ratio in type I species (79.9% male) was significantly greater than in type III species (63.7% male). The data are consistent with the prediction that type I species are likely to have greater costs associated with female reproduction. We suggest that all Arisaema species have similar patterns of floral development, but differ in their ontogenetic patterns for male and female flowering.  相似文献   

6.
The sex ratio behavior of parasitoid wasps in the genus Melittobia is scandalous. In contrast to the prediction of Hamilton's local mate competition theory, and the behavior of numerous other species, their extremely female‐biased sex ratios (1–5% males) change little in response to the number of females that lay eggs on a patch. We examined the mating structure and fitness consequences of adjusting the sex ratio in M. australica and found that (1) the rate of inbreeding did not differ from that expected with random mating within each patch; (2) the fitness of females that produced less female‐biased sex ratios (10 or 20% males) was greater than that of females who produced the sex ratio normally observed in M. australica. These results suggest that neither assortative mating nor asymmetrical competition between males can explain the extreme sex ratios. More generally, the finding that the sex ratios produced by females led to a decrease in their fitness suggests that the existing theory fails to capture a key aspect of the natural history of Melittobia, and emphasizes the importance of examining the fitness consequences of different sex ratio strategies, not only whether observed sex ratios correlate with theoretical predictions.  相似文献   

7.
Theory predicts that the ‘size advantage’ (rate of increase in male and female fitness with age or size) determines the direction and the timing of sex change in sequential hermaphrodites. Whereas the size advantage is generated by the mating system and would be expected to vary within and between species, the shape or form of the size advantage has rarely been estimated directly. Here, we ask whether theoretical predictions about the timing of sex change hold under different types of size advantage. We model two biological scenarios representing different processes generating the size advantage and find that different types of size advantage can produce patterns that qualitatively differ from classic predictions. Our results demonstrate that a good understanding of sequentially hermaphroditic mating systems, and specifically, a direct assessment of the processes underlying the size advantage is crucial to reliably predict and explain within‐species patterns of the timing of sex change.  相似文献   

8.
The gonadal sexual patterns of three Atlantic/Caribbean Lythrypnus (L. nesiotes, L. phorellus, L. spilus) are described, based on histological examination, and compared with previously described sexual patterns of L. dalli and L. zebra, from the eastern Pacific. Overall, there was striking similarity in the sexual patterns of all the species; each exhibited simultaneous hermaphroditism with a high degree of variability in allocation to male tissue among individuals. Among the five species whose sexual patterns are described, at least three distinct sexual patterns were identified. Lythrypnus dalli has an allocation pattern distinct from the other species, with populations consisting of primarily pure females, strongly female-biased hermaphrodites and pure males. Lythrypnus nesiotes was also found to be distinct from the other species, consisting primarily of pure females and strongly female-biased hermaphrodites and male-biased individuals (mean allocation to male tissue = 75%). In contrast to L. dalli, L. nesiotes had no pure males. Indeed, no other species examined included pure males. L. phorellus, L. spilus and L. zebra had much more intermediate allocation patterns than either L. dalli or L. nesiotes. Most individuals were female biased (<10% male tissue), and there were significant numbers of individuals with intermediate allocation (10–90% male). L. zebra differed somewhat from L. phorellus and L. spilus in that more strongly male-biased individuals were common in the sample (i.e., ranging in allocation from 90 to 98% male); this difference was not statistically compelling. This marked variation in allocation among closely related species suggests Lythrypnus is a useful model system to explore factors affecting allocation. For example, models developed for simultaneous hermaphrodites and appropriate for Lythrypnus predict that pure sexed individuals will be more common at higher density (e.g., because mating success is more certain). The observed interspecific variation supports this prediction – both L. dalli and L. nesiotes occur at high density and have the most extreme allocation patterns, whereas L. phorellus, L. spilus, and L. zebra occur at lower density and have more intermediate allocation patterns.  相似文献   

9.
The authors predicted evolutionary changes in airborne infectious diseases according to changes in the characteristics of the host population. The predictions were based upon a mathematical model of infectious diseases and the validity of the predictions was verified against the history of man and pathogens. The feature of this model is that it involves a density of pathogens in the environment as an additional variable which can be regarded as more suitable to airborne infectious diseases. In spite of this modification, this study reached a similar conclusion to the threshold density theory: that is, susceptible host density in the absence of the pathogen must be larger than that in the presence of the pathogen, for the pathogen to be persistent. Moreover the authors concluded that one type of pathogen cannot be replaced by another type of pathogen as long as the susceptible host density of the former type is the mininum one. The predictions were considered to be valid for a wide range of infectous diseases. Making use of these principles, the authors predicted that the variety of infectious diseases should increase as host density increases and that pathogens should evolve to be less virulent as the host life-span increases. The finalidea discussed is whether or nor the history of man and pathogen can be verified by the predictions.  相似文献   

10.
An evolutionarily stable strategy for aggressiveness in feeding groups   总被引:9,自引:7,他引:2  
Sirot  Etienne 《Behavioral ecology》2000,11(4):351-356
Animals searching for food in groups display highly variabledegrees of aggressiveness. In this paper I present an individual-basedgame theoretical model of how gregarious animals should adjusttheir level of aggressiveness to their environmental conditions.In accordance with behavioral observations, the predicted levelof aggressiveness increases progressively with decreasing foodavailability and increasing animal density. The proposed modelalso predicts a positive influence of food energy value andhandling time on the level of aggressiveness within the group.In addition, the model provides information about the influenceof aggressive behavior on individual foraging success, interference,and population dynamics. Adaptive behavioral rules for aggressivenessin consumers are predicted to respond to both competitors and food density in a way that contributes to stabilization of thedynamics of population systems.  相似文献   

11.
Recent theoretical work has shown that haplodiploid cyclical parthenogens, such as rotifers, are expected to have an equal frequency of male‐producing and resting‐egg producing females during their sexual phase. We tested this prediction by following sexual reproduction dynamics in two laboratory populations and one field population of the rotifer Brachionus plicatilis through two growing seasons. We recorded population density, proportion of sexual females, and sex allocation (the proportion of male‐producing sexual females as a fraction of total sexual females). We found this sex allocation ratio to vary from 0.3 to 1.0 in single sampling events. However, when we computed sex allocation by using the integrated densities of both male‐producing sexual females and resting‐egg producing sexual females over time, the two laboratory populations and one of the two field growing seasons showed sex allocation ratios that did not significantly differ from the expected value of 0.5.  相似文献   

12.
An optimal allocation model was developed for the evolutionarily stable size of attractive structures of flowers (ESA) in animal-pollinated plants. It was assumed that a plant can change the sizes of attractive and sexual structures of a flower and the size and the number of flowers. In the absence of constraints on flower size, the ESA should not depend on the frequency of self-fertilization or the sexuality of plants. However, with constraints on flower size, the ESA decreases with increasing self-fertilization, except in special cases, and it is possible that males have a larger or a smaller ESA than females. Thus, differences in self-fertilization and sexuality alone cannot explain the differences in allocation among nondomesticated plants. In addition, attractive structures can contribute more to male or female function depending on the cost of gamete production, pollination efficiency for pollen and ovules, and pollinator availability.  相似文献   

13.
Sex allocation theory predicts that females should produce more sons when the reproductive success of sons is expected to be high, whereas they should produce more daughters, not daughters when the reproductive success of sons is expected to be low. The guppy (Poecilia reticulata) is a live‐bearing fish, and female guppies are known to produce broods with biased sex ratios. In this study, we examined the relationship between brood sex ratio and reproductive success of sons and daughters, to determine whether female guppies benefit from producing broods with biased sex ratios. We found that sons in male‐biased broods had greater mating success at maturity than sons in female‐biased broods when brood sizes were larger. On the other hand, the reproductive output of daughters was not significantly affected by brood sizes and sex ratios. Our results suggest that female guppies benefit from producing large, male‐biased brood when the reproductive success of sons is expected to be high.  相似文献   

14.
寄生蜂性别分配行为   总被引:3,自引:2,他引:1  
寄生蜂是性比分配行为领域的研究热点对象,其性别决定方式为单双倍型,一般情况下,未受精的单倍型卵发育成雄蜂,受精的二倍型卵发育为雌蜂。局部配偶竞争和近交等因素使得偏雌性比成为这类生物的进化稳定策略;其性比具有可调节性,产卵个体可以根据对产卵环境的判定来调控后代性比,从而获得最大适合度。在此基础上形成的局部配偶竞争理论阐述了寄生蜂性比的这种可调节性,成为进化论的优秀论据。  相似文献   

15.
It has recently been demonstrated that ecological feedback mechanisms can facilitate the emergence and maintenance of cooperation in public goods interactions: the replicator dynamics of defectors and cooperators can result, for example, in the ecological coexistence of cooperators and defectors. Here we show that these results change dramatically if cooperation strategy is not fixed but instead is a continuously varying trait under natural selection. For low values of the factor with which the value of resources is multiplied before they are shared among all participants, evolution will always favour lower cooperation strategies until the population falls below an Allee threshold and goes extinct, thus evolutionary suicide occurs. For higher values of the factor, there exists a unique evolutionarily singular strategy, which is convergence stable. Because the fitness function is linear with respect to the strategy of the mutant, this singular strategy is neutral against mutant invasions. This neutrality disappears if a nonlinear functional response in receiving benefits is assumed. For strictly concave functional responses, singular strategies become uninvadable. Evolutionary branching, which could result in the evolutionary emergence of cooperators and defectors, can occur only with locally convex functional responses, but we illustrate that it can also result in coevolutionary extinction.  相似文献   

16.
We examine the risk model in sperm competition games for cases where female fertility increases significantly with sperm numbers (sperm limitation). Without sperm competition, sperm allocation increases with sperm limitation. We define 'average risk' as the probability q that females in the population mate twice, and 'perceived risk' as the information males gain about the sperm competition probability with individual females. If males obtain no information from individual females, sperm numbers increase with q unless sperm limitation is high and one of the two competing ejaculates is strongly disfavoured. If males can distinguish between virgin and mated females, greater sperm allocation to virgins is favoured by high sperm limitation, high q, and by the second male's ejaculate being disfavoured. With high sperm limitation, sperm allocation to virgins increases and to mated females decreases with q at high q levels. With perfect information about female mating pattern, sperm allocation (i) to virgins that will mate again exceeds that to mated females and to virgins that will mate only once, (ii) to virgins that mate only once exceeds that for mated females if q is high and there is high second male disadvantage and (iii) to each type of female can decrease with q if sperm limitation is high, although the average allocation increases at least across low q levels. In general, higher sperm allocation to virgins is favoured by: strong disadvantage to the second ejaculate, high sperm limitation, high average risk and increased information (perceived risk). These conditions may apply in a few species, especially spiders.  相似文献   

17.
Evolutionarily stable stealing: game theory applied to kleptoparasitism   总被引:4,自引:6,他引:4  
We present an individual-based model of a group of foraginganimals. Individuals can obtain food either by discovering itthemselves or by stealing it from others (kleptoparasitism).Given that challenging another individual for a discovered fooditem costs time (which could otherwise be spent searching foran undiscovered item), attempting to steal from another maynot always be efficient We show that there is generally a uniquestrategy that maximizes uptake rate—always or never challengingothers. For any combination of parameter values, we can identifywhich strategy is appropraite. As a corollary to this, we predictthat small changes in ecolgical conditions can, under some circumstances,cause a dramatic change in the aggressive behavior of individuals.Further, we investigate situations where searching for undiscoveredfood and searching for potential opportunities for stealingare mutually exclusive activities (i.e., success at one canonly be improved at the expense of the other). Using game theory,we are able to find the evolutionarily stable strategy for investmentin these two activities in terms of the ecological parametersof the model.  相似文献   

18.
Previous models of kleptoparasitism (resource stealing) assume that contests over resource items are of fixed duration. Here we suggest that such contests will often be well represented as a war of attrition, with the winner being the individual who is prepared to contest for the longer time. Given that time spent in contests cannot be used to search for other resource items, we provide an analytical expression for the evolutionarily stable distribution of contest times. This can be used to investigate the circumstances under which we would expect kleptoparasitism to evolve. In particular, we focus on situations where searching for conspecifics to kleptoparasitize can only be achieved at a cost of reduced resource discovery by other means; under such circumstances we show that kleptoparasitism is not evolutionarily stable.  相似文献   

19.
Ken  Inoue 《Plant Species Biology》1990,5(2):197-203
Dichogamy and sex allocation in several populations of Campanula microdonta and C. punctata were investigated with regard to their mating systems. Duration of the staminate phase differed among the populations: staminate phase was longer in self-compatible (SC) and largely outcrossing populations than in self-incompatible (SI) and outcrossing populations or in SC and largely inbreeding populations. Duration of the pistillate phase among the populations was less variable than duration of the staminate phase. Male reproductive effort decreased with increase of the estimated selfing rates. Male allocation (weight ratio of androecium to gynoecium or to total flower) may be used as an indicator of the breeding system. Within each population, small flowers allocate proportionately more resources to the androecium than to the gynoecium. Among populations, SC outcrossing populations tend to produce large ovaries, and SC inbreeding populations tend to produce small ovaries.  相似文献   

20.
We present two elaborations of the model of Broom and Ruxtonthat found evolutionarily stable kleptoparasitic strategiesfor foragers. These elaborations relax the assumption that thedistribution of times required to handle discovered food itemsis exponential. These changes increase the complexity of themodel but represent a significant improvement in biologicalrealism. In one elaboration, handling takes a fixed interval,th, at the end of which the whole value of the food item isobtained. We liken this to peeling then consuming a small orange.The other elaboration also assumes that handling takes a fixedinterval, th, but this time the reward from the food item isextracted continuously throughout the handling period. We likenthis to eating an apple. Both models predict that increasingfood density, the ease with which food items can be discovered,or the length of aggressive contests all act to make kleptoparasitismless common. The difference between the evolutionarily stablestrategy solutions of the apple and orange models provides aclear prediction of our theory. When prey items require handlingbefore yielding a lump sum at the end, then kleptoparasiticattacks will be focused on prey items near the end of theirhandling period. However, if prey items yield reward continuouslyduring handling, then attacks should be biased toward newlydiscovered food items. Another key difference between the modelpredictions is that kleptoparasitism increases with foragerdensity in the apple model, but decreases in the orange model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号