首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular endothelial growth factor (VEGF) has been indicated to play a role during endochondral ossification by stimulation of blood vessel invasion into hypertrophic cartilage resulting in its replacement by trabecular bone. We could demonstrate a dose-dependent chemoattractive effect of VEGF-A and PlGF-1, but not VEGF-E or VEGF-C, on human mesenchymal progenitor cells. Quantitative realtime PCR revealed the expression of VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1), and VEGFR-3 (Flt-4), which markedly declined during osteogenic differentiation. In addition, expression of neuropilin-1 and -2 was detected by RT-PCR. In an in vitro kinase assay, we could demonstrate activation of VEGFR-1 and VEGFR-2 upon stimulation with specific ligands. These findings are consistent with the idea that the chemotactic effect of VEGF-A on MPC is mediated via VEGFR-1, and that VEGF-A and PlGF-1, have a functional role for recruitment of osteoprogenitor cells in the course of endochondral bone formation or remodeling.  相似文献   

2.
3.
Recently, mesenchymal stem cells (MSCs) have been extensively used for cell‐based therapies in neuronal degenerative disease. Although much effort has been devoted to the delineation of factors involved in the migration of MSCs, the relationship between the chemotactic responses and the differentiation status of these cells remains elusive. Here, we report that MSCs in varying neural differentiation states display different chemotactic responses to hepatocyte growth factor (HGF): first, the number of chemotaxing MSCs and the optimal concentrations of HGF that induced the peak migration varied greatly; second, time‐lapse video analysis showed that MSCs in certain differentiation state migrated more efficiently toward HGF; third, the phosphorylation levels of Akt, ERK1/2, SAPK/JNK, and p38MAPK were closely related to the differentiation levels of MSCs subjected to HGF; and finally, although inhibition of ERK1/2 signaling significantly attenuated HGF‐stimulated transfilter migration of both undifferentiated and differentiating MSCs, abolishment of PI3K/Akt, p38MAPK, or SAPK/JNK signaling only decreased the number of migrated cells in certain differentiation state(s). Blocking of PI3K/Akt or MAPK signaling impaired the migration efficiency and/or speed, the extent of which depends on the cell differentiation states. Meanwhile, F‐actin rearrangement, which is essential for MSCs chemotaxis, was induced by HGF, and the time points of cytoskeletal reorganization were different among these cells. Collectively, these results demonstrate that neural differentiation of MSCs influences their chemotactic responses to HGF: MSCs in varying differentiation states possess different migratory capacities, thereby shedding light on optimization of the therapeutic potential of MSCs to be employed for neural regeneration after injury. J. Cell. Physiol. 228: 149–162, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
5.
Li L  Xia Y  Wang Z  Cao X  Da Z  Guo G  Qian J  Liu X  Fan Y  Sun L  Sang A  Gu Z 《Cell biology international》2011,35(9):961-966
T1DM (type 1 diabetes mellitus) is an autoimmune disease characterized by T-cell-mediated damage of islet β-cells. The pathology of NOD (non-obese diabetic) mouse involves the insulitis induced by infiltration of T-cells, a similar pathogenic mechanism in T1DM patient. BM-MSCs (bone marrow mesenchymal stem cells) are multipotent progenitor cells that can be isolated from a number of sources. Recent studies have shown that transplantation of MSCs to the NOD mice could prevent the process and have the therapeutic effects on T1DM. In our studies, we have found that migration and adhesion of BM-MSCs from NOD mice were suppressed compared with the BM-MSCs from ICR (imprinting control region) mice, accompanying with the abnormal distribution of FAK (focal adhesion kinase) and F-actin (filamentous actin). Further, we have found that the activation of PI3K (phosphoinositide 3-kinase)-Akt pathway was suppressed in BM-MSCs from NOD mice. When the PI3K-Akt pathway was inhibited by LY294002, the adhesion and migration of BM-MSCs from ICR mice were suppressed as well. These results indicated that the suppression of PI3K-Akt pathway is involved in the decreased adhesion and migration of BM-MSCs from NOD mice.  相似文献   

6.
7.
Endogenous bone marrow-derived mesenchymal stem cells (BM-MSCs) are mobilized into peripheral blood and injured tissues by various growth factors and cytokines that are expressed in the injured tissues, such as substance P (SP), stromal cell derived factor-1 (SDF-1), and transforming growth factor-beta (TGF-β). Extracellular bioactive lipid metabolites such as ceramide-1-phosphate and sphingosine-1-phosphate also modulate BM-MSC migration as SP, SDF-1, and TGF-β. However, the roles of intrinsic lipid kinases of BM-MSCs in the stem cell migration are unclear. Here, we demonstrated that ceramide kinase mediates the chemotactic migration of BM-MSCs in response to SP, SDF-1, or TGF-β. Furthermore, a specific inhibitor of ceramide kinase inhibited TGF-β-induced migration of BM-MSCs and N-cadherin that is necessary for BM-MSCs migration in response to TGF-β. Therefore, these results suggest that the intracellular ceramide kinase is required for the BM-MSCs migration and the roles of the intrinsic ceramide kinase in the migration are associated with N-cadherin regulation.  相似文献   

8.
Bone marrow-derived mesenchymal stem cells (MSCs) have been reported to migrate to brain lesions of neurodegenerative diseases; however, the precise mechanisms by which MSCs migrate remain to be elucidated. In this study, we carried out an in vitro migration assay to investigate the chemoattractive factors for MSCs in the brains of prion-infected mice. The migration of immortalized human MSCs (hMSCs) was reduced by their pretreatment with antibodies against the chemokine receptors, CCR3, CCR5, CXCR3, and CXCR4 and by pretreatment of brain extracts of prion-infected mice with antibodies against the corresponding ligands, suggesting the involvement of these receptors, and their ligands in the migration of hMSCs. In agreement with the results of an in vitro migration assay, hMSCs in the corpus callosum, which are considered to be migrating from the transplanted area toward brain lesions of prion-infected mice, expressed CCR3, CCR5, CXCR3, and CXCR4. The combined in vitro and in vivo analyses suggest that CCR3, CCR5, CXCR3, and CXCR4, and their corresponding ligands are involved in the migration of hMSCs to the brain lesions caused by prion propagation. In addition, hMSCs that had migrated to the right hippocampus of prion-infected mice expressed CCR1, CX3CR1, and CXCR4, implying the involvement of these chemokine receptors in hMSC functions after chemotactic migration. Further elucidation of the mechanisms that underlie the migration of MSCs may provide useful information regarding application of MSCs to the treatment of prion diseases.  相似文献   

9.
Bone marrow‐derived mesenchymal stem cells (BMSCs) could modulate inflammation in experimental lung injury. On the other hand, adrenergic receptor agonists could increase DNA synthesis of stem cells. Therefore, we investigated the therapeutic role of adrenaline‐stimulated BMSCs on lipopolysaccharide (LPS)‐induced lung injury. BMSCs were cultured with adrenergic receptor agonists or antagonists. Suspensions of lung cells or sliced lung tissue from animals with or without LPS‐induced injury were co‐cultured with BMSCs. LPS‐stimulated alveolar macrophages were co‐cultured with BMSCs (with adrenaline stimulation or not) in Transwell for 6 hrs. A preliminary animal experiment was conducted to validate the findings in ex vivo study. We found that adrenaline at 10 μM enhanced proliferation of BMSCs through both α‐ and β‐adrenergic receptors. Adrenaline promoted the migration of BMSCs towards LPS‐injured lung cells or lung tissue. Adrenaline‐stimulated BMSCs decreased the inflammation of LPS‐stimulated macrophages, probably through the expression and secretion of several paracrine factors. Adrenaline reduced the extent of injury in LPS‐injured rats. Our data indicate that adrenaline‐stimulated BMSCs might contribute to the prevention from acute lung injury through the activation of adrenergic receptors, promotion of proliferation and migration towards injured lung, and modulation of inflammation.  相似文献   

10.
MUC1 is involved in trophoblast transendothelial migration   总被引:2,自引:0,他引:2  
The factors that regulate trophoblast invasion of the uterine vasculature are incompletely understood. In this paper we show that macaque trophoblasts express the mucin, MUC1, and that it is involved in trophoblast-endothelial interaction. Immunocytochemistry, Western blotting and RT-PCR analyses confirmed that MUC1 was expressed by isolated early gestation macaque trophoblasts. MUC1 was also detected in endovascular trophoblasts in sections of placental-decidual tissue during early gestation. A blocking antibody against MUC1 reduced trophoblast adhesion to uterine endothelial cells and also blocked trophoblast transendothelial migration. MUC1 is known to bind to Intercellular Adhesion Molecule-1 (ICAM-1) in other systems. Incubation in the presence of a blocking antibody against Intercellular Adhesion Molecule-1 (ICAM-1) or recombinant ICAM-1 modestly, but significantly, reduced transendothelial trophoblast migration. These results are consistent with the idea that MUC1 is involved in trophoblast adhesion to uterine endothelial cells and in trophoblast transendothelial migration.  相似文献   

11.
12.
Multipotent mesenchymal stem cells (MSC) have become a popular and promising therapeutic approach in many clinical conditions. MSC are beneficial in animal models of acute kidney injury (AKI), by mediating differentiation-independent paracrine properties, and have prompted ongoing clinical trials to evaluate the safety and efficacy of MSC. Heme oxygenase-1 (HO-1) is induced in response to stress including AKI and has important anti-apoptotic, anti-inflammatory, and proangiogenic properties in these settings. We therefore examined whether HO-1 plays a role in the beneficial effects of MSC in AKI. We isolated MSC from bone marrow of age-matched HO-1+/+ and HO-1-/- mice. Our studies indicate that while differentiation of MSC into osteo- and adipocytic lineages did not differ between cells isolated from HO-1+/+ and HO-1-/- mice, MSC from HO-1-/- mice had significantly lower angiogenic potential. Moreover, HO-1-/- MSC demonstrated reduced expression and secretion of several important growth and proangiogenic factors (stromal cell-derived factor-1, vascular endothelial growth factor-A, and hepatocyte growth factor) compared with MSC derived from HO-1+/+ mice. In addition, conditioned medium of HO-1+/+ MSC rescued functional and morphological changes associated with cisplatin-induced AKI, while the HO-1-/--conditioned medium was ineffectual. Our studies indicate that HO-1 plays an important role in MSC-mediated protection. The results expand understanding of the renoprotective effects of MSC and may provide novel strategies to better utilize MSC in various disease models.  相似文献   

13.
14.
End‐stage liver disease can be the termination of acute or chronic liver diseases, with manifestations of liver failure; transplantation is currently an effective treatment for these. However, transplantation is severely limited due to the serious lack of donors, expense, graft rejection and requirement of long‐term immunosuppression. Mesenchymal stem cells (MSCs) have attracted considerable attention as therapeutic tools as they can be obtained with relative ease and expanded in culture, along with features of self‐renewal and multidirectional differentiation. Many scientific groups have sought to use MSCs differentiating into functional hepatocytes to be used in cell transplantation with liver tissue engineering to repair diseased organs. In most of the literature, hepatocyte differentiation refers to use of various additional growth factors and cytokines, such as hepatocyte growth factor (HGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), oncostatin M (OSM) and more, and most are involved in signalling pathway regulation and cell–cell/cell–matrix interactions. Signalling pathways have been shown to play critical roles in embryonic development, tumourigenesis, tumour progression, apoptosis and cell‐fate determination. However, mechanisms of MSCs differentiating into hepatocytes, particularly signalling pathways involved, have not as yet been completely illustrated. In this review, we have focused on progress of signalling pathways associated with mesenchymal stem cells differentiating into hepatocytes along with the stepwise differentiation procedure.  相似文献   

15.
Human mesenchymal stem cells (hMSCs) are regularly cultured and characterised under normoxic (21% O(2)) conditions, although the physiological oxygen tension in the stem cell niche is known to be as low as 1-2%. Oxygen itself is an important signalling molecule, but the distinct impact on various stem cell characteristics is still unclear. Therefore, the aim of this study was to evaluate the influence of oxygen concentration on the hMSC subpopulation composition, cell morphology and migration on different surfaces (polystyrene, collagen I, fibronectin, laminin) as well as on the expression of integrin receptors. Bone marrow-derived hMSCs were cultured either in normoxic (21% O(2)) or hypoxic (2% O(2)) conditions. The hMSC subpopulations were assessed by aspect ratio and cell area. Hypoxia promoted a more homogeneous cell population with a significantly higher fraction of rapidly self-renewing cells which are believed to be the true stem cells. Under hypoxic conditions hMSC volume and height were significantly decreased on all surfaces as measured by white light confocal microscopy. Furthermore, low oxygen tension led to a significant increase in cell velocity and Euclidian distance on all matrixes, which was evaluated by time-lapse microscopy. With regard to cell-matrix contacts, expression of several integrin subunits was evaluated by semi-quantitative RT-PCR. Increased expression of the subunits α(1), α(3), α(5,) α(6), α(11), α(v), β(1) and β(3) was observed in hypoxic conditions, while α(2) was higher expressed in normoxic cultured hMSCs. Taken together, our results indicate that hypoxic conditions promote stemness and migration of hMSC along with altering their integrin expression.  相似文献   

16.
17.
18.
19.
Therapeutic administration of mesenchymal stem cells (MSCs) by systemic delivery utilizes the innate ability of the cells to home to damaged tissues, but it can be an inefficient process due to a limited knowledge of cellular cues that regulate migration and homing. Our lab recently discovered that a potent pro-inflammatory cytokine, macrophage migration inhibitory factor (MIF), inhibits MSC migration. Because MIF may act on multiple cellular targets, an activating antibody (CD74Ab) was employed in this study to examine the effect of one MIF receptor, CD74 (major histocompatibility complex class II-associated invariant chain), on MSC motility. CD74 activation inhibits in a dose-dependent manner up to 90% of in vitro migration of MSCs at 40 μg/ml CD74Ab (p?<?0.001), with consistent effects observed among three MSC donor preparations. A blocking peptide from the C-terminus of CD74 eliminates the effect of CD74Ab on MSCs. This suggests that MIF may act on MSCs, at least in part, through CD74. Late-passage MSCs exhibit less chemokinesis than those at passage 2. However, MSCs remain responsive to CD74 activation during ex vivo expansion: MSC migration is inhibited ~2-fold in the presence of 5 µg/ml CD74Ab at passage 9 vs. ~3-fold at passage 2 (p?<?0.001). Consistent with this result, there were no significant differences in CD74 expression at all tested passages or after CD74Ab exposure. Targeting CD74 to regulate migration and homing potentially may be a useful strategy to improve the efficacy of a variety of MSC therapies, including those that require ex vivo expansion.  相似文献   

20.
Lysophosphatidic acid (LPA) is elevated in ascites of ovarian cancer patients and is involved in growth and invasion of ovarian cancer cells. Accumulating evidence suggests a pivotal role of mesenchymal stem cells (MSCs) or stromal cells in tumorigenesis. In the present study, we demonstrated that ascites from ovarian cancer patients and LPA increased migration of human MSCs. The migration of MSCs induced by LPA and malignant ascites was completely abrogated by pretreatment with Ki16425, an antagonist of LPA receptors, and by silencing of endogenous LPA(1), but not LPA(2), with small interference RNA, suggesting a key role of LPA played in the malignant ascites-induced migration. LPA induced activation of ERK through pertussis toxin-sensitive manner, and pretreatment of MSCs with U0126, a MEK inhibitor, or pertussis toxin attenuated the LPA-induced migration. Moreover, LPA induced activation of RhoA in MSCs, and pretreatment of the cells with Y27632, a Rho kinase inhibitor, markedly inhibited the LPA-induced migration. In addition, LPA and malignant ascites increased intracellular concentration of calcium in MSCs, and Ki16425 completely inhibited the elevation of intracellular calcium. These results suggest that LPA is a crucial component of the malignant ascites which induce the migration of MSCs and elevation of intracellular calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号