首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is increasing interest in the use of molecular genetic data to infer genealogical relationships among individuals in the absence of parental information. Such analyses can provide insight into mating systems and estimations of heritability in the wild. In addition, accurate pedigree reconstruction among the founders of endangered populations being reared in captivity would be invaluable. Many breeding programs for endangered species attempt to minimize loss of genetic variation and inbreeding through strategies designed to minimize global co-ancestry, but they assume a lack of relatedness among the founders. Yet populations that are the target of such programs are generally in serious demographic decline, and many of the available founders may be closely related. Here we demonstrate determination of full and half-sib relationships among the wild founders of a captive breeding program involving two endangered Atlantic salmon populations using two different approaches and associated software, pedigree and colony. A large portion of the juveniles collected in these two rivers appear to be derived from surprisingly few females mating with a large number of males, probably small precocious parr. Another group of potential founders, obtained from a local hatchery, clearly originated from a small number of full-sib crosses. These results allowed us to prioritize individuals on the basis of conservation value, and are expected to help minimize loss of genetic variation through time. In addition, insight is provided into the number of contributing parents and the mating systems that produced this last generation of endangered wild Atlantic salmon.  相似文献   

2.
Most of the major genetic concerns in conservation biology, including inbreeding depression, loss of evolutionary potential, genetic adaptation to captivity and outbreeding depression, involve quantitative genetics. Small population size leads to inbreeding and loss of genetic diversity and so increases extinction risk. Captive populations of endangered species are managed to maximize the retention of genetic diversity by minimizing kinship, with subsidiary efforts to minimize inbreeding. There is growing evidence that genetic adaptation to captivity is a major issue in the genetic management of captive populations of endangered species as it reduces reproductive fitness when captive populations are reintroduced into the wild. This problem is not currently addressed, but it can be alleviated by deliberately fragmenting captive populations, with occasional exchange of immigrants to avoid excessive inbreeding. The extent and importance of outbreeding depression is a matter of controversy. Currently, an extremely cautious approach is taken to mixing populations. However, this cannot continue if fragmented populations are to be adequately managed to minimize extinctions. Most genetic management recommendations for endangered species arise directly, or indirectly, from quantitative genetic considerations.  相似文献   

3.
Pedigrees of broodstock with unknown relationship of the critically endangered Chinese sturgeon, Acipenser sinensis, was evaluated using microsatellite markers to facilitate genetic management in restocking programs with small broodstock size. We characterized the distributions of relatedness values to reconstruct kin groups in four hatchery families with known pedigrees using microsatellites. The distributions of relatedness values for kin classes were used for partitioning full sibling groups of wild A. sinensis broodstock kept in two hatcheries, resulted in 13 full sibling clusters, four of which containing 62% of all the wild individuals. This indicates high probability of choosing close related breeder pairs in random mating, thus selective breeding is necessary to minimize inbreeding and maintain genetic diversity. This study provides a useful tool for genetic management in conservation programs of A. sinensis in aim of preserving self‐sustained wild populations.  相似文献   

4.
Information on demographic, genetic, and environmental parameters of wild and captive animal populations has proven to be crucial to conservation programs and strategies. Genetic approaches in conservation programs of Brazilian snakes remain scarce despite their importance for critically endangered species, such as Bothrops insularis, the golden lancehead, which is endemic to Ilha da Queimada Grande, coast of São Paulo State, Brazil. This study aims to (a) characterize the genetic diversity of ex situ and in situ populations of B. insularis using heterologous microsatellites; (b) investigate genetic structure among and within these populations; and (c) provide data for the conservation program of the species. Twelve informative microsatellites obtained from three species of the B. neuwiedi group were used to access genetic diversity indexes of ex situ and in situ populations. Low‐to‐medium genetic diversity parameters were found. Both populations showed low—albeit significant—values of system of mating inbreeding coefficient, whereas only the in situ population showed a significant value of pedigree inbreeding coefficient. Significant values of genetic differentiation indexes suggest a small differentiation between the two populations. Discriminant analysis of principal components (DAPC) recovered five clusters. No geographic relationship was found in the island, suggesting the occurrence of gene flow. Also, our data allowed the establishment of six preferential breeding couples, aiming to minimize inbreeding and elucidate uncertain parental relationships in the captive population. In a conservation perspective, continuous monitoring of both populations is demanded: it involves the incorporation of new individuals from the island into the captive population to avoid inbreeding and to achieve the recommended allelic similarity between the two populations. At last, we recommend that the genetic data support researches as a base to maintain a viable and healthy captive population, highly genetically similar to the in situ one, which is crucial for considering a reintroduction process into the island.  相似文献   

5.
Maintaining genetic diversity is a crucial goal of intensive management of threatened species, particularly for those populations that act as sources for translocation or re‐introduction programmes. Most captive genetic management is based on pedigrees and a neutral theory of inheritance, an assumption that may be violated by selective forces operating in captivity. Here, we explore the conservation consequences of early viability selection: differential offspring survival that occurs prior to management or research observations, such as embryo deaths in utero. If early viability selection produces genotypic deviations from Mendelian predictions, it may undermine management strategies intended to minimize inbreeding and maintain genetic diversity. We use empirical examples to demonstrate that straightforward approaches, such as comparing litter sizes of inbred vs. noninbred breeding pairs, can be used to test whether early viability selection likely impacts estimates of inbreeding depression. We also show that comparing multilocus genotype data to pedigree predictions can reveal whether early viability selection drives systematic biases in genetic diversity, patterns that would not be detected using pedigree‐based statistics alone. More sophisticated analysis combining genomewide molecular data with pedigree information will enable conservation scientists to test whether early viability selection drives deviations from neutrality across wide stretches of the genome, revealing whether this form of selection biases the pedigree‐based statistics and inference upon which intensive management is based.  相似文献   

6.
Protection and restoration of species in the wild may require conservation breeding programs under genetic management to minimize deleterious effects of genetic changes that occur in captivity, while preserving populations' genetic diversity and evolutionary resilience. Here, through interannual pedigree analyses, we first assessed the efficiency of a 21-year genetic management, including minimization of mean kinship, inbreeding avoidance, and regular addition of founders, of a conservation breeding program targeting on Houbara bustard (Chlamydotis undulata undulata) in Morocco. Secondly, we compared pedigree analyses, the classical way of assessing and managing genetic diversity in captivity, to molecular analyses based on seven microsatellites. Pedigree-based results indicated an efficient maintenance of the genetic diversity (99% of the initial genetic diversity retained) while molecular-based results indicated an increase in allelic richness and an increase in unbiased expected heterozygosity across time. The pedigree-based average inbreeding coefficient F remained low (between 0.0004 and 0.003 in 2017) while the proportion of highly inbred individuals (F > .1) decreased over time and reached 0.2% in 2017. Furthermore, pedigree-based F and molecular-based individual multilocus heterozygosity were weakly negatively correlated, (Pearson's r = −.061 when considering all genotyped individuals), suggesting that they cannot be considered as alternatives, but rather as complementary sources of information. These findings suggest that a strict genetic monitoring and management, based on both pedigree and molecular tools can help mitigate genetic changes and allow to preserve genetic diversity and evolutionary resilience in conservation breeding programs.  相似文献   

7.
The use of captive broodstocks is becoming more frequently employed as the number of species facing endangerment or extinction throughout the world increases. Efforts to rebuild the endangered Snake River sockeye salmon, Oncorhynchus nerka, population have been ongoing for over a decade, but the use of microsatellite data to develop inbreeding avoidance matrices is a more recent component to the program. This study used known genealogical relationships among sockeye salmon offspring to test four different pairwise relatedness estimators and a maximum-likelihood (M-L) relatedness estimator. The goal of this study was to develop a breeding strategy with these estimators that would minimize the loss of genetic diversity, minimize inbreeding, and determine how returning anadromous adults are incorporated into the broodstock along with full-term hatchery adults. Results of this study indicated that both the M xy and R QG estimators had the lowest Type II error rates and the M-L and R R estimators had the lowest Type I error rates. An approach that utilizes a combination of estimators may provide the most valuable information for managers. We recommend that the M-L and R R methods be used to rank the genetic importance of returning adults and the M xy or R QG estimators be used to determine which fish to pair for spawning. This approach provides for the best genetic management of this captive, endangered population and should be generally applicable to the genetic management of other endangered stocks with no pedigree.  相似文献   

8.
For threatened species with small captive populations, it is advisable to incorporate conservation management strategies that minimize inbreeding in an effort to avoid inbreeding depression. Using multilocus microsatellite genotype data, we found a significant negative relationship between genetic relatedness (inbreeding) and reproductive success (fitness) in a captive population of the critically endangered Black Stilt or KakīHimantopus novaezelandiae. In an effort to avoid inbreeding depression in this iconic New Zealand endemic, we recommend re‐pairing closely related captive birds with less related individuals and pairing new captive birds with distantly related individuals.  相似文献   

9.
Captive breeding programs are an important tool for the conservation of endangered species. These programs are commonly managed using pedigrees containing information about the history of each individual's family, such as breeding pairs and parentage. However, there are some species that are kept in groups where it is hard to distinguish between particular individuals within the group, making it very difficult to record any information at an individual level. Currently, software and methods commonly used for registering and analyzing pedigrees to help manage populations at an individual level are not adequate for managing these group‐living species. Therefore, there is a need to further develop these tools and methodologies for pedigree analysis to better manage group‐living species. PMx is a program used for the management of ex situ populations in zoos and aquariums. We adapted the pedigree analysis method implemented in PMx to analyze pedigrees (records of descendant lineages) of group‐living species. In addition, we developed a group pedigree data entry sheet and group2PMx, a converter program that enables group datasets to be imported into PMx. We show how pedigree analysis of a group‐living species can be used for population management using the studbook of the endangered Texas blind cave salamander Eurycea rathbuni. Such analyses of the pedigree of groups can improve the management of group‐living species in ex situ breeding programs. Firstly, it enables better management decisions based on more accurate genetic measures between groups, allowing for greater control of inbreeding. Secondly, it can improve the conditions in which group‐living species are held by adapting husbandry practices to better reflect conditions of these species living in the wild. The use of the spreadsheet and group2PMx extends the application of PMx, allowing conservation managers and other institutions outside the zoo and aquarium community to easily import and analyze their pedigree data.  相似文献   

10.
This study was focused on conservation genetics of threatened Hippocampus guttulatus on the Atlantic coast of NW Iberian Peninsula. Information about spatial structure and temporal stability of wild populations was obtained based on microsatellite markers, and used for monitoring a captive breeding program firstly initiated in this zone at the facilities of the Institute of Marine Research (Vigo, Spain). No significant major genetic structure was observed regarding the biogeographical barrier of Cape Finisterre. However, two management units under continuous gene flow are proposed based on the allelic differentiation between South-Atlantic and Cantabrian subpopulations, with small to moderate contemporary effective size based on single-sample methods. Temporal stability was observed in South-Atlantic population samples of H. guttulatus for the six-year period studied, suggesting large enough effective population size to buffer the effects of genetic drift within the time frame of three generations. Genetic analysis of wild breeders and offspring in captivity since 2009 allowed us to monitor the breeding program founded in 2006 in NW Spain for this species. Similar genetic diversity in the renewed and founder broodstock, regarding the wild population of origin, supports suitable renewal and rearing processes to maintain genetic variation in captivity. Genetic parentage proved single-brood monogamy in the wild and in captivity, but flexible short- and long-term mating system under captive conditions, from strict monogamy to polygamy within and/or among breeding seasons. Family analysis showed high reproductive success in captivity under genetic management assisted by molecular relatedness estimates to avoid inbreeding. This study provides genetic information about H. guttulatus in the wild and captivity within an uncovered geographical range for this data deficient species, to be taken into account for management and conservation purposes.  相似文献   

11.
Long-term captive breeding programs for endangered species generally aim to preserve the option of release back into the wild. However, the success of re-release programs will be jeopardized if there is significant genetic adaptation to the captive environment. Since it is difficult to study this problem in rare and endangered species, a convenient laboratory animal model is required. The reproductive fitness of a large population of Drosophila melanogaster maintained in captivity for 12 months was compared with that of a recently caught wild population from the same locality. The competitive index measure of reproductive fitness for the captive population was twice that of the recently caught wild population, the difference being highly significant. Natural selection over approximately eight generations in captivity has caused rapid genetic adaptation. Captive breeding strategies for endangered species should minimize adaptation to captivity in populations destined for reintroduction into the wild. A framework for predicting the impact of factors on the rate of genetic adaptation to captivity is suggested. Equalization of family sizes is predicted to approximately halve the rate of genetic adaptation. Introduction of genes from the wild, increasing the generation interval, using captive environments close to those in the wild and achieving low mortality rates are all expected to slow genetic adaptation to captivity. Many of these procedures are already recommended for other reasons. © 1992 Wiley-Liss, Inc.  相似文献   

12.
Captive breeding has become an important tool in species conservation programmes. Current management strategies for ex situ populations are based on theoretical models, which have mainly been tested in model species or assessed using studbook data. During recent years an increasing number of molecular genetic studies have been published on captive populations of several endangered species. However, a comprehensive analysis of these studies is still outstanding. Here, we present a review of the published literature on ex situ conservation genetics with a focus on molecular studies. We analysed 188 publications which either presented empirical studies using molecular markers (105), studbook analyses (26), theoretical work (38), or tested the genetic effects of management strategies using model species (19). The results show that inbreeding can be minimized by a thorough management of captive populations. There seems to be a minimum number of founders (15) and a minimum size of a captive population (100) necessary in order to minimize a loss of genetic diversity. Optimally, the founders should be unrelated and new founders should be integrated into the captive population successively. We recommend that genetic analyses should generally precede and accompany ex situ conservation projects in order to avoid inbreeding and outbreeding depression. Furthermore, many of the published studies do not provide all the relevant parameters (founder size, captive population size, Ho, He, inbreeding coefficients). We, therefore, propose that a general standard for the presentation of genetic studies should be established, which would allow integration of the data into a global database.  相似文献   

13.
Many wildlife species are propagated in captivity as models for behavioral, physiological, and genetic research or to provide assurance populations to protect threatened species. However, very little is known about how animals evolve in the novel environment of captivity. The histories of most laboratory strains are poorly documented, and protected populations of wildlife species are usually too small and too short-term to allow robust statistical analysis. To document the evolutionary change in captive breeding programs, we monitored reproduction and behavior across 18 generations in six experimental populations of Peromyscus leucopus mice started from a common set of 20 wild-caught founders. The mice were propagated under three breeding protocols: a strategy to retain maximal genetic diversity, artificial selection against stereotypic behaviors that were hypothesized to reflect poor adaptation to captivity, and random bred controls. Two replicates were maintained with each protocol, and inter-replicate crosses at generations 19 and 20 were used to reverse accumulated inbreeding. We found that one of the stereotypic behaviors (repetitive flipping) was positively associated with reproductive fitness, while the other (gnawing) was relatively invariant. Selection to reduce these stereotypic behaviors caused marked reduction in reproduction, and populations not under artificial selection to reduce these behaviors responded with large increases in flipping. In non-selected populations, there was rapid evolution toward much higher proportion of pairs breeding and more rapid conception. Litter size, pup survival, and weaning mass all declined slowly, to the extent that would be predicted based on inbreeding depression. Inter-crossing between replicate populations reversed these declines in fitness components but did not reverse the changes in behavior or the accelerated breeding. These findings indicate that adaptation to captivity can be rapid, affecting reproductive patterns and behaviors, even under breeding protocols designed to minimize the rate of genetic change due to random drift and inadvertent selection.  相似文献   

14.
Tigers are endangered apex predators. They typify endangered species because they are elusive, rare, and face numerous threats across their range. Tigers also symbolize conservation. However, it is very difficult to study tigers because of their stated nature. Also, tiger conservation is a geopolitically sensitive topic, making it difficult to use the studies to propose evidence-based management that allows their recovery, especially in the context of conservation genetics. Zhang et al. (Mol. Ecol. Resour., 2022) have created very valuable and rare resources to aid the community in conserving tigers. First, they present chromosome level genome assemblies of a South China tiger and an Amur tiger. Second, they present whole genome sequences of 16 captive South China tigers. Additionally, by using the assemblies they model the demographic history of these populations, estimate inbreeding and the potential threats they face in captivity. This approach is particularly important because genetic management is now the only remaining option for South China tigers, because they are extinct in the wild. In other words, captive individuals are our only hope for some day restoring the wild populations of South China tigers.  相似文献   

15.
The seven-band grouper (Epinephelus septemfasciatus) is an important fishery resource of a target for prospective aquaculture diversification and maintenance of stock quality is thus important. To explore the sustainability of fry production, genetic variations in 83 seven-band groupers from two broodstock and offspring populations of a hatchery strain were analyzed using 13 polymorphic nuclear microsatellite DNA loci; 133 alleles were identified. Allelic variability ranged from 4 to 18 in the broodstock and from 3 to 11 in the offspring. The average observed and expected heterozygosities were 0.669 and 0.734 in broodstock and 0.674 and 0.649 in offspring, respectively. Although no statistically significant reductions in heterozygosity or allelic diversity were evident in offspring, considerable loss of rare alleles was apparent. The broodstock and offspring populations exhibited significant genetic differences (F ST = 0.033, P < 0.001) indicating that genetic drift has likely promoted differentiation between the two populations, which may have negative effects on sustainable fry production. Therefore, genetic variations between broodstock and offspring should be monitored, and inbreeding should be controlled, to ensure the success of commercial breeding programs. Our data provide a useful genetic basis for future planning of sustainable culture and management of E. septemfasciatus in fisheries.  相似文献   

16.
Striped bass (Morone saxatilis) is economically important in the US due to its value as an aquaculture species and in supporting commercial and recreational fisheries, especially those off the Atlantic coast and in the Gulf of Mexico. Modern strategies for managing fishery populations and aquaculture broodstocks employ the use of molecular genetic markers to identify individuals, assign parentage, and characterize population genetic structure and levels of inbreeding and migration. As part of a collaborative effort to utilize molecular genetic technologies in striped bass breeding programs we generated microsatellite markers for use in population genetic studies, broodstock selection and management strategies, and the construction of a genetic map. We developed 345 new microsatellite markers for striped bass, a subset (n=71) of which was characterized by genotyping samples from two striped bass broodstock populations to evaluate marker polymorphism, percent heterozygosity, Hardy–Weinberg equilibrium (HWE), linkage disequilibrium (LD) and utility for population genetic studies.  相似文献   

17.
A dynamic method (DM) recently proposed for the management of captive subdivided populations was evaluated using the pilot species Drosophila melanogaster. By accounting for the particular genetic population structure, the DM determines the optimal mating pairs, their contributions to progeny and the migration pattern that minimize the overall coancestry in the population with a control of inbreeding levels. After a pre-management period such that one of the four subpopulations had higher inbreeding and differentiation than the others, three management methods were compared for 10 generations over three replicates: (1) isolated subpopulations (IS), (2) one-migrant-per-generation rule (OMPG), (3) DM aimed to produce the same or lower inbreeding coefficient than OMPG. The DM produced the lowest coancestry and equal or lower inbreeding than the OMPG method throughout the experiment. The initially lower fitness and lower variation for nine microsatellite loci of the highly inbred subpopulation were restored more quickly with the DM than with the OMPG method. We provide, therefore, an empirical illustration of the usefulness of the DM as a conservation protocol for captive subdivided populations when pedigree information is available (or can be deduced) and manipulation of breeding pairs is possible.  相似文献   

18.
The use of genetic information is crucial in conservation programs for the establishment of breeding plans and for the evaluation of restocking success. Short tandem repeats (STRs) have been the most widely used molecular markers in such programs, but next‐generation sequencing approaches have prompted the transition to genome‐wide markers such as single nucleotide polymorphisms (SNPs). Until now, most sturgeon species have been monitored using STRs. The low diversity found in the critically endangered European sturgeon (Acipenser sturio), however, makes its future genetic monitoring challenging, and the current resolution needs to be increased. Here, we describe the discovery of a highly informative set of 79 SNPs using double‐digest restriction‐associated DNA (ddRAD) sequencing and its validation by genotyping using the MassARRAY system. Comparing with STRs, the SNP panel proved to be highly efficient and reproducible, allowing for more accurate parentage and kinship assignments' on 192 juveniles of known pedigree and 40 wild‐born adults. We explore the effectiveness of both markers to estimated relatedness and inbreeding, using simulated and empirical datasets. Interestingly, we found significant correlations between STRs and SNPs at individual heterozygosity and inbreeding that give support to a reasonable representation of whole genome diversity for both markers. These results are useful for the conservation program of A. sturio in building a comprehensive studbook, which will optimize conservation strategies. This approach also proves suitable for other case studies in which highly discriminatory genetic markers are needed to assess parentage and kinship.  相似文献   

19.
The primary goal of captive breeding programmes for endangered species is to prevent extinction, a component of which includes the preservation of genetic diversity and avoidance of inbreeding. This is typically accomplished by minimizing mean kinship in the population, thereby maintaining equal representation of the genetic founders used to initiate the captive population. If errors in the pedigree do exist, such an approach becomes less effective for minimizing inbreeding depression. In this study, both pedigree‐ and DNA‐based methods were used to assess whether inbreeding depression existed in the captive population of the critically endangered Attwater's Prairie‐chicken (Tympanuchus cupido attwateri), a subspecies of prairie grouse that has experienced a significant decline in abundance and concurrent reduction in neutral genetic diversity. When examining the captive population for signs of inbreeding, variation in pedigree‐based inbreeding coefficients (fpedigree) was less than that obtained from DNA‐based methods (fDNA). Mortality of chicks and adults in captivity were also positively correlated with parental relatedness (rDNA) and fDNA, respectively, while no correlation was observed with pedigree‐based measures when controlling for additional variables such as age, breeding facility, gender and captive/release status. Further, individual homozygosity by loci (HL) and parental rDNA values were positively correlated with adult mortality in captivity and the occurrence of a lethal congenital defect in chicks, respectively, suggesting that inbreeding may be a contributing factor increasing the frequency of this condition among Attwater's Prairie‐chickens. This study highlights the importance of using DNA‐based methods to better inform management decisions when pedigrees are incomplete or errors may exist due to uncertainty in pairings.  相似文献   

20.
Captive populations of endangered species are typically maintained effectively as single random-mating populations by translocating individuals between institutions. Genetic, disease, and cost considerations, however, suggest that this may not be the optimal management strategy. Genetic theory predicts that a pooled population derived from several small isolated populations will have greater genetic diversity, less inbreeding, and less genetic adaptation to captivity than a single large population of equivalent total size, provided there are no population extinctions. These predictions were tested using populations of Drosophila with effective size comparisons of 50 vs. 2 × 25; 100 vs. 2 × 50 vs. 4 × 25, and 500 vs. 2 × 250 vs. 4 × 100 + 2 × 50 vs. 8 × 25 + 6 × 50. Populations were maintained at the indicated sizes as separate pedigreed populations for 50 generations. The several small treatments were subsequently pooled and maintained for eight to 10 generations prior to determination of fitness and evolutionary potential. Several small populations (pooled), when compared to single large populations of equivalent total size, were found to have lower average inbreeding coefficients, significantly higher reproductive fitness under competitive conditions, similar fitness under benign captive conditions, higher genetic diversity, and equivalent evolutionary potential. Trends favored the several small (pooled) populations in all comparisons at population sizes of 50 and 100. We recommend that endangered species in captivity be maintained as several small populations, with occasional exchange of genetic material. This has genetic benefits over current management both in captivity and especially for reintroductions, as well as reducing translocation costs and risks of disease transfer. Zoo Biol 17:467–480, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号