首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
Ultrasonic waves of 1-15 MHz frequencies easily propagate through soft biological tissues, thus providing qualitative and quantitative information on mechanical and flow properties of blood and red blood cell (RBC) suspensions. Two types of techniques allow to investigate blood behaviors: echographic devices via amplitude detection and Doppler effect based devices via frequency detection of the ultrasonic signal. When ever B mode serves to construct images of tissue slabs from the ultrasonic backscattering coefficient and can give qualitative information on the mechanical properties of blood, A-mode allows to quantify the ultrasonic backscattering coefficient. Ultrasonic Doppler modes also provide both qualitative and quantitative information on blood flow velocity: continuous and pulsed Doppler modes provide curves of blood flow versus time when color Doppler and power Doppler imaging visualize blood flowing in human vessels. Association of echographic and Doppler modes to investigate simultaneously structure and velocity of blood is commercially available. Some examples of results given by such ultrasonic techniques that contribute to characterize, both in vitro and in vivo, structure and flow properties of blood or red blood cell (RBC) suspensions are presented.  相似文献   

2.
In this paper, an overview of Doppler ultrasound quality assurance (QA) testing will be presented in three sections. The first section will review the different Doppler ultrasound parameters recommended by professional bodies for use in QA protocols. The second section will include an evaluation and critique of the main test devices used to assess Doppler performance, while the final section of this paper will discuss which of the wide range of test devices have been found to be most suitable for inclusion in Doppler QA programmes. Pulsed Wave Spectral Doppler, Colour Doppler Imaging QA test protocols have been recommended over the years by various professional bodies, including the UK's Institute of Physics and Engineering in Medicine (IPEM), the American Institute for Ultrasound in Medicine (AIUM), and the International Electrotechnical Commission (IEC). However, despite the existence of such recommended test protocols, very few commercial or research test devices exist which can measure the full range of both PW Doppler ultrasound and colour Doppler imaging performance parameters, particularly quality control measurements such as: (i) Doppler sensitivity (ii) colour Doppler spatial resolution (iii) colour Doppler temporal resolution (iv) colour Doppler velocity resolution (v) clutter filter performance and (vi) tissue movement artefact suppression. In this review, the merits of the various commercial and research test devices will be considered and a summary of results obtained from published studies which have made use of some of these Doppler test devices, such as the flow, string, rotating and belt phantom, will be presented.  相似文献   

3.
Background: Colour and power Doppler have become integral parts of many clinical ultrasound investigations and, due to this, refinements are made to the current technology to ensure accurate results for clinical perception of image quality.Method: The aim of this study was to modify and evaluate existing Doppler Ultrasound devices for the assessment of Colour Doppler spatial resolution. In this study a convention flow phantom design was modified to have a set of line pairs of varying  相似文献   

4.
The measurement of the Reynolds stress tensor, or at least of some of its components, is a necessary step to assess if the turbulence associated with the flow near prosthetic devices can damage blood constituents. Because of the intrinsic three dimensionality of turbulence, in general, a three-component anemometer should be used to measure directly the components of the Reynolds stress tensor. However, this can be practically unfeasible, especially in vivo; therefore, it is interesting to investigate the possibility of characterizing the turbulent flows that may occur in the circulatory system with the monodimensional data that a less complete equipment (e.g., a pulsed ultrasound Doppler) can yield. From the general expression of the Reynolds stress tensor, the highest shear stress can be deduced, as well as the Reynolds normal stress in the main flow direction. The relation between these two quantities, which is an issue already addressed in previous works, can thus be rigorously formulated in terms of some characteristic parameters of the Reynolds stress tensor, the principal normal stresses and the angles that the directions that define them form with the main flow direction. An experimental verification of the ratio of the two above-mentioned quantitites for the flow across bileaflet valves, investigated by means of two-dimensional laser Doppler anemometry, will illustrate the limitations of the monodimensional approach estimating the maximum load on blood constituents.  相似文献   

5.
Several methods are available to detect atherosclerotic lesions with a severe degree of stenosis (>70%), but the diagnosis of atherosclerotic lesions with no stenosis or with a minor degree of stenosis (<20%), is problematic. Hemodynamics associated with stenotic lesions are well described by the relationship of blood pressure and blood flow velocity, both as a function of time and localization (along the length and cross-section of the vessel). The use of this relationship in the clinic is difficult because no precise information is available about the geometry and branching of arteries, blood viscosity, and the velocity distribution over the cross-sectional area of the blood vessel. Besides, the invasiveness of the technique to measure arterial pressure as a function of time and localization does not allow routine application in patients. Because of these limitations, alternative methods have been developed. The degree and extensiveness of atherosclerotic disease can, for instance, be estimated from the changes in maximum blood flow velocity and in velocity profile, i.e., velocity distribution along the cross-section of the vessel. Moreover, the delay between simultaneously recorded arterial blood flow velocity tracings (pulse-wave velocity determination) is used to assess the elastic properties of the vessel. Changes in velocity profile occur at relatively slight degrees of arterial stenosis (around 20%), so that determination of these profiles along diseased arteries may contribute to the early diagnosis of atherosclerotic lesions. In man, transcutaneous information about the maximum and mean blood flow velocities over the cross-sectional area of the artery as an instantaneous function of time as well as the flow pattern can be obtained online with continuous wave Doppler flowmeters, at least when audio spectrum analysis is used as a processing technique. Velocity profiles can be determined with multichannel pulsed Doppler systems if the resolution of the system is adequate and a sufficient number of sample volumes can be obtained, limiting the interpolation between these samples. The on-line recording of velocity profiles can be facilitated by combining the pulsed Doppler device with either a velocity imaging system or a B-mode scan. In systems with a high resolution (sample distance 0.5 mm), one should be able to detect local disturbances in the velocity profile at the site of the lesion (due to local increases in shear stress) and proximal to the lesion (due to reflections), so that lesions with a minor degree of stenosis can be detected. In resistive systems (e.g., internal carotid arteries) in which the relationship between pressure and velocity changes during the cardiac cycle is relatively simple, the elasticity of the arterial wall can be determined by relating the relative diameter changes of the vessel, determined on-line with multichannel pulsed Doppler systems, to the instantaneous velocity pulse. Although the detection of atherosclerotic lesions at an early stage of the disease with sophisticated Doppler devices looks promising, further clinical evaluation is required.  相似文献   

6.
Early detection and accurate estimation of COA severity are the most important predictors of successful long-term outcome. However, current clinical parameters used for the evaluation of the severity of COA have several limitations and are flow dependent. The objectives of this study are to evaluate the limitations of current existing parameters for the evaluation of the severity of coarctation of the aorta (COA) and suggest two new parameters: COA Doppler velocity index and COA effective orifice area. Three different severities of COAs were tested in a mock flow circulation model under various flow conditions and in the presence of normal and stenotic aortic valves. Catheter trans-COA pressure gradients and Doppler echocardiographic trans-COA pressure gradients were evaluated. COA Doppler velocity index was defined as the ratio of pre-COA to post-COA peak velocities measured by Doppler echocardiography. COA Doppler effective orifice area was determined using continuity equation. The results show that peak-to-peak trans-COA pressure gradient significantly increased with flow rate (from 83% to 85%). Peak Doppler pressure gradient also significantly increased with flow rate (80-85%). A stenotic or bicuspid aortic valve increased peak Doppler pressure gradient by 20-50% for a COA severity of 75%. Both COA Doppler velocity index and COA effective orifice area did not demonstrate significant flow dependence or dependence upon aortic valve condition. As a conclusion, COA Doppler velocity index and COA effective orifice area are flow independent and do not depend on aortic valve conditions. They can, then, more accurately predict the severity of COA.  相似文献   

7.
8.
The Doppler flow wave form and its derived measures such as the pulsatility index provide clinically important tools for the investigation of arterial disease. The typical shape of Doppler flow wave forms is physiologically known to be largely determined by both peripheral resistance and elastic properties of the arterial wall. In the present study we systematically investigate the influence of both vessel wall elasticity and peripheral resistance on the flow wave form obtained from a CFD-simulation of blood flow in the carotid bifurcation. Numerical results are compared to in vivo ultrasound measurements. The in vivo measurement provides a realistic geometry, local elasticities and an input flow wave form for the numerical experiment. Numerical and experimental results are compared at three different sites in the carotid branches. Peripheral resistance has a profoundly decreasing effect on velocities in the external carotid artery. If elasticity is taken into account, the computed peak systolic velocities are considerably lower and a more realistic smoothing of the flow wave form is found. Together, the results indicate that only if both vessel wall elasticity and positive peripheral resistance are taken into account, experimentally obtained Doppler flow wave forms can be reproduced numerically.  相似文献   

9.
Noncontact retinal blood flow measurements are performed with a Fourier domain optical coherence tomography (OCT) system using a circumpapillary double circular scan (CDCS) that scans around the optic nerve head at 3.40 mm and 3.75 mm diameters. The double concentric circles are performed 6 times consecutively over 2 sec. The CDCS scan is saved with Doppler shift information from which flow can be calculated. The standard clinical protocol calls for 3 CDCS scans made with the OCT beam passing through the superonasal edge of the pupil and 3 CDCS scan through the inferonal pupil. This double-angle protocol ensures that acceptable Doppler angle is obtained on each retinal branch vessel in at least 1 scan. The CDCS scan data, a 3-dimensional volumetric OCT scan of the optic disc scan, and a color photograph of the optic disc are used together to obtain retinal blood flow measurement on an eye. We have developed a blood flow measurement software called "Doppler optical coherence tomography of retinal circulation" (DOCTORC). This semi-automated software is used to measure total retinal blood flow, vessel cross section area, and average blood velocity. The flow of each vessel is calculated from the Doppler shift in the vessel cross-sectional area and the Doppler angle between the vessel and the OCT beam. Total retinal blood flow measurement is summed from the veins around the optic disc. The results obtained at our Doppler OCT reading center showed good reproducibility between graders and methods (<10%). Total retinal blood flow could be useful in the management of glaucoma, other retinal diseases, and retinal diseases. In glaucoma patients, OCT retinal blood flow measurement was highly correlated with visual field loss (R2>0.57 with visual field pattern deviation). Doppler OCT is a new method to perform rapid, noncontact, and repeatable measurement of total retinal blood flow using widely available Fourier-domain OCT instrumentation. This new technology may improve the practicality of making these measurements in clinical studies and routine clinical practice.  相似文献   

10.
Endovascular exclusion of the abdominal aortic aneurysm (AAA) has been carried out in selected patients during the past decade. The deployment of a complex multicomponent endovascular device in an aneurysmal aorta may alter the local haemodynamics and lead to thrombosis and intimal hyperplasia development. The aim of this in vitro study was to investigate the flow patterns using flow visualisation and laser Doppler anemometry in a commercial bifurcated stent-graft. Two configurations of the stent-graft, endo-stent and exo-stent, were investigated in an idealised planar AAA model. The flow structures in the main trunk in both configurations of the stent-graft are three-dimensional with complex secondary structures. However, these flow structures were not entirely caused by the stent-graft. The stent struts in the endo-stent configuration cause localised alteration in the flow pattern but the overall flow structures were not significantly affected. Low velocity regions in the main trunk and flow separation in the stump region and the curved segment of the iliac limbs were observed. These areas are associated with thrombosis in the clinical situation. Improvements in the design of endovascular devices may remove these areas of unfavourable flow patterns and lead to better clinical performance.  相似文献   

11.
Concerns have been raised about interference of wireless local area network (LAN) systems and telemetry systems with medical devices in hospitals. The authors have investigated the susceptibility of 65 electromedical devices to a wireless LAN system and a telemetry system in preselected areas of a hospital. Testing was based on the American National Standards Institute Standard C63.18. The wireless LAN system operated at 2.42 GHz with an output power of 100 mW. The telemetry system operated at 466 MHz with an output power of 4 mW. Of the 65 devices tested, only two hand-held Doppler units, a Mini Doppler Model D900 (Huntleigh Healthcare Ltd) and a Ultrasonic Doppler Model 811 (Parks Medical Electronics, Inc.), were affected by the LAN system. Placed within 10 cm of the LAN system in standby mode, both units emitted periodic high-pitched beating sounds, which could be misinterpreted as normal beating sounds from the patient. These changed to random static noise during data transmission by the LAN. Under normal conditions of use, a LAN system would never be placed this close to a medical device. The quality of data transmission from the LAN system changed from "good" to "acceptable" in the colonoscopy room. This deterioration in transmission quality could have been caused by the lead shielding in the room. Electrosurgical devices operating at 0.5 to 1 MHz did not affect the LAN system at distances up to 3 m. None of the devices was affected by the telemetry system. These findings suggest that wireless LAN systems and telemetry systems can be acceptable for use in hospitals. Nevertheless, other systems should be tested on potentially susceptible devices by the hospital before use.  相似文献   

12.
The most common objective assessments of mitral regurgitation are limited by their invasive or semiquantitative nature. Recent attempts at correlation with jet size from Doppler flow maps have failed to produce a direct measure of regurgitant volume and are fundamentally limited by the dependence of jet dimensions on factors other than flow volume. The purpose of this paper was to develop an equation, based on the physics of turbulent regurgitant jets, for calculating regurgitant volume from quantities that can be measured by Doppler ultrasound. The result is an equation forw flow rate Q as a function of orifice velocity Uo, a downstream centerline velocity Um and the intervening distance chi: Q = pi U2m chi 2/160Uo. This equation can also be modified to obtain total regurgitant volume in clinical pulsatile flow. The assumptions made demand a free turbulent jet for which momentum is conserved, but should otherwise be physiologically applicable. The advantage of this technique compared to correlations with jet size are its theoretical justification and ability to quantify regurgitant volume directly.  相似文献   

13.
A variety of devices has been used for measuring flow properties of deep-lying arteries, but many have limitations. This paper describes a relatively nontraumatic intravenous approach which uses a catheter in connection with a pulsed ultrasonic Doppler velocity meter (PUDVM) and an ultrasound echo track. The venous ultrasound catheter (VUC) has permitted measurements of local instantaneols blood velocity, flow, and wall motion in the abdominal aorta and iliac arteries of beagle dogs; evaluation studies have been conducted to compare the VUC recordings with an independent method for measuring blood flow and wall motion. Coupling of this catheter-tip device with the PUDVM and echo track provides chronic measurements of hemodynamic parameters in these deep vessels which were virtually impossible to obtain previously. This technique may prove useful in monitoring vessel pathology longitudinally as well as in basic experimental situations requiring flow and arterial wall mechanical properties.  相似文献   

14.
腹主动脉旁瘤超声多普勒血流信号的仿真研究,可以为采用超声多普勒技术检测腹主动脉旁瘤的形成、生长过程和估计动脉旁瘤瘤体大小提供指导。先通过有限元数值计算方法得到稳恒流下腹主动脉旁瘤区域内的血液流场分布,然后采用余弦叠加的合成方法仿真出相应的超声多普勒血流信号,最后对仿真信号进行频谱分析,计算其平均频率,并研究它与腹主动脉旁瘤瘤体大小的关系。结果表明:当动脉旁瘤较小时,平均频率的幅度变化较小;当动脉旁瘤较大时,平均频率的幅度变化较大。因此,采用平均频率的幅度变化可以在一定程度上估计动脉旁瘤的瘤体大小。  相似文献   

15.
Spectrum analysis of the Doppler signals was performed 0.5 tube diameters downstream from an axisymmetric constriction with an area reduction of 80 percent in steady flow at a jet Reynolds number of 2840. Both pulsed and continuous wave (CW) Doppler spectra showed significant reverse flow components in the separated flow. The pulsed Doppler spectra exhibited sudden changes when the sample volume crossed the shear layer between the center jet and the separated flow. A power spectrum equation was theoretically derived from continuity of flow to define the Doppler shift frequency for the shear layer velocity. The CW Doppler spectrum showed a minimum spectrum density at a frequency which equalled the shear layer Doppler shift frequency derived from the equation. The pulsed spectra exhibited the sudden changes at the same frequency as well.  相似文献   

16.
BackgroundMany parameters have to be investigated before an optimal strategy for thermal therapies can be defined. Such studies are limited by the number of animals that may be included and by the difficulties in the use of isolated perfused organs. Realistic in vitro anthropomorphic vascular phantoms have been suggested and are based on the use of agar or silicone but not on biological tissues. More simply, biological and reliable models can be developed to mimic the behavior of arteries under perfusion.Material and methodsChicken esophagus was used since it reproduces both the anatomical and the mechanical local properties of a 5-mm-diameter artery. The esophagus was placed inside a bovine liver and connected to polyurethane tubes. The flow was driven using two pumps and a solenoid to mimic pulsed flow and the cardiac valve. The blood was mimicked using degassed water and 50-μm silica beads at a concentration of 40 mg/L. The Doppler signals used as a reference to validate the in vitro artery model were acquired during an animal study. Using a high-intensity focused ultrasound (HIFU) device, several HIFU lesions were created in vitro in liver samples with the artery mimic model placed at different depths.ResultsThe waveforms of in vivo and in vitro Doppler signals had a cycle length of 1.09 s and 1.10 s, respectively, corresponding to 55 beats per minute (bpm). The average peak flow rate was 25.3 cm/s for in vivo waveforms and 27.8 cm/s for in vitro waveforms. The relative distension of the in vitro artery mimic (10%) was similar to that measured in pig mesenteric arteries and representative of human artery compliance. The dimensions of HIFU lesions were different depending on the location of the artery mimic.ConclusionsA simple and reliable model of arteries is described. This model reproduced both the geometrical and the mechanical local properties of an artery. The flow profile, the flow rate and compliant behavior were found to be similar to those that can be recorded in vivo. This model can be used to evaluate the potential perfusion effects when developing devices for thermal therapies.  相似文献   

17.
Laser Doppler velocimetry is a technique for continuous estimation of changing blood flow in the surface of a tissue and does not require invasion of the circulation. This technique is based upon the Doppler principle that a shift in the frequency of an electromagnetic wave emitted or reflected from a moving object is proportional to the velocity of the object. The capacity of Laser Doppler velocimetry to estimate changes in intestinal mucosal blood flow was tested in a canine free flow preparation. In anesthetized dogs in which a segment of ileum was isolated, simultaneous measurements of instantaneous changes in total blood flow (measured with the electromagnetic blood flow meter) and instantaneous changes in presumed mucosal blood flow (using laser Doppler velocimetry) were obtained. Determinations were made during conditions of rest, prostacyclin induced vasodilation and norepinephrine induced vasoconstriction. Changes in laser Doppler velocimeter readings were qualitatively similar to and temporally related to changes in total blood flow to the gut segment during administration of the vasoactive drugs. The magnitude and direction of changes with the two measurements were significantly correlated. Stabilizing the laser probe on the mucosal surface to ensure reproducible readings proved technically difficult. Pharmacologically induced changes in laser Doppler velocimeter estimated changes in flow were more readily correlated with changes in electromagnetic flow meter readings than were control values obtained with the two methods.  相似文献   

18.
Doppler ultrasound techniques are used extensively in clinical investigations to detect blood flow and measure its velocity. The application of these techniques in the teaching of cardiovascular physiology is of enormous potential educational value. A number of cardiovascular parameters that are difficult or even impossible to illustrate by conventional non-invasive methods can be demonstrated effectively, safely, and easily using Doppler ultrasound.

The principle of the technique is explained followed by examples of its potential use.  相似文献   

19.
Colour Doppler ultrasound offers the possibility of imaging small vessels not visible by B-mode alone. The colour Doppler image of velocities allows the course of small vessels to be imaged in the X-Y plane of the scan provided the Doppler frequency shift is of sufficient magnitude. This permits alignments of the Doppler cursor, allowing angle correction to provide true velocity measurements from the Doppler shift obtained. Before attempting to make velocity measurements, however, it is essential to be aware of the possible error in the Z plane caused by the thickness of the Doppler sample volume. To quantify this source of error, hydrophone and flow-rig measurements were performed on an Acuson 128 colour Doppler scanner with both 5 MHz linear-array and 3.5 MHz phased-array transducers. Measurements of the transmitted pulses using a point hydrophone showed that both probes employ approximately 3.5 MHz Doppler pulses (in both colour and pulsed Doppler modes). The two transducers have the same axial resolution. In colour Doppler mode the axial length of the sample volume increases automatically with depth by up to 0.5 mm. Measurements of colour and pulsed Doppler signal strength were obtained in a controlled flow rig. Both transducers produced accurate colour flow images of the phantom at their optimum depths; flow velocity errors due to Z-plane thickness are < 5%. There was, however, substantial error outside these optimum conditions (up to 20%).  相似文献   

20.
Blood recirculating devices, such as ventricular assist devices and prosthetic heart valves, are burdened by thromboembolic complications requiring complex and lifelong anticoagulant therapy with its inherent hemorrhagic risks. Pathologic flow patterns occurring in such devices chronically activate platelets, and the optimization of their thrombogenic performance requires the development of flow-induced platelet activation models. However, existing models are based on empirical correlations using the well-established power law paradigm of constant levels of shear stress during certain exposure times as factors for mechanical platelet activation. These models are limited by their range of application and do not account for other relevant phenomena, such as loading rate dependence and platelet sensitization to high stress conditions, which characterize the dynamic flow conditions in devices. These limitations were addressed by developing a new class of phenomenological stress-induced platelet activation models that specifies the rate of platelet activation as a function of the entire stress history and results in a differential equation that can be directly integrated to calculate the cumulative levels of activation. The proposed model reverts to the power law under constant shear stress conditions and is able to describe experimental results in response to a diverse range of highly dynamic stress conditions found in blood recirculating devices. The model was tested in vitro under emulated device flow conditions and correlates well with experimental results. This new model provides a reliable and robust mathematical tool that can be incorporated into computational fluid dynamic studies in order to optimize design, with the goal of improving the thrombogenic performance of blood recirculating devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号