首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The potential use of variola virus, the etiological agent of smallpox, as a bioterror agent has heightened the interest in the reinitiation of smallpox vaccination. However, the currently licensed Dryvax vaccine, despite its documented efficacy in eradicating smallpox, is not optimal for the vaccination of contemporary populations with large numbers of individuals with immunodeficiencies because of severe adverse effects that can occur in such individuals. Therefore, the development of safer smallpox vaccines that can match the immunogenicity and efficacy of Dryvax for the vaccination of contemporary populations remains a priority. Using the Wyeth strain of vaccinia virus derived from the Dryvax vaccine, we generated a recombinant Wyeth interleukin-15 (IL-15) with integrated IL-15, a cytokine with potent immunostimulatory functions. The integration of IL-15 into the Wyeth strain resulted in a >1,000-fold reduction in lethality of vaccinated athymic nude mice and induced severalfold-higher cellular and humoral immune responses in wild-type mice that persisted longer than those induced by the parental Wyeth strain. The superior efficacy of Wyeth IL-15 was further demonstrated by the ability of vaccinated mice to fully survive a lethal intranasal challenge of virulent vaccinia virus even 10 months after vaccination, whereas all mice vaccinated with parental Wyeth strain succumbed. By integrating IL-15 into modified vaccinia virus Ankara (MVA), a virus currently under consideration as a substitute for the Dryvax vaccine, we developed a second vaccine candidate (MVA IL-15) with greater immunogenicity and efficacy than Dryvax. Thus, Wyeth IL-15 and MVA IL-15 viruses hold promise as more-efficacious and safe alternatives to the Dryvax vaccine.  相似文献   

2.
The development of a subunit vaccine for smallpox represents a potential strategy to avoid the safety concerns associated with replication-competent vaccinia virus. Preclinical studies to date with subunit smallpox vaccine candidates, however, have been limited by incomplete information regarding protective antigens and the requirement for multiple boost immunizations to afford protective immunity. Here we explore the protective efficacy of replication-incompetent, recombinant adenovirus serotype 35 (rAd35) vectors expressing the vaccinia virus intracellular mature virion (IMV) antigens A27L and L1R and extracellular enveloped virion (EEV) antigens A33R and B5R in a murine vaccinia virus challenge model. A single immunization with the rAd35-L1R vector effectively protected mice against a lethal systemic vaccinia virus challenge. The rAd35-L1R vector also proved more efficacious than the combination of four rAd35 vectors expressing A27L, L1R, A33R, and B5R. Moreover, serum containing L1R-specific neutralizing antibodies afforded postexposure prophylaxis after systemic vaccinia virus infection. In contrast, the combination of rAd35-L1R and rAd35-B5R vectors was required to protect mice against a lethal intranasal vaccinia virus challenge, suggesting that both IMV- and EEV-specific immune responses are important following intranasal infection. Taken together, these data demonstrate that different protective antigens are required based on the route of vaccinia virus challenge. These studies also suggest that rAd vectors warrant further assessment as candidate subunit smallpox vaccines.  相似文献   

3.
While as yet there is no vaccine against HIV/AIDS, the results of the phase III Thai trial (RV144) have been encouraging and suggest that further improvements of the prime/boost vaccine combination of a poxvirus and protein are needed. With this aim, in this investigation we have generated derivatives of the candidate vaccinia virus vaccine vector NYVAC with potentially improved functions. This has been achieved by the re-incorporation into the virus genome of two host range genes, K1L and C7L, in conjunction with the removal of the immunomodulatory viral molecule B19, an antagonist of type I interferon action. These novel virus vectors, referred to as NYVAC-C-KC and NYVAC-C-KC-ΔB19R, have acquired relevant biological characteristics, giving higher levels of antigen expression in infected cells, replication-competency in human keratinocytes and dermal fibroblasts, activation of selective host cell signal transduction pathways, and limited virus spread in tissues. Importantly, these replication-competent viruses have been demonstrated to maintain a highly attenuated phenotype.  相似文献   

4.
Potent and safe vaccinia virus vectors inducing cell-mediated immunity are needed for clinical use. Replicating vaccinia viruses generally induce strong cell-mediated immunity; however, they may have severe adverse effects. As a vector for clinical use, we assessed the defective vaccinia virus system, in which deletion of an essential gene blocks viral replication, resulting in an infectious virus that does not multiply in the host. The vaccinia virus Lister/Elstree strain, used during worldwide smallpox eradication, was chosen as the parental virus. The immunogenicity and safety of the defective vaccinia virus Lister were evaluated without and with the inserted human p53 gene as a model and compared to parallel constructs based on modified vaccinia virus Ankara (MVA), the present "gold standard" of recombinant vaccinia viruses in clinical development. The defective viruses induced an efficient Th1-type immune response. Antibody and cytotoxic-T-cell responses were comparable to those induced by MVA. Safety of the defective Lister constructs could be demonstrated in vitro in cell culture as well as in vivo in immunodeficient SCID mice. Similar to MVA, the defective viruses were tolerated at doses four orders of magnitude higher than those of the wild-type Lister strain. While current nonreplicating vectors are produced mainly in primary chicken cells, defective vaccinia virus is produced in a permanent safety-tested cell line. Vaccines based on this system have the additional advantage of enhanced product safety. Therefore, a vector system was made which promises to be a valuable tool not only for immunotherapy for diseases such as cancer, human immunodeficiency virus infection, or malaria but also as a basis for a safer smallpox vaccine.  相似文献   

5.
Katz E  Wolffe E  Moss B 《Journal of virology》2002,76(22):11637-11644
The spread of most strains of vaccinia virus in cell monolayers occurs predominantly via extracellular enveloped virions that adhere to the tips of actin-containing microvilli and to a lesser extent via diffusion of released virions. The mechanism by which virions adhere to the cell surface is unknown, although several viral proteins may be involved. The present investigation was initiated with the following premise: spontaneous mutations that increase virus release will be naturally selected by propagating a virus unable to spread by means of actin tails. Starting with an A36R deletion mutant that forms small, round plaques, five independent virus clones with enhanced spread due to the formation of comet or satellite plaques were isolated. The viral membrane glycoprotein genes of the isolates were sequenced; four had mutations causing C-terminal truncations of the A33R protein, and one had a serine replacing proline 189 of the B5R protein. The comet-forming phenotype was specifically reproduced or reversed by homologous recombination using DNA containing the mutated or natural sequence, respectively. Considerably more extracellular enveloped virus was released into the medium by the second-site mutants than by the parental A36R deletion mutant, explaining their selection in tissue culture as well as their comet-forming phenotype. The data suggest that the B5R protein and the C-terminal region of the A33R protein are involved in adherence of cell-associated enveloped virions to cells. In spite of their selective advantage in cultured cells, the second-site mutants were not detectably more virulent than the A36R deletion mutant when administered to mice by the intranasal route.  相似文献   

6.
The vaccinia virus (VV) B8R gene encodes a secreted protein with homology to the gamma interferon (IFN-gamma) receptor. In vitro, the B8R protein binds to and neutralizes the antiviral activity of several species of IFN-gamma, including human and rat IFN-gamma; it does not, however, bind significantly to murine IFN-gamma. Here we report on the construction and characterization of recombinant VVs (rVVs) lacking the B8R gene. While the deletion of this gene had no effect on virus replication in vitro, rVVs lacking the B8R gene were attenuated for mice. There was a significant decrease in weight loss and mortality in normal mice, and nude mice survived significantly longer than did controls inoculated with parental virus. This is a surprising result considering the minimal binding of the B8R protein to murine IFN-gamma and its failure to block the antiviral activity of this cytokine in vitro. Such reduction in virulence could not be determined in rats, since they are considerably more resistant to VV infection than are mice. Finally, deletion of the B8R gene had no detectable effects on humoral immune responses. Mice and rats vaccinated with the rVVs showed identical humoral responses to both homologous and heterologous genes expressed by VV. This study demonstrates that the deletion of the VV B8R gene leads to enhanced safety without a concomitant reduction in immunogenicity.  相似文献   

7.
The potential threat of smallpox bioterrorism has made urgent the development of lower-virulence vaccinia virus vaccines. An attenuated LC16m8 (m8) vaccine was developed in 1975 from the Lister strain used in the World Health Organization smallpox eradication program but was not used against endemic smallpox. Today, no vaccines can be tested with variola virus for efficacy in humans, and the mechanisms of immune protection against the major intracellular mature virion (IMV) and minor extracellular enveloped virion (EEV) populations of poxviruses are poorly understood. Here, we determined the full-genome sequences of the m8, parental LC16mO (mO), and grandparental Lister (LO) strains and analyzed their evolutionary relationships. Sequence data and PCR analysis indicated that m8 was a progeny of LO and that m8 preserved almost all of the open reading frames of vaccinia virus except for the disrupted EEV envelope gene B5R. In accordance with this genomic background, m8 induced 100% protection against a highly pathogenic vaccinia WR virus in mice by a single vaccination, despite the lack of anti-B5R and anti-EEV antibodies. The immunogenicity and priming efficacy with the m8 vaccine consisting mainly of IMV were as high as those with the intact-EEV parental mO and grandparental LO vaccines. Thus, mice vaccinated with 10(7) PFU of m8 produced low levels of anti-B5R antibodies after WR challenge, probably because of quick clearance of B5R-expressing WR EEV by strong immunity induced by the vaccination. These results suggest that priming with m8 IMV provides efficient protection despite undetectable levels of immunity against EEV.  相似文献   

8.
Alcamí A  Symons JA  Smith GL 《Journal of virology》2000,74(23):11230-11239
Poxviruses encode a broad range of proteins that interfere with host immune functions, such as soluble versions of receptors for the cytokines tumor necrosis factor, interleukin-1 beta, gamma interferon (IFN-gamma), IFN-alpha/beta, and chemokines. These virus-encoded cytokine receptors have a profound effect on virus pathogenesis and enable the study of the role of cytokines in virus infections. The vaccinia virus (VV) Western Reserve gene B18R encodes a secreted protein with 3 immunoglobulin domains that functions as a soluble receptor for IFN-alpha/beta. We have found that after secretion B18R binds to both uninfected and infected cells. The B18R protein present at the cell surface maintains the properties of the soluble receptor, binding IFN-alpha/beta with high affinity and with broad species specificity, and protects cells from the antiviral state induced by IFN-alpha/beta. VV strain Wyeth expressed a truncated B18R protein lacking the C-terminal immunoglobulin domain. This protein binds IFN with lower affinity and retains its ability to bind to cells, indicating that the C-terminal region of B18R contributes to IFN binding. The replication of a VV B18R deletion mutant in tissue culture was restricted in the presence of IFN-alpha, whereas the wild-type virus replicated normally. Binding of soluble recombinant B18R to cells protected the cultures from IFN and allowed VV replication. This represents a novel strategy of virus immune evasion in which secreted IFN-alpha/beta receptors not only bind the soluble cytokine but also bind to uninfected cells and protect them from the antiviral effects of IFN-alpha/beta, maintaining the cells' susceptibility to virus infections. The adaptation of this soluble receptor to block IFN-alpha/beta activity locally will help VV to replicate in the host and spread in tissues. This emphasizes the importance of local effects of IFN-alpha/beta against virus infections.  相似文献   

9.
溶瘤病毒可靶向性杀伤肿瘤细胞而不对正常细胞产生杀伤作用。近几年已开发出十余种溶瘤病毒。痘苗病毒曾在全球消灭天花行动中被广泛使用,并且有着复制速度快、免疫原性强、副作用明确等优点。痘苗病毒经过基因改造,可以选择性地在肿瘤细胞中复制并裂解细胞。目前,用于溶瘤痘苗病毒改造的主要有痘苗病毒Western Re verse株、Wyeth株、Lister株和Copenhagen株,我国使用的痘苗病毒天坛株尚未有相关报道。  相似文献   

10.
Replication-competent poxvirus vectors with an attenuation phenotype and with a high immunogenic capacity of the foreign expressed antigen are being pursued as novel vaccine vectors against different pathogens. In this investigation, we have examined the replication and immunogenic characteristics of two vaccinia virus (VACV) mutants, M65 and M101. These mutants were generated after 65 and 101 serial passages of persistently infected Friend erythroleukemia (FEL) cells. In cultured cells of different origins, the mutants are replication competent and have growth kinetics similar to or slightly reduced in comparison with those of the parental Western Reserve (WR) virus strain. In normal and immune-suppressed infected mice, the mutants showed different levels of attenuation and pathogenicity in comparison with WR and modified vaccinia Ankara (MVA) strains. Wide genome analysis after deep sequencing revealed selected genomic deletions and mutations in a number of viral open reading frames (ORFs). Mice immunized in a DNA prime/mutant boost regimen with viral vectors expressing the LACK (Leishmania homologue for receptors of activated C kinase) antigen of Leishmania infantum showed protection or a delay in the onset of cutaneous leishmaniasis. Protection was similar to that triggered by MVA-LACK. In immunized mice, both polyfunctional CD4+ and CD8+ T cells with an effector memory phenotype were activated by the two mutants, but the DNA-LACK/M65-LACK protocol preferentially induced CD4+ whereas DNA-LACK/M101-LACK preferentially induced CD8+ T cell responses. Altogether, our findings showed the adaptive changes of the WR genome during long-term virus-host cell interaction and how the replication competency of M65 and M101 mutants confers distinct biological properties and immunogenicity in mice compared to those of the MVA strain. These mutants could have applicability for understanding VACV biology and as potential vaccine vectors against pathogens and tumors.  相似文献   

11.
Modified vaccinia virus Ankara (MVA) is a highly attenuated vaccinia virus that is under consideration as an alternative to the conventional smallpox vaccine Dryvax. MVA was attenuated by extensive passage of vaccinia virus Ankara in chicken embryo fibroblasts. Several immunomodulatory genes and genes that influence host range are deleted or mutated, and replication is aborted in the late stage of infection in most nonavian cells. The effect of these mutations on immunogenicity is not well understood. Since the structural genes appear to be intact in MVA, it is hypothesized that critical targets for antibody neutralization have been retained. To test this, we probed microarrays of the Western Reserve (WR) proteome with sera from humans and macaques after MVA and Dryvax vaccination. As most protein sequences of MVA are 97 to 99% identical to those of other vaccinia virus strains, extensive binding cross-reactivity is expected, except for those deleted or truncated. Despite different hosts and immunization regimens, the MVA and Dryvax antibody profiles were broadly similar, with antibodies against membrane and core proteins being the best conserved. The responses to nonstructural proteins were less well conserved, although these are not expected to influence virus neutralization. The broadest antibody response was obtained for hyperimmune rabbits with WR, which is pathogenic in rabbits. These data indicate that, despite the mutations and deletions in MVA, its overall immunogenicity is broadly comparable to that of Dryvax, particularly at the level of antibodies to membrane proteins. The work supports other information suggesting that MVA may be a useful alternative to Dryvax.  相似文献   

12.
Mouse hepatitis virus (MHV) is the prototype of group II coronaviruses and one of the most extensively studied coronaviruses. Here, we describe a reverse genetic system for MHV (strain A59) based upon the cloning of a full-length genomic cDNA in vaccinia virus. We show that the recombinant virus generated from cloned cDNA replicates to the same titers as the parental virus in cell culture ( approximately 10(9) PFU/ml), has the same plaque morphology, and produces the same amounts and proportions of genomic and subgenomic mRNAs in virus-infected cells. In a mouse model of neurological infection, the recombinant and parental viruses are equally virulent, they replicate to the same titers in brain and liver, and they induce similar patterns of acute hepatitis, acute meningoencephalitis, and chronic demyelination. We also describe improvements in the use of the coronavirus reverse genetic system based on vaccinia virus cloning vectors. These modifications facilitate (i) the mutagenesis of cloned cDNA by using vaccinia virus-mediated homologous recombination and (ii) the rescue of recombinant coronaviruses by using a stable nucleocapsid protein-expressing cell line for the electroporation of infectious full-length genomes. Thus, our system represents a versatile and universal tool to study all aspects of MHV molecular biology and pathogenesis. We expect this system to provide valuable insights into the replication of group II coronaviruses that may lead to the development of novel strategies against coronavirus infections, including the related severe acute respiratory syndrome coronavirus.  相似文献   

13.
We have described recently the construction of a defective vaccinia virus (VV) lacking the essential D4R open reading frame and have shown furthermore the selection of a complementing cell line providing the essential D4R gene product. The D4R gene belongs to the group of early transcribed vaccinia genes preventing a virus defective in D4R from entering into the intermediate and late phase of replication under noncomplementing conditions. Here we show that this property, which is unique among the group of so called nonreplicating poxviruses, is helpful for the production of (secretable) recombinant human proteins. Recombinant VV based on a D4R-defective parental strain expressing cDNAs coding for the human blood coagulation factors VII and XI produced significantly more recombinant protein than the corresponding recombinants based on wild-type VV. Moreover, the complementing cell line RK-D4R-44.20 was a more effective production cell system for both vD4 and wild-type VV recombinants compared to wild-type RK-13 cells. Surprisingly, recombinant human factor VII was more efficiently produced with the defective vaccinia recombinant even under noncomplementing conditions, suggesting that persistence of the early phase of vaccinia replication in combination with a delayed host shutoff is advantageous for the overproduction of certain recombinant proteins using the VV expression system.  相似文献   

14.
The vaccinia virus (VACV) Lister strain was one of the vaccine strains that enabled smallpox eradication. Although the strain is most often harmless, there have been numerous incidents of mild to life-threatening accidents with this strain and others. In an attempt to further attenuate the Lister strain, we investigated the role of 5 genomic regions known to be deleted in the modified VACV Ankara (MVA) genome in virulence in immunodeficient mice, immunogenicity in immunocompetent mice, and vaccine efficacy in a cowpox virus challenge model. Lister mutants were constructed so as to delete each of the 5 regions or various combinations of these regions. All of the mutants replicated efficiently in tissue culture except region I mutants, which multiplied more poorly in human cells than the parental strain. Mutants with single deletions were not attenuated or only moderately so in athymic nude mice. Mutants with multiple deletions were more highly attenuated than those with single deletions. Deleting regions II, III, and V together resulted in total attenuation for nude mice and partial attenuation for SCID mice. In immunocompetent mice, the Lister deletion mutants induced VACV specific humoral responses equivalent to those of the parental strain but in some cases lower cell-mediated immune responses. All of the highly attenuated mutants protected mice from a severe cowpox virus challenge at low vaccine doses. The data suggest that several of the Lister mutants combining multiple deletions could be used in smallpox vaccination or as live virus vectors at doses equivalent to those used for the traditional vaccine while displaying increased safety.  相似文献   

15.
Poxvirus vector Modified Vaccinia Virus Ankara (MVA) expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (termed MVA-B) is a promising HIV/AIDS vaccine candidate, as confirmed from results obtained in a prophylactic phase I clinical trial in humans. To improve the immunogenicity elicited by MVA-B, we have generated and characterized the innate immune sensing and the in vivo immunogenicity profile of a vector with a double deletion in two vaccinia virus (VACV) genes (C6L and K7R) coding for inhibitors of interferon (IFN) signaling pathways. The innate immune signals elicited by MVA-B deletion mutants (MVA-B ΔC6L and MVA-B ΔC6L/K7R) in human macrophages and monocyte-derived dendritic cells (moDCs) showed an up-regulation of the expression of IFN-β, IFN-α/β-inducible genes, TNF-α, and other cytokines and chemokines. A DNA prime/MVA boost immunization protocol in mice revealed that these MVA-B deletion mutants were able to improve the magnitude and quality of HIV-1-specific CD4+ and CD8+ T cell adaptive and memory immune responses, which were mostly mediated by CD8+ T cells of an effector phenotype, with MVA-B ΔC6L/K7R being the most immunogenic virus recombinant. CD4+ T cell responses were mainly directed against Env, while GPN-specific CD8+ T cell responses were induced preferentially by the MVA-B deletion mutants. Furthermore, antibody levels to Env in the memory phase were slightly enhanced by the MVA-B deletion mutants compared to the parental MVA-B. These findings revealed that double deletion of VACV genes that act blocking intracellularly the IFN signaling pathway confers an immunological benefit, inducing innate immune responses and increases in the magnitude, quality and durability of the HIV-1-specific T cell immune responses. Our observations highlighted the immunomodulatory role of the VACV genes C6L and K7R, and that targeting common pathways, like IRF3/IFN-β signaling, could be a general strategy to improve the immunogenicity of poxvirus-based vaccine candidates.  相似文献   

16.
Modified vaccinia virus Ankara (MVA) is a highly attenuated strain of vaccinia virus, which has been used as a recombinant vaccine vector in many vaccine development programmes. The loss of many immunosuppressive and host-range genes resulted in a safe and immunogenic vaccine vector. However it still retains some immunomodulatory genes that may reduce MVA immunogenicity. Earlier reports demonstrated that the deletion of the A41L, B15R, C6L, or C12L open reading frames (ORFs) enhanced cellular immune responses in recombinant MVA (rMVA) by up to 2-fold. However, previously, we showed that deletion of the C12L, A44L, A46R, B7R, or B15R ORFs from rMVA, using MVA-BAC recombineering technology, did not enhance rMVA immunogenicity at either peak or memory cellular immune responses. Here, we extend our previous study to examine the effect of deleting clusters of genes on rMVA cellular immunogenicity. Two clusters of fifteen genes were deleted in one rMVA mutant that encodes either the 85A antigen of Mycobacterium tuberculosis or an immunodominant H2-Kd-restricted murine malaria epitope (pb9). The deletion mutants were tested in prime only or prime and boost vaccination regimens. The responses showed no improved peak or memory CD8+ T cell frequencies. Our results suggest that the reported small increases in MVA deletion mutants could not be replicated with different antigens, or epitopes. Therefore, the gene deletion strategy may not be taken as a generic approach for improving the immunogenicity of MVA-based vaccines, and should be carefully assessed for every individual recombinant antigen.  相似文献   

17.
Modified vaccinia virus Ankara (MVA) is an attenuated strain of vaccinia virus (VV) that has attracted significant attention as a candidate viral vector vaccine for immunization against infectious diseases and treatment of malignancies. Although MVA is unable to replicate in most nonavian cells, vaccination with MVA elicits immune responses that approximate those seen after the administration of replication-competent strains of VV. However, the mechanisms by which these viruses elicit immune responses and the determinants of their relative immunogenicity are incompletely understood. Studying the interactions of VV and MVA with cells of the human immune system may elucidate these mechanisms, as well as provide a rational basis for the further enhancement of the immunogenicity of recombinant MVA vectors. Toward this end, we investigated the consequences of MVA or VV infection of human dendritic cells (DCs), key professional antigen-presenting cells essential for the generation of immune responses. We determined that a block to the formation of intracellular viral replication centers results in abortive infection of DCs with both VV and MVA. MVA inhibited cellular protein synthesis more rapidly than VV and displayed a distinct pattern of viral protein expression in infected DCs. MVA also induced apoptosis in DCs more rapidly than VV, and DC apoptosis after MVA infection was associated with an accelerated decline in the levels of intracellular Bcl-2 and Bcl-X(L). These findings suggest that antigen presentation pathways may contribute differentially to the immunogenicity of VV and MVA and that targeted modifications of virus-induced DC apoptosis may further increase the immunogenicity of MVA-vectored vaccines.  相似文献   

18.
A novel H1N1 influenza virus emerged in 2009 (pH1N1) to become the first influenza pandemic of the 21st century. This virus is now cocirculating with highly pathogenic H5N1 avian influenza viruses in many parts of the world, raising concerns that a reassortment event may lead to highly pathogenic influenza strains with the capacity to infect humans more readily and cause severe disease. To investigate the virulence of pH1N1-H5N1 reassortant viruses, we created pH1N1 (A/California/04/2009) viruses expressing individual genes from an avian H5N1 influenza strain (A/Hong Kong/483/1997). Using several in vitro models of virus replication, we observed increased replication for a reassortant CA/09 virus expressing the hemagglutinin (HA) gene of HK/483 (CA/09-483HA) relative to that of either parental CA/09 virus or reassortant CA/09 expressing other HK/483 genes. This increased replication correlated with enhanced pathogenicity in infected mice similar to that of the parental HK/483 strain. The serial passage of the CA/09 parental virus and the CA/09-483HA virus through primary human lung epithelial cells resulted in increased pathogenicity, suggesting that these viruses easily adapt to humans and become more virulent. In contrast, serial passage attenuated the parental HK/483 virus in vitro and resulted in slightly reduced morbidity in vivo, suggesting that sustained replication in humans attenuates H5N1 avian influenza viruses. Taken together, these data suggest that reassortment between cocirculating human pH1N1 and avian H5N1 influenza strains will result in a virus with the potential for increased pathogenicity in mammals.  相似文献   

19.
BACKGROUND: Interferons (IFNs) play an important role in host antiviral responses, but viruses, including vaccinia viruses (VV), employ mechanisms to disrupt IFN activities, and these viral mechanisms are often associated with their virulence. Here, we explore an attenuation strategy with a vaccine strain of VV lacking a virus-encoded IFN-gamma receptor homolog (viroceptor). METHODS: To facilitate the monitoring of virus properties, first we constructed a Lister vaccine strain derivative VV-RG expressing optical reporters. Further, we constructed a VV-RG derivative, VV-RG8, which lacks the IFN-gammaR viroceptor (B8R gene product). Replication, immunological and pathogenic properties of the constructed strains were compared. RESULTS: Viruses did not show significant differences in humoral and cellular immune responses of immune-competent mice. Replication of constructed viruses was efficient both in vitro and in vivo, but showed marked difference in kinetics of propagation. In cultured CV-1 epithelial cells, the VV-RG8 strain retained the propagation potential of the parental virus, while, in the C6 glial cells, significant delay was observed in the kinetics of the VV-RG8 replication cycle compared to VV-RG. The pathogenesis of the viruses was tested by survival assay and biodistribution in nude mice. High dose inoculation of nude mice with VV-RG8 caused less pronounced virus dissemination, improved weight gain, and increased survival rate, as compared with the VV-RG strain. CONCLUSIONS: The replication-competent virus VV-RG8 carrying a mutation at the B8R gene is less pathogenic for mice than the parental vaccine virus. We anticipate that step-wise inactivation of VV vaccine genes involved in evasion of host immune response may provide an alternative approach for generation of hyper-attenuated replication-competent vaccines.  相似文献   

20.
Antibodies to both infectious forms of vaccinia virus, the mature virion (MV) and the enveloped virion (EV), as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号