首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weeds are one of the major constraints in oilseed Brassica production. Use of effective herbicides to control weeds in the fields is one of the major objectives of agronomists. To improve weed control efficacy and minimize the application costs, complex combinations of 5-aminolevulinic acid (ALA) and a new postemergence herbicide, propyl 4-(2-(4,6-dimethoxypyrimidin-2-yloxy)benzylamino)benzoate (ZJ0273), were used to investigate their combined effects in relation to seedling growth and development of oilseed rape (Brassica napus cv. ZS 758). Brassica seeds were treated with different concentrations of ZJ0273 [100 (normal dose for rape), 200, 500, and 1000 mg/L] and ALA (0.1, 1, 10, and 50 mg/L). ALA was applied as pre- and post-treatment alone and in combination with ZJ0273. We found that ZJ0273 stress imposed negative effects on rape seedling growth. Shoot fresh weight, shoot length, and root fresh weight were inhibited significantly under ZJ0273 stress, and the rate of decline increased consistently with increased ZJ0273 concentration. Root oxidizability was also inhibited significantly under ZJ0273 stress conditions, and the higher the concentration of the herbicide ZJ0273, the lower the oxidizability. Herbicide ZJ0273 treatment produced a gradual decrease in antioxidant enzymes (peroxidase, superoxide dismutase, and ascorbate peroxidase) and an increase in peroxidation substance (malondialdehyde accumulation). The increase and decrease were consistent with the ZJ0273 dosage. Our results indicated that pre- and post-treatments with a lower dosage of ALA (1 mg/L) improved rape seedling growth and root oxidizability parameters, whereas a higher concentration of ALA (50 mg/L) depressed growth. We also found that plants treated with 1 mg/L ALA produced the highest shoot fresh weights, shoot lengths, root fresh weights, and root oxidizability when the seeds were treated with different concentrations of ZJ0273. Lower dosages of ALA improved the activities of antioxidant enzymes, whereas the highest dosage of ALA increased the accumulation of peroxidation substance. These results indicate that ALA has promotive effects in the recovery of growth and development of rape seedlings under herbicide ZJ0273 toxicity stress.  相似文献   

2.
Effects of exogenous 5-aminolevulinic acid (ALA) on development and certain biochemical parameters of winter rape plants (Brassica napus L.) were studied. Plant growing on 50–200 mg/L ALA solutions for 7 days resulted in an accumulation of anthocyanins in cotyledonous leaves and changed in leaf color from green to violet. An application of 200 mg/L ALA under a stronger illumination (66.2 instead of 40.5 μmol photons/(m2 s)) elevated the anthocyanin content 1.8 times in cotyledons (up to 3.15 ± 0.37 mmol/g dry wt) and 1.3 times in hypocotyls (up to 2.71 ± 0.36 mmol/g dry wt). In the plants enriched with anthocyanins, the hypocotyl linear growth was significantly suppressed (63% of control) and the far stronger suppression of the root growth (46% of control) took place. In the treated plants, chlorophylls a and b accumulated much slower than in the control during vegetation. For both pigments, the corresponding values were 44 and 38% by the fourth day of development, 37 and 27% by the fifth day, 31 and 27% by the sixth day, and 24 and 21% by the seventh day. Thus, the difference between the treated and untreated plants progressively diminished. Levels of carotenoids obeyed a similar pattern. In 7-day-old seedlings treated with 200 mg/L ALA, the activity of the key enzyme of anthocyanin biosynthesis—dihydroflavonol-4-reductase (DFR)—was 1.8 times as high as the control. Simultaneously, the content of proline was 2.2-fold higher; the level of heme noncovalently bound to protein, as well as levels of hydrogen peroxide and reactive oxygen species, exceeded the control level 60, 30, and 25%, respectively. Meanwhile, amounts of lipid peroxidation products and those of superoxide radical were as low as 29 and 62% of the control. In anthocyanin-enriched cotyledons, antiradical and total antioxidant activities were, respectively, 38 and 42% higher than in the control. Therefore, the set of metabolic rearrangements was revealed in the protective and energy systems of winter rape plants in response to exogenous ALA. The reduction in uptake of exogenous ALA by the system synthesizing tetrapyrroles of chlorophyllic nature and decrease in their production were found. Induction of accumulation of anthocyanin antioxidants as a consequence of almost twofold activation of DFR was shown. Simultaneously, the increased contents of heme and proline, together with the rise in antioxidant and antiradical activities, were found. Overall, this reduced the superoxide-generating capacity and lipid peroxidation in intracellular membranes but slightly elevated ROS and H2O2 levels above the control.  相似文献   

3.
Aminotriazole(AT)-induced changes in growth, hydrogen peroxide content and activities of H2O2-scavenging antioxidant enzymes were investigated in the growing leaves ofArabidopsis plants (Arabidopsis thaliana cv Columbia). Catalase activity of rosette leaves was reduced by 65% with an application of 0.1 mM AT (a herbicide known as a catalase inhibitor), whereas the leaf growth and H2O2 content were almost unaffected. However, an approximate 1.6 to 2-fold increase in cytosolic ascorbate peroxidase (APX) activity concomitant with a substantial activation of glutathione reductase (GR) (approx. 22% increase) was observed during leaf growth in the presence of 0.1 mM AT. The activity of cytosolic APX in leaves was also increased by 1.8-fold with an application of exogenous 2 mM paraquat (an inducer of H2O2 production in plant cells) in the absence of AT. These results collectively suggest that (a) cytosolic APX and GR operate to activate an ascorbate-glutathione cycle for the removal of H2O2 under severe catalase deactivation, and (b) the expression of APX seems to be regulated by a change of the endogenous H2O2 level in leaf cells.  相似文献   

4.
Abstract

Isoproturon at the recommended field dose (RFD) significantly reduced fresh and dry weights of shoots and roots as well as chlorophyll and carotenoid contents of 10-day-old maize seedlings during the following 20 days. The higher the herbicide dose, the greater the reduction. Meanwhile, ascorbate (AsA) and reduced glutathione (GSH) increased in leaves for only the first few days. Similar increases in activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) were detected. Low doses caused general increases while high doses induced diminutions; however, CAT and APX activities were inhibited by all doses. Nevertheless, H2O2 was significantly accumulated throughout the experiment; the magnitude of accumulation increased with time and herbicide dose. On the contrary, there were significant inhibitions in activities of the glutathione S-transferase (GST) isoforms (GST(CDNB), GST(ALA), or GST(MET)) with no variation in GST(ATR); the inhibition was greater with increasing isoproturon doses. These findings suggest the occurrence of an oxidative stress induced by isoproturon, a state that prolonged with increasing herbicide dose and/or treatment time. Moreover, V max of GST was lowered by isoproturon, whereas K m was unchanged, indicating that the herbicide is a competitive inhibitor of GST.  相似文献   

5.
以2年生葡萄(Vitis vinifera L.)酿酒品种赤霞珠扦插苗为材料,在水培条件下,分别用0、0.05、0.10和0.20mg/L 24-表油菜素内酯(EBR)预处理幼苗,然后进行50mmol/L NaCl胁迫,分别在胁迫6d和12d测定幼苗叶片中超氧阴离子(O_2~)、丙二醛(MDA)、抗氧化物质含量以及相关酶活性,探讨EBR预处理对葡萄幼苗耐盐性的影响。结果表明:与单独盐胁迫处理相比,不同浓度的EBR预处理使盐胁迫葡萄幼苗叶片O_2~和MDA含量显著降低,同时使其抗氧化物质抗坏血酸(AsA)、脱氢抗坏血酸(DHA)、还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)含量以及抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、超氧化物歧化酶(SOD)活性显著升高;其中,0.10mg/L EBR预处理的表现最佳,在盐胁迫12d时,其葡萄叶O_2~和MDA含量比单独盐胁迫处理分别显著降低30.5%和22.0%,其叶片相应AsA和GSH的含量较单独盐胁迫处理分别显著提高82.8%和27.9%,且GR、APX和SOD活性分别显著提高7.2%、8.5%和24.0%。研究发现,在盐胁迫条件下,适宜浓度的外源BRs预处理能够显著降低葡萄叶片中活性氧含量,提高抗氧化物质含量和抗氧化酶活性,以促进AsA-GSH循环的快速有效运转,有效减轻植株的过氧化伤害,缓解盐胁迫对葡萄幼苗的伤害,提高葡萄的耐盐性。  相似文献   

6.
This study evaluates the role of exogenous foliar application of 5-aminolevulinic acid (ALA) on water relations, gas exchange, chlorophyll fluorescence, and the activities and gene expression patterns of antioxidant enzymes in leaves of oilseed rape under drought stress and recovery conditions. Seedlings at four-leaf stage were imposed to well-watered condition (80 % of water-holding capacity) or drought stress (40 % of water-holding capacity) and subsequently foliar sprayed with water or ALA (30 mg l?1). Drought suppressed the accumulation of plant biomass and decreased chlorophyll content and leaf water status (relative water content and water potential). The actual quantum yield of photosystem II and electron transport rates were hampered in parallel to net photosynthetic rate. However, drought stress induced the accumulation of malondialdehyde (MDA) and hydrogen peroxide, enhanced the activities of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and superoxide dismutase and up-regulated the expression of APX and GR. After rehydration for 4 days, the growth of drought-treated seedlings was restored to normal level for most of the physiological parameters. Foliar application of ALA maintained relatively higher leaf water status and enhanced chlorophyll content, net photosynthetic rate, actual quantum yield of photosystem II, photochemical quenching, non-photochemical quenching and electron transport rates in stressed leaves. Exogenous ALA also alleviated the accumulation of MDA and hydrogen peroxide, increased the activities of antioxidant enzymes and enhanced the expression of CAT and POD in drought-treated plants. These results indicate that ALA may effectively protect rapeseed seedlings from damage induced by drought stress.  相似文献   

7.
The recommended field dose (RFD) of isoproturon induced significant accumulations of H2O2 in the leaves of 10-d-old maize seedlings throughout the following 20 d; the accumulation increased with time and also with herbicide dose. Meanwhile, low doses significantly increased ascorbic acid, glutathione and thiols while high doses caused diminutions. Superoxide dismutase (SOD; EC 1.15.1.1) activity was significantly enhanced up to the 12th d whereas ascorbate peroxidase (APX; EC 1.11.1.7) activity was significantly reduced after the fourth d onwards. Catalase (CAT; EC 1.11.1.6) and guaiacol peroxidase (GPX; EC 1.11.1.7) activities were similarly increased during the first 4 d but decreased from the 12th and the eighth d, respectively. Low doses increased SOD and GPX activities but high doses led to diminutions whereas CAT and APX were reduced by all doses. The activities of γ-glutamyl-cysteine synthethase (γ-GCS; EC 6.3.2.2) and glutathione synthethase (GSS; EC 6.3.2.3) were enhanced for 4 d; high doses caused general reductions. Isoproturon significantly reduced activities of glutathione S-transferase (GST; EC 2.5.1.18) isoforms [GST(CDNB), GST(ALA), or GST(MET)] after the fourth d, however, it had no effect on GST(ATR). Similar reductions in activities of glutathione peroxidase (GSPX; EC 1.15.1.1) and glutathione reductase (GR; EC 1.6.4.2) were detected up to the 16th and the 12th d, respectively. The activities of GST isoforms, GSPX and GR were reduced by high doses. These changes seemed to be related and might point to an oxidative stress state that exacerbated with prolonged time and/or increased isoproturon dose.  相似文献   

8.
Heavy-metal toxicity in soil is one of the major constraints for oilseed rape (Brassica napus L.) production. One of the best ways to overcome this constraint is the use of growth regulators to induce plant tolerance. Response to cadmium (Cd) toxicity in combination with a growth regulator, 5-aminolevulinic acid (ALA), was investigated in oilseed rape grown hydroponically in greenhouse conditions under three levels of Cd (0, 100, and 500 μM) and three levels of foliar application of ALA (0, 12.5, and 25 mg l?1). Cd decreased plant growth and the chlorophyll concentration in leaves. Foliar application of ALA improved plant growth and increased the chlorophyll concentration in the leaves of Cd-stressed plants. Significant reductions in photosynthetic parameters were observed by the addition of Cd alone. Application of ALA improved the net photosynthetic and gas exchange capacity of plants under Cd stress. ALA also reduced the Cd content in shoots and roots, which was elevated by high concentrations of Cd. The microscopic studies of leaf mesophyll cells under different Cd and ALA concentrations showed that foliar application of ALA significantly ameliorated the Cd effect and improved the structure of leaf mesophyll cells. However, the higher Cd concentration (500 μM) could totally damage leaf structure, and at this level the nucleus and intercellular spaces were not established as well; the cell membrane and cell wall were fused to each other. Chloroplasts were totally damaged and contained starch grains. However, foliar application of ALA improved cell structure under Cd stress and the visible cell structure had a nucleus, cell wall, and cell membrane. These results suggest that under 15-day Cd-induced stress, application of ALA helped improve plant growth, chlorophyll content, photosynthetic gas exchange capacity, and ultrastructural changes in leaf mesophyll cells of the rape plant.  相似文献   

9.
Salinity is one of the major constraints in oilseed rape (Brassica napus L.) production. One of the means to overcome this constraint is the use of plant growth regulators to induce plant tolerance. To study the plant response to salinity in combination with a growth regulator, 5-aminolevulinic acid (ALA), oilseed rape plants were grown hydroponically in greenhouse conditions under three levels of salinity (0, 100, and 200 mM NaCl) and foliar application of ALA (30 mg/l). Salinity depressed the growth of shoots and roots, and decreased leaf water potential and chlorophyll concentration. Addition of ALA partially improved the growth of shoots and roots, and increased the leaf chlorophyll concentrations of stressed plants. Foliar application of ALA also maintained leaf water potential of plants growing in 100 mM salinity at the same level as that of the control plants, and there was also an improvement in the water relations of ALA-treated plants growing in 200 mM. Net photosynthetic rate and gas exchange parameters were also reduced significantly with increasing salinity; these effects were partially reversed upon foliar application with ALA. Sodium accumulation increased with increasing NaCl concentration which induced a complex response in the macro-and micronutrients uptake and accumulation in both roots and leaves. Generally, analyses of macro- (N, P, K, S, Ca, and Mg) and micronutrients (Mn, Zn, Fe, and Cu) showed no increased accumulation of these ions in the leaves and roots (on dry weight basis) under increasing salinity except for zinc (Zn). Foliar application of ALA enhanced the concentrations of all nutrients other than Mn and Cu. These results suggest that under short-term salinity-induced stress (10 days), exogenous application of ALA helped the plants improve growth, photosynthetic gas exchange capacity, water potential, chlorophyll content, and mineral nutrition by manipulating the uptake of Na+.  相似文献   

10.
A number of studies have established that plant growth and development in oilseed rape (Brassica napus L.) are hampered by salinity stress. Nowadays, researchers have focused on the use of plant growth regulators to increase plant tolerance against salinity. An experiment was performed to evaluate the effects of 5-aminolevulinic acid (ALA, 30 mg l?1) on Brassica napus L. (cv. ??ZS 758??) plants under NaCl (100, 200 mM) salinity. Data presented here were recorded on two different leaf positions (first and third) to have a better understanding of the ameliorative role of ALA on NaCl-stressed oilseed rape plants. Results have shown that increasing salinity imposed negative impact on relative growth rate (root and shoot) and leaf water relations (osmotic potential and relative water content), whereas enhanced the level of relative conductivity, malondialdehyde (MDA) content, osmolytes (soluble sugar, soluble protein, free amino acid and proline) concentration, reactive oxygen species (ROS), and enzymatic (ascorbate peroxidase, guaiacol peroxidase, catalase and superoxide dismutase) and non-enzymatic (reduced glutathione and ascorbate) antioxidants activity in two different leaf position samples. Foliar application of ALA improved relative growth rate (root and shoot) and leaf water relations (osmotic potential and relative water content), and also triggered the further accumulation of osmolytes (soluble sugar, soluble protein, free amino acid and proline) as well as enzymatic (ascorbate peroxidase, guaiacol peroxidase, catalase and superoxide dismutase) and non-enzymatic (reduced glutathione and ascorbate) antioxidants activity in both leaf samples, whereas decreased the membrane permeability, MDA content and ROS production. Our results also indicate that osmolytes are preferentially accumulated in younger tissues.  相似文献   

11.
Imazethapyr (IM) is an imidazolinone herbicide which inhibits the biosynthesis of branched chain amino acids, by blocking acetolactate synthase (ALS; EC 4.1.3.18), the first common enzyme of the pathway. To study new aspects of the mode of action of ALS-inhibiting herbicides, pea plants grown in hydroponic cultures were supplied with IM and were analysed with reference to the antioxidant system and oxidative markers. A slight lipid peroxidation was detected in leaves after IM treatment, but no changes were noted in electrolyte leakage or carbonyl content. The ascorbate pool of leaves was oxidized under IM treatment. The analysis of the antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT) and guaiacol peroxidase (GPX), showed that IM treatment only caused an enhancement of GPX activity in leaves. In roots, the herbicide caused a decrease in lipid peroxidation. The enhancement of the reduced glutathione content detected in IM-treated roots can be related to the detected increase of GR activity. The lack of more noticeable effects on antioxidant enzymatic activities could be explained by the inability of IM-treated plants to respond to oxidative stress with modifications in their protein synthesis. Our results suggest that oxidative stress is not related to the mode of action of ALS-inhibitors. The slight changes detected in the antioxidative status of treated plants are too secondary in time and intensity to be related to the lethality caused by ALS-inhibitors  相似文献   

12.
The protective effects of 5-aminolevulenic acid (ALA) on germination of Elymus nutans Griseb. seeds under cold stress were investigated. Seeds of E. nutans (Damxung, DX and Zhengdao, ZD) were pre-soaked with various concentrations (0, 0.1, 0.5, 1, 5, 10 and 25 mg l−1) of ALA for 24 h before germination under cold stress (5°C). Seeds of ZD were more susceptible to cold stress than DX seeds. Both seeds treated with ALA at low concentrations (0.1–1 mg l−1) had higher final germination percentage (FGP) and dry weight at 5°C than non-ALA-treated seeds, whereas exposure to higher ALA concentrations (5–25 mg l−1) brought about a dose dependent decrease. The highest FGP and dry weight of germinating seeds were obtained from seeds pre-soaked with 1 mg l−1 ALA. After 5 d of cold stress, pretreatment with ALA provided significant protection against cold stress in the germinating seeds, significantly enhancing seed respiration rate and ATP synthesis. ALA pre-treatment also increased reduced glutathione (GSH), ascorbic acid (AsA), total glutathione, and total ascorbate concentrations, and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide radical (O2 •−) release in both germinating seeds under cold stress. In addition, application of ALA increased H+-ATPase activity and endogenous ALA concentration compared with cold stress alone. Results indicate that ALA considered as an endogenous plant growth regulator could effectively protect E. nutans seeds from cold-induced oxidative damage during germination without any adverse effect.  相似文献   

13.
ALA is a key precursor in the biosynthesis of porphyrins such as chlorophyll and heme, and was found to induce temporary elevations in the photosynthesis rate, APX, and CAT; furthermore, treatment with ALA at a low concentration might be correlated to the increase of NaCl tolerance of spinach plants. The photosynthetic rate and the levels of active oxygen-scavenging system in the 3rd leaf of spinach (Spinacia oleracea) plants grown by foliar treatment with 0, 0.18, 0.60 and 1.80 mmol/L 5-aminolevulinic acid under 50 and 100 mmol/L NaCl were analyzed. Plants treated with 0.60 and 1.80 mmol/L ALA showed significant increases in the photosynthetic rate at 50 and 100 mmol/L NaCl, while that of 0.18 mmol/L ALA did not show any changes at 50 mmol/L NaCl and a gradual decrease at 100 mmol/L NaCl. In contrast, the rate with 0 mmol/L ALA showed reduction at both concentrations of NaCl. The increase of hydrogen peroxide content by treatment with 0.60 and 1.80 mmol/L ALA were more controlled than that of 0 mmol/L ALA under both NaCl conditions. These ALA-treated spinach leaves also exhibited a lower oxidized/reduced ascorbate acid ratio and a higher reduced/oxidized glutathione ratio than the 0 mmol/L-treated spinach leaves when grown at both NaCl conditions. With regard to the antioxidant enzyme activities in the leaves, ascorbate peroxidase, catalase, and glutathione reductase activities were enhanced remarkably, most notably at day 3, by treatment with 0.60 and 1.80 mmol/L ALA under both NaCl conditions in comparison to that of 0 and 0.18 mmol/L ALA. These data indicate that the protection against oxidative damage by higher levels of antioxidants and enzyme activities, and by a more active ascorbate-glutathione cycle related to the increase of the photosynthesis rate, could be involved in the increased salt tolerance observed in spinach by treatment with 0.60 to 1.80 mmol/L ALA with NaCl.  相似文献   

14.
Ray TB 《Plant physiology》1984,75(3):827-831
The sulfonylurea herbicide chlorsulfuron blocks the biosynthesis of the amino acids valine and isoleucine in plants. Addition of these two amino acids to excised pea root (Pisum sativum L. var Alaska) cultures incubated in the presence of chlorsulfuron completely alleviates herbicide-induced growth inhibition. The site of action of chlorsulfuron is the enzyme acetolactate synthase which catalyzes the first step in the biosynthesis of valine and isoleucine. This enzyme is extremely sensitive to inhibition by chlorsulfuron having I50 values ranging from 18 to 36 nanomolar. In addition, acetolactate synthase from a wide variety of tolerant and sensitive plants species is highly sensitive to inhibition by chlorsulfuron.  相似文献   

15.
5-aminolevulinic acid (ALA) is a key precursor for the biosynthesis of porphyrins such as heme and chlorophyll. ALA alleviates salinity stress damage in germinating seeds and improves seedling growth. Exogenous application of ALA at low concentrations has been shown to enhance salt tolerance in a number of plants. In the present study, we studied the effect of exogenous application of ALA on enhancing salt stress tolerance in Isatis indigotica Fort. (Anhui population as S1, Shanxi population as S2). A foliar application of 0, 12.5, 16.7, 25.0, and 50.0 mg/L ALA was given to the leaves of I. indigotica plants treated with 100 mmol/L NaCl. The fresh weight of leaves and roots; chlorophyll relative content (SPAD value); photosynthetic parameters, such as net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular carbon dioxide concentration (Ci) and water use efficiency of the treated plants were determined. The third leaf of each treated plant was used to determine the activities of antioxidant enzymes. Superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutamate synthase (GOGAT), nitrate reductase (NR) activities and the malondialdehyde (MDA) content increased in response to 100 mmol/L NaCl in both S1 and S2 plants. However, the fresh weight of leaf and root, chlorophyll relative content, Pn, Gs, Ci decreased in response to salt stress in both S1 and S2 plants. In all foliar application of ALA in S1 plants, the MDA content, and the activities of SOD and POD were the highest in response to 50.0 mg/L foliar application of ALA. GOGAT and NR activities were the highest in response to 16.7 mg/L foliar ALA. Chlorophyll content and Pn were the highest in S1 plants treated with by 25.0 mg/L ALA. In S2 plants, plant fresh weight, chlorophyll relative content, SOD, CAT, NR activities and Pn treated with 16.7 mg/L ALA were higher than that of the control (CK0). POD, MDA, GOGAT activities in S2 plants treated with 25.0 mg/L ALA were the highest among all treatments. Thus, our results showed that the optimal concentration of ALA (16.7 ~ 25.0 mmol/L) increases the activity of antioxidant enzymes, which in turn helps to abate the damage caused by salt stress in I. indigotica seedlings. Furthermore, ALA also results in an increase in chlorophyll content, Pn and the activities of GOGAT and NR.  相似文献   

16.
Effects of exogenous salicylic acid (SA) on plant growth, contents of Na, K, Ca and Mg, activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase (CAT), and contents of ascorbate and glutathione were investigated in tomato (Lycopersicon esculentum L.) plants treated with 100 mM NaCl. NaCl treatment significantly increased H2O2 content and lipid peroxidation indicated by accumulation of thiobarbituric acid reactive substances (TBARS). A foliar spray of 1 mM SA significantly decreased lipid peroxidation caused by NaCl and improved the plant growth. This alleviation of NaCl toxicity by SA was related to decreases in Na contents, increases in K and Mg contents in shoots and roots, and increases in the activities of SOD, CAT, GPX and DHAR and the contents of ascorbate and glutathione.  相似文献   

17.
18.
Growing barley (Hordeum vulgare L.) plants for 7 days on NaCl solutions (20–200 mM) decreased chlorophyll (Chl) a and b content with respect to that in untreated control plants. The content of free proline and the plant ability to synthesize 5-aminolevulinic acid (ALA) started to increase in parallel at salt concentrations of 20–50 mM. The maximum amount of ALA accumulated in plants grown at 100 mM NaCl was twofold higher than in control plants grown on fresh water. In this case the proline content increased 2.8-fold. On further increase in salt concentration, the rate of ALA accumulation decreased, approaching control values at 150 mM NaCl; even lower rates were observed at 200 mM NaCl. The reduced ability to synthesize ALA was accompanied by an increase in proline content. The albino tissue of plants treated at the seed stage with the antibiotic streptomycin lost its ability to synthesize ALA needed for Chl formation. The proline content in the albino tissue was tenfold higher than in control green plants and was 30-fold higher when the plants were grown on solutions with 100 mM NaCl. No effect of NaCl on ALA-dehydratase activity was noted. As NaCl concentration was raised, there occurred the decrease in magnesium chelatase activity, accumulation of reactive oxygen species (ROS), the increase in ascorbate peroxidase activity, and a slight decrease in lipid peroxidation level. Growing plants in the presence of 150 mM NaCl and 10 or 60 mg/l exogenous ALA led to the increase in proline content (by a factor of 1.8 and 4.2, respectively) and to the decrease in ROS content, in comparison with plants grown on salt solutions without ALA. Furthermore, in the presence of exogenous ALA, the parameters of seedling growth became similar to those of NaCl-untreated plants. The role of ALA in plants as an antistress agent is considered. ALA is supposed to confer tolerance to salt stress by taking part in Chl and heme biosynthesis and also through functioning as a plant growth regulator. A hypothesis is put forward that the impairment of ALA-synthesizing ability may redirect metabolic conversions of glutamic acid from Chl and heme synthesis to the proline synthesis pathway, which would stimulate proline biosynthesis and improve salt tolerance.  相似文献   

19.
Forty-five-days old plants of Indian senna (Cassia angustifolia Vahl.) were subjected to 0–500 μM lead acetate (Pb-Ac) in pot culture. Changes in contents of thiobarbituric acid reactive substances (TBARS), ascorbate, glutathione, proline, sennosides (a+b), and activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), and catalase (CAT) were studied at pre-flowering (60 d after sawing, DAS), flowering (90 DAS) and post-flowering (120 DAS) stages of plant development. Compared with the controls, the Pb-Ac treated plants showed an increase in contents of TBARS, dehydroascorbate, oxidized and total glutathione at all stages of growth. However, sennoside yield and contents of ascorbate and reduced form of glutathione declined. Proline content increased at 60 DAS but declined thereafter. Activities of SOD, APX, GR and CAT were markedly increased. Sennoside content was higher at 60 and 90 DAS but lower at 120 DAS, compared to the control.  相似文献   

20.
The effects of foliar spraying with spermidine (Spd) on antioxidant system in tomato (Lycopersicon esculentum Mill.) seedlings were investigated under high temperature stress. The high temperature stress significantly inhibited plant growth and reduced chlorophyll (Chl) content. Application of exogenous 1 mM Spd alleviated the inhibition of growth induced by the high temperature stress. Malondialdehyde (MDA), hydrogen peroxide (H2O2) content and superoxide anion (O2) generation rate were significantly increased by the high temperature stress, but Spd significantly reduced the accumulation of reactive oxygen species (ROS) and MDA content under the stress. The high temperature stress significantly decreased glutathione (GSH) content and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), but increased contents of dehydroascorbic acid (DHA), ascorbic acid (AsA), and oxidized glutathione (GSSG) in tomato leaves. However, Spd significantly increased the activities of antioxidant enzymes, levels of antioxidants and endogenous polyamines in tomato leaves under the high temperature stress. In addition, to varying degrees, Spd regulated expression of MnSOD, POD, APX2, APX6, GR, MDHAR, DHAR1, and DHAR2 genes in tomato leaves exposed to the high temperature stress. These results suggest that Spd could change endogenous polyamine levels and alleviate the damage by oxidative stress enhancing the non-enzymatic and enzymatic antioxidant system and the related gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号