首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Defective genomes present in serially passaged virus stocks derived from the tsLB2 mutant of herpes simplex virus type 1 were found to consist of repeat units in which sequences from the UL region, within map coordinates 0.356 and 0.429 of standard herpes simplex virus DNA, were covalently linked to sequences from the end of the S component. The major defective genome species consisted of repeat units which were 4.9 × 106 in molecular weight and contained a specific deletion within the UL segment. These tsLB2 defective genomes were stable through more than 35 sequential virus passages. The ratios of defective virus genomes to helper virus genomes present in different passages fluctuated in synchrony with the capacity of the passages to interfere with standard virus replication. Cells infected with passages enriched for defective genomes overproduced the infected cell polypeptide number 8, which had previously been mapped within the UL sequences present in the tsLB2 defective genomes. In contrast, the synthesis of most other infected cell polypeptides was delayed and reduced. The abundant synthesis of infected cell polypeptide number 8 followed the β regulatory pattern, as evident from kinetic studies and from experiments in which cycloheximide, canavanine, and phosphonoacetate were used. However, in contrast to many β (early) and γ (late) viral polypeptides, the synthesis of infected cell polypeptide number 8 was only minimally reduced when cells infected with serially passaged tsLB2 were incubated at 39°C. The tsLB2 mutation had previously been mapped within the domains of the gene encoding infected cell polypeptide number 4, the function of which was shown to be required for β and γ viral gene expression. It is thus possible that the tsLB2 mutation affects the synthesis of only a subset of the β and γ viral polypeptides. An additional polypeptide, 74.5 × 103 in molecular weight, was abundantly produced in cells infected with a number of tsLB2 passages. This polypeptide was most likely expressed from truncated gene templates within the most abundant, deleted repeats of tsLB2 defective virus DNA.  相似文献   

2.
Complementation of defective reovirus by ts mutants.   总被引:2,自引:2,他引:0  
Defective reovirions lacking the largest (L-1) of the normal 10 genomic segments grow only in association with helper reovirus. Because of the similarity in properties of defective and infectious virions, separation of the two populations by physical methods has been unseccessful. Controlled digestion of purified virus removes the outer capsomeres of the virions. The resulting core particles containing the viral genome have a buoyant density of 1.43/ml if derived from infectious virions and of 1.415g/ml if they originate in defectives, and this difference permits ready separation of the two types of cores. With the purpose of obtaining a pure population of defective virions, L cells were co-infected with defective cores and a class E temperature-sensitive mutant which has a mutation in an early function. After three serial passages at the permissive temperature (31 C) to build up the defective population, a fourth passage was made at 39 C, the nonpermissive temperature. The virus purified from this passage was predominantly defective; it contained practically no E mutant and had a low background of wild-type virus. Complementation was thus asymmetric; the L-1 function required for growth of defective virus was supplied by the E mutant and is thus a trans-function, while defective virus did not complement the E mutation which is thus in a cis-acting function. Defective virions were indistinguishable from infectious virions except for the absence of the L-1 genomic segment in the defectives. Such defective virions could be complemented at 39 C by class A and B temperature-sensitive mutants, both of which have lesions in late functions.  相似文献   

3.
Antibody to a synthetic peptide (anti-C3 serum) with the predicted sequence of the C terminus of the Moloney murine sarcoma virus (strain 124) v-mos gene was used in immunoprecipitation experiments with cytoplasmic extracts of a clone of NRK cells infected with ts110 Moloney murine sarcoma virus, termed 6m2 cells. ts110 Moloney murine sarcoma virus codes for two viral proteins of 85,000 and 58,000 Mr, termed P85 and P58, respectively, in nonproducer 6m2 cells maintained at 33°C. Anti-C3 serum specifically recognized [3H]leucine-labeled P85, but not P58, from infected cells maintained at 33°C, whereas antiserum prepared against murine leukemia virus p12 recognized both proteins. Normal serum and anti-C3 serum pretreated with excess C3 peptide did not precipitate P85. Immunoprecipitation experiments after metabolic labeling of 6m2 cells with 32Pi showed that P85 is phosphorylated. Both anti-C3 and anti-p12 sera specifically detected 32P-labeled P85. Cell-free translation of ts110 murine sarcoma virus/murine lukemia virus RNA produces P85, P58, and helper virus protein Pr63gag. Anti-C3 serum specifically precipitated P85 but neither P58 nor Pr63gag. We conclude from these studies that P85 is a product of both the gag and mos genes of ts110 murine sarcoma virus, and, therefore, it is referred to as P85gag-mos. We have not detected any other v-mos gene product in ts110-infected cells.  相似文献   

4.
Persistent reovirus infection of L cells was established with a serially passaged stock of temperature-sensitive (ts) mutant C(447) containing greater than 90% defective interfering particles. Within a month after establishment of the carrier culture, the ts mutant was replaced by virus that expressed the wild-type (ts+) temperature phenotype (R. Ahmed and A. F. Graham, J. Virol. 23:250-262, 1977). To determine whether the ts+ phenotype of the virus was due to intragenic reversion or to the presence of an extragenic mutation suppressing the original ts defect, several clones were backcrossed to wild-type reovirus, and the progeny of each cross were screened for temperature sensitivity. The results indicated that the original tsC lesion had reverted. However, in two of the seven clones examined, new ts lesions were found. These new ts lesions appeared phenotypically as ts+ due to the presence of extragenic suppressor mutations. Temperature-sensitive mutants representing three different groups were rescued from one suppressed clone, indicating that this ts+ clone contained multiple ts lesions. Among the ts mutants rescued were the initial isolates of a new recombination group which we have designated H. Some of the ts mutants rescued from the suppressed clones are capable of interfering with the growth of wild-type reovirus and may play a role in maintaining the carrier state. The results of this study show that persistently infected L cells contain a genetically heterogeneous population of reovirus even though all virus clones express the ts+ phenotype. It is thus critical to distinguish between genotype and phenotype when analyzing viruses that emerge during persistent infection.  相似文献   

5.
A previous report (Youngner et al., J. Virol. 19:90-101, 1976) documented that noncytocidal persistent infection can be established with wild-type vesicular stomatitis virus (VSV) in mouse L cells at 37°C and that a rapid selection of RNA, group I temperature-sensitive (ts) mutants consistently occurs in this system. To assess the selective advantage of the RNAts phenotype, evolution of the virus population was studied in persistent infections initiated in L cells by use of VSV ts 0 23 and ts 0 45, RNA+ mutants belonging to complementation groups III and V. In L cells persistently infected with ts 0 23, the ts RNA+ virus population was replaced gradually by viruses which had a ts RNA phenotype. VSV ts 0 45 (V) has another marker in addition to reduced virus yield at 39.5°C: a defective protein (G) which renders virion infectivity heat labile at 50°C. Persistent infections initiated with this virus (ts, heat labile, RNA+) evolved into a virus population which was ts, heat resistant, and RNA. These findings suggest that the ts phenotype itself is not sufficient to stabilize the VSV population in persistently infected L cells and also indicate that the ts RNA phenotype may have a unique selective advantage in this system. In addition to the selection of ts RNA mutants, other mechanisms which also might operate in the maintenance of persistent VSV infections of L cells were explored. Whereas defective-interfering particles did not seem to mediate the carrier state, evidence was obtained that interferon may play a role in the regulation of persistent infections of L cells with VSV.  相似文献   

6.
Viral proteins synthesized in L cells infected with temperature-sensitive (ts) mutants of vesicular stomatitis (VS) virus at permissive (31 C) and nonpermissive (39 C) temperatures were compared by polyacrylamide gel electrophoresis. Mutant ts 5, deficient in synthesis of viral ribonucleic acid (RNA), failed to synthesize any of the five identifiable viral proteins at 39 C. Each of three RNA+ mutants, representing three separate complementation groups, showed distinctive patterns of viral protein synthesis at nonpermissive temperature. Equivalent amounts of 3H-amino acids were incorporated into the five viral proteins made in cells infected with RNA+ mutant ts 45 at 31 and 39 C. Complete virions of ts 45 could be identified by electron microscopy of infected cells incubated at the nonpermissive temperature; the defect in ts 45 appeared to be due in part to greater thermolability of virions as compared with the wild-type. RNA+ mutant ts 23 was deficient in synthesis of viral envelope protein S and failed to make detectable virions at the nonpermissive temperature. Infection of cells at 39 C with the third RNA+ mutant, ts 52, resulted in synthesis of all five viral proteins, but the peak of radioactivity representing the viral membrane glycoprotein migrated more rapidly on gels than coelectrophoresed authentic virion 14C-glycoprotein or viral 3H-glycoprotein extracted from cells infected at 31 C. These data and results of experiments on incorporation of radioactive glucosamine suggest that the primary defect in mutant ts 52 at nonpermissive temperature is failure of glycosylation of the viral glycoprotein. The viral structural proteins made in cells infected with ts 52 at the nonpermissive temperature did not assemble into sedimentable components as they did at permissive temperature; this observation indicates failure of insertion of the nonglycosylated protein (G′) into cell membrane. In support of this hypothesis was the finding that antiviral-antiferritin hybrid antibody did not detect VS viral antigen on the plasma membrane of L cells infected at 39 C with ts 52. In contrast, VS viral antigen localized in plasma membrane of L cells infected at 39 C with mutants ts 23 and ts 45 was readily detected by electron microscopy and fluorescence microscopy.  相似文献   

7.
Previous studies have suggested that the UL17 gene of herpes simplex virus type 1 (HSV-1) is essential for virus replication. In this study, viral mutants incorporating either a lacZ expression cassette in place of 1,490 bp of the 2,109-bp UL17 open reading frame [HSV-1(ΔUL17)] or a DNA oligomer containing an in-frame stop codon inserted 778 bp from the 5′ end of the UL17 open reading frame [HSV-1(UL17-stop)] were plaque purified on engineered cell lines containing the UL17 gene. A virus derived from HSV-1(UL17-stop) but containing a restored UL17 gene was also constructed and was designated HSV-1(UL17-restored). The latter virus formed plaques and cleaved genomic viral DNA in a manner indistinguishable from wild-type virus. Neither HSV-1(ΔUL17) nor HSV-1(UL17-stop) formed plaques or produced infectious progeny when propagated on noncomplementing Vero cells. Furthermore, genomic end-specific restriction fragments were not detected in DNA purified from noncomplementing cells infected with HSV-1(ΔUL17) or HSV-1(UL17-stop), whereas end-specific fragments were readily detected when the viruses were propagated on complementing cells. Electron micrographs of thin sections of cells infected with HSV-1(ΔUL17) or HSV-1(UL17-stop) illustrated that empty capsids accumulated in the nuclei of Vero cells, whereas DNA-containing capsids accumulated in the nuclei of complementing cells and enveloped virions were found in the cytoplasm and extracellular space. Additionally, protein profiles of capsids purified from cells infected with HSV-1(ΔUL17) compared to wild-type virus show no detectable differences. These data indicate that the UL17 gene is essential for virus replication and is required for cleavage and packaging of viral DNA. To characterize the UL17 gene product, an anti-UL17 rabbit polyclonal antiserum was produced. The antiserum reacted strongly with a major protein of apparent Mr 77,000 and weakly with a protein of apparent Mr 72,000 in wild-type infected cell lysates and in virions. Bands of similar sizes were also detected in electrophoretically separated tegument fractions of virions and light particles and yielded tryptic peptides of masses characteristic of the predicted UL17 protein. We therefore conclude that the UL17 gene products are associated with the virion tegument and note that they are the first tegument-associated proteins shown to be required for cleavage and packaging of viral DNA.  相似文献   

8.
In an attempt to induce temperature-sensitive (ts) conditional lethal mutants of rabies virus, stocks of a plaque-purified substrain of strain CVS fixed rabies virus were subjected to mutagenesis by HNO2, 5-fluorouracil, or 5-azacytidine. It was necessary to prepare virus stocks from clones of mutagenized virus selected at random and to test subsequently each stock for possible ts characteristics by measuring its relative capacity for growth at permissive (33 C) and nonpermissive (40.5 C) temperatures. Five ts mutants were detected in tests of 161 clones of mutagenized virus. Each of the mutants exhibited a remarkably low incidence of reversion and little demonstrable “leakiness.” One of the five ts mutants (ts2), which formed formed very small plaques, and another (ts1), which formed plaques of only slightly reduced size, were further characterized. Virus ts1 was more thermostable at 40.5 C than the parental virus, but the ts2 mutant was unchanged in this respect. The ts1 virus exhibited normal pathogenicity for mice, but ts2 virus caused a very irregular death pattern. Both deaths and survivors immune to rabies virus challenge were noted in all groups of mice inoculated with ts2 virus, regardless of the virus dose.  相似文献   

9.
When 2-day-old rats were inoculated subcutaneously with the R2 strain of reovirus type 3 or with a class B (352) or class C (447) temperature-sensitive (ts) mutant, 5 to 10% of the animals died from acute encephalitis within 12 days. Approximately half of the survivors recovered rapidly and grew normally, but the remainder became runted. Two phases of infection are distinguished in the animals: an acute phase during which infectious virus reaches a maximum titer in brain and other tissues by 10 days p.i. and thes runting of the rats and the slow disappearance of virus from their brains over a period of 2 months or so. Virus isolated from chronically infected brains generally retained the genetic character (ts or wild type) of the inoculated virus, but two exceptions to this are described. Defective virions lacking the L1 segment of the viral genome (L1 defectives) were generated in rat brains during the acute phase of infection. Defective virus was also generated during the chronic phase, but during this period defectives were found with multiple segments deleted from the genome in addition to L1 defectives. In another type of experiment defective virus exerted a marked protective effect when inoculated intracerebrally with R2 virus. In the absence of defectives all animals died, but in their presence 17 of 23 animals survived and 15 of 23 became runted and chronically infected. The formation and evolution of defective particles in the brains of these rats were similar to those found in rats chronically infected after subcutaneous inoculation of reovirus. We conclude that the formation of defective virus particles may play a role in the initiation and maintenance of chronic neutropic infections with reovirus.  相似文献   

10.
The integration of polyoma virus DNA into the genome of transformed rat cells generally takes place in a tandem head-to-tail arrangement. A functional viral large tumor antigen (T-Ag) renders this structure unstable, as manifested by free DNA production and excision or amplification of the integrated viral DNA. All of these phenomena involve the mobilization of precise genomic “units,” suggesting that they result from intramolecular homologous recombination events occurring in the repeated viral DNA sequences within the integrated structures. We studied polyoma ts-a-transformed rat cell lines, which produced large T-Ag but contained less than a single copy of integrated viral DNA. In all of these lines, reversion to a normal phenotype (indicative of excision) was extremely low and independent of the presence of a functional large T-Ag. The revertants were either phenotypic or had undergone variable rearrangements of the integrated sequences that seemed to involve flanking host DNA. In two of these cell lines (ts-a 4A and ts-a 3B), we could not detect any evidence of amplification even after 2 months of propagation under conditions permissive for large T-Ag. An amplification event was detected in a small subpopulation of the ts-a R5-1 line after 2 months of growth at 33°C. This involved a DNA fragment of 5.1 kilobases, consisting of the left portion of the viral insertion and about 2.5 kilobases of adjacent host DNA sequences. None of these lines spontaneously produced free viral DNA, but after fusion with 3T3 mouse fibroblasts, R5-1 and 4A produced a low level of heterogeneous free DNA molecules, which contained both viral and flanking host DNA. In contrast, the ts-a 9 cell line, whose viral insertion consists of a partial tandem of ~1.2 viral genomes, underwent a high rate of excision or amplification when propagated at temperatures permissive for large T-Ag function. These results indicate that the high rate of excision and amplification of integrated viral genomes observed in polyoma-transformed rat cells requires the presence of regions of homology (i.e., repeats) in the integrated viral sequences. Therefore, these events occur via homologous intramolecular recombination, which is promoted directly or indirectly by the large viral T-Ag.  相似文献   

11.
12.
ADENO-ASSOCIATED satellite viruses (ASV) are extremely defective in that they need a helper adenovirus to complete their replication cycle in susceptible cells1–3. Although the helper virus is usually not defective there have been reports of systems which are at least conditionally defective. Smith and Gehle4 found that a canine adenovirus, ICH, which did not seem to replicate in human amnion cells (essentially a non-permissive system) could be used to pass the satellite serially in these cells if the passage was reinfected each time with helper virus. Ito et al.5 reported that a temperature-sensitive mutant of human adenovirus type 31, ts 13, defective in viral DNA synthesis, could complement a cycle of satellite virus replication at the non-permissive temperature.  相似文献   

13.
Thermal denaturation of nucleocapsids of wild type (WT) vesicular stomatitis virus (VSV), containing only the nucleocapsid protein (N) and viral RNA, caused a “melting” that resulted in an A260nm absorbance increase of 140%. The nucleocapsids of two temperature-sensitive (ts) VSV mutants, ts G31BP and ts G22, both underwent larger absorbance increases of 251% and 177% respectively, suggesting these nucleocapsids are complexed by weaker N protein: RNA interactions than the WT-VSV. Two other mutants, ts G31 and ts G41 underwent A260nm increases either similar to, or smaller than, that measured with WT-VSV nucleocapsids. RNA synthesis by ts G31BP in infected cells was also found to be decreased at elevated temperatures. This temperature sensitive defect in viral RNA metabolism in ts G31BP may be the result of weaker protein:RNA interactions associated with the nucleocapsid.  相似文献   

14.
Positive-strand RNA virus genomes are translated into polyproteins that are processed by viral proteases to yield functional intermediate and mature proteins. Coronaviruses (CoVs) carry genes that encode an nsp5 protease (also known as 3CLpro or Mpro) responsible for 11 maturation cleavages. The nsp5 structure contains two chymotrypsin-like domains (D1 and D2) and a unique domain (D3), and forms functional dimers. However, little is known of interactions or communication across the structure of the protease during nsp5 activity. Using reverse genetic mutagenesis of the CoV murine hepatitis virus (MHV) nsp5, we identified a new temperature-sensitive (ts) mutation in D2 of nsp5 (Ser133Ala) and confirmed a ts residue in D3 (Phe219Leu). Both D2-tsS133A and D3-tsF219L were impaired for viral replication and nsp5-mediated polyprotein processing at the nonpermissive temperature. Passage of tsS133A and tsF219L at the nonpermissive temperature resulted in emergence of multiple second-site suppressor mutations, singly and in combinations. Among the second-site mutations, a D2 His134Tyr change suppressed the ts phenotype of D2-tsS133A and D3-tsF219L, as well as the previously reported D2-tsV148A. Analysis of multiple CoV nsp5 structures, and alignment of nonredundant nsp5 primary sequences, demonstrated that ts and suppressor residues are not conserved across CoVs and are physically distant (>10 Å) from each other, from catalytic and substrate-binding residues, and from the nsp5 dimer interface. These findings demonstrate that long-distance communication pathways between multiple residues and domains of nsp5 play a significant role in nsp5 activity and viral replication, suggesting possible novel targets for non-active site inhibitors of nsp5.  相似文献   

15.
Temperature-sensitive (ts) mutant tsD1 of vesicular stomatitis virus, New Jersey serotype, is the sole representative of complementation group D. Clones derived from this mutant exhibited three different phenotypes with respect to electrophoretic mobility of the G and N polypeptides of the virion in sodium dodecyl sulfate-polyacrylamide gel. Analysis of non-ts pseudorevertants showed that none of the three phenotypes was associated with the temperature sensitivity of mutant tsD1. Additional phenotypes, some also involving the NS polypeptide, appeared during sequential cloning, indicating that mutations were generated at high frequency during replication of tsD1. Furthermore, mutations altering the electrophoretic mobility of the G, N, NS, and M polypeptides were induced in heterologous viruses multiplying in the same cells as tsD1. These heterologous viruses included another complementing ts mutant of vesicular stomatitis virus New Jersey and ts mutants of vesicular stomatitis virus Indiana and Chandipura virus. Complete or incomplete virions of tsD1 appeared to be equally efficient inducers of mutations in heterologous viruses. Analysis of the progeny of a mixed infection of two complementing ts mutants of vesicular stomatitis virus New Jersey with electrophoretically distinguishable G, N, NS, and M proteins yielded no recombinants and excluded recombination as a factor in the generation of the electrophoretic mobility variants. In vitro translation of total cytoplasmic RNA from BHK cells indicated that post-translational processing was not responsible for the aberrant electrophoretic mobility of the N, NS, and M protein mutants. Aberrant glycosylation could account for three of four G protein mutants, however. Some clones of tsD1 had an N polypeptide which migrated faster in sodium dodecyl sulfate-polyacrylamide gel than did the wild type, suggesting that the polypeptide might be shorter by about 10 amino acids. Determination of the nucleotide sequence to about 200 residues from each terminus of the N gene of one of these clones, a revertant, and the wild-type parent revealed no changes compatible with synthesis of a shorter polypeptide by premature termination or late initiation of translation. The sequence data indicated, however, that the N-protein mutant and its revertant differed from the parental wild type in two of the 399 nucleotides determined. These sequencing results and the phenomenon of enhanced mutability associated with mutant tsD1 reveal that rapid and extensive evolution of the viral genome can occur during the course of normal cytolytic infection of cultured cells.  相似文献   

16.
Human cytomegalovirus (HCMV) infects a variety of cell types in humans, resulting in a varied pathogenesis in the immunocompromised host. Endothelial cells (ECs) are considered an important target of HCMV infection that may contribute to viral pathogenesis. Although the viral determinants important for entry into ECs are well defined, the molecular determinants regulating postentry tropism in ECs are not known. We previously identified the UL133-UL138 locus encoded within the clinical strain-specific ULb′ region of the HCMV genome as important for the latent infection in CD34+ hematopoietic progenitor cells (HPCs). Interestingly, this locus, while dispensable for replication in fibroblasts, was required for efficient replication in ECs infected with the TB40E or fusion-inducing factor X (FIX) HCMV strains. ECs infected with a virus lacking the entire locus (UL133-UL138NULL virus) complete the immediate-early and early phases of infection but are defective for infectious progeny virus production. ECs infected with UL133-UL138NULL virus exhibited striking differences in the organization of intracellular membranes and in the assembly of mature virions relative to ECs infected with wild-type (WT) virus. In UL133-UL138NULL virus-infected ECs, Golgi stacks were disrupted, and the viral assembly compartment characteristic of HCMV infection failed to form. Further, progeny virions in UL133-UL138NULL virus-infected ECs inefficiently acquired the virion tegument and secondary envelope. These defects were specific to infection in ECs and not observed in fibroblasts infected with UL133-UL138NULL virus, suggesting an EC-specific requirement for the UL133-UL138 locus for late stages of replication. To our knowledge, the UL133-UL138 locus represents the first cell-type-dependent, postentry tropism determinant required for viral maturation.  相似文献   

17.
Temperature-sensitive (ts) mutants were isolated from the baculovirus Autographa californica (alfalfa looper) MNPV, grown in Spodoptera frugiperda (fall armyworm) cells in the presence of N-methyl-N′-nitro-N-nitrosoguanidine. Of 567 plaque isolates screened, 27 were temperature sensitive (ts), representing a mutation frequency of 4.8%. Ten ts mutants were studied in detail: six failed to yield nonoccluded virus at 33°C (NOV mutants), whereas the other four produced nonoccluded virus but were restricted in formation of polyhedra at 33°C (Poly mutants). One of the six NOV mutants failed to synthesize viral DNA. Reversion and leak frequencies were determined, and the mutants were assorted into complementation groups based on the yield of polyhedrin synthesis in cells coinfected with pairs of mutants at 33°C, as measured by radioimmunoassay. For NOV mutants, complementation indexes were also based on virus yield and were consistent with those based on polyhedrin synthesis. Nine mutants were assorted into five complementation groups. One mutant remained unclassified.  相似文献   

18.
Summary Temperature-sensitive mutants have been isolated from Drosophila Sigma virus, a Rhabdovirus inducing CO2 sensitivity in Drosophila melanogaster. We have studied the decay of infectious centers at non permissive temperature. The proportion of destroyed infectious centers is the same for the wild type, ts+, and for ts9. On the opposite, it is more important for ts 4. Temperature-sensitive function of ts 4 appears necessary to the viral genome replication. With the three clones, ts+, ts 4 and ts 9, we have obtained stabilized Drosophila females able to transmit Sigma virus to their whole progeny. We have tried to see in each case, if stabilized flies could transmit the virus to their progeny at non permissive temperature. Flies stabilized with ts+ and ts 9 can, flies stabilized with ts 4 cannot. Therefore two categories of mutants are defined: those that are transmitted hereditarily. at non permissive temperature, and not blocked in genome replication. Those that are blocked in genome replication and not transmitted. When the virus cannot replicate, the divisions in the germ line cells dilute the viral genomes. The consequence will be a real healing of germ line cells, and then a break in hereditary transmission by stabilized flies. All the results with temperature-sensitive mutants are coherent with this hypothesis.
Étude de mutants thermosensibles du virus Sigma

Mémoire présenté par F. Gros  相似文献   

19.
The putative envelope glycoproteins of hepatitis C virus (HCV) likely play an important role in the initiation of viral infection. Available information suggests that the genomic regions encoding the putative envelope glycoproteins, when expressed as recombinant proteins in mammalian cells, largely accumulate in the endoplasmic reticulum. In this study, genomic regions which include the putative ectodomain of the E1 (amino acids 174 to 359) and E2 (amino acids 371 to 742) glycoproteins were appended to the transmembrane domain and cytoplasmic tail of vesicular stomatitis virus (VSV) G protein. This provided a membrane anchor signal and the VSV incorporation signal at the carboxy termini of the E1 and E2 glycoproteins. The chimeric gene constructs exhibited expression of the recombinant proteins on the cell surface in a transient expression assay. When infected with a temperature-sensitive VSV mutant (ts045) and grown at the nonpermissive temperature (40.5°C), cells transiently expressing the E1 or E2 chimeric glycoprotein generated VSV/HCV pseudotyped virus. The resulting pseudotyped virus generated from E1 or E2 surprisingly exhibited the ability to infect mammalian cells and sera derived from chimpanzees immunized with the homologous HCV envelope glycoproteins neutralized pseudotyped virus infectivity. Results from this study suggested a potential functional role for both the E1 and E2 glycoproteins in the infectivity of VSV/HCV pseudotyped virus in mammalian cells. These observations further suggest the importance of using both viral glycoproteins in a candidate subunit vaccine and the potential for using a VSV/HCV pseudotyped virus to determine HCV neutralizing antibodies.  相似文献   

20.
Quantitative assays for the morphological transformation of 3T3 Swiss mouse cells by herpes simplex type 2 virus (HSV-2) were employed to examine the effect on cell transformation of chemical carcinogens and suspected carcinogens. Exposure of the cells to the chemical compound, followed by virus infection, resulted in enhancement of transformation when compared to that observed with chemical or virus alone. Enhancement occurred in tests utilizing either UV light-inactivated HSV-2 (strain 333) or a temperature-sensitive (ts) mutant of HSV-2 [A8(293)]. A series of seven ts-mutants were tested and exhibited varying degrees of transformation. Enhancement of transformation occurred in cells treated with hydrazine (HZ) and 1,2-dimethylhydrazine (SDMH). No enhancement occurred when cells were treated with monomethylhydrazine, 1,1-dimethylhydrazine and the jet fuels JP-5, JP-10, RJ-4 and RJ-5. A strong time dependence after treatment was demonstrated with some enhancement seen at 6 h after chemical treatment but the greatest enhancement appeared when virus infection began after 24 h of chemical exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号