首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In laboratory testing, egg hatch of Tylenchulus semipenetrans was stimulated at concentrations of 1 and 10 μg/ml aldicarb solution and inhibited at 50 and 100 μg/ml. Aldicarb was more inhibitory to egg hatch than the aldicarb sulfoxide and the aldicarb sulfone. Inhibition of hatch at the high concentration was associated with delays in the molting processes, lack of larval movement within the egg, and delays in embryonic development. Nematode motility was reduced at 10, 50, and 100 μg/ml of aldicarb and aldicarb sulfoxide solution, and at 50 and 100 μg/ml aldicarb sulfone. Male development was retarded at 10 μg/nrl and almost completely inhibited at 50 and 100 μg/ml of the three chemicals. In greenhouse tests, female development antl reproduction on roots of citrus seedlings were suppressed by aldicarb at rates of 2.6 μg/ml and completely inhibited at 10.6 μg/ml of soil solution during a 50-day experimental period. Under field conditions, there was little systemic movement of aldicarb into roots located outside treated areas. Aldicarb reduced the nematode larvae and the female adult population in the second year after the second treatment. There were no differences in egg hatch and sex ratio of citrus nematodes between treated and nontreated roots.  相似文献   

2.
Foliar applications of oxamyl prevented nematodes from invading roots of diploid bananas. One spray with 1,250 μg/ml was more effective than 1, 2, or 3 sprays with 625 μg/ml applied at 5-day intervals. After 3 sprays with 1,250 μg/ml, invasion may be prevented for up to 4 weeks and possibly longer. Washing roots after oxamyl treatments prevented nematicidal control. When applied to nematode-infected plants, three sprays of oxamyl decreased nematode populations in the roots.  相似文献   

3.
Foliar applications of ethyl 4-(methylthio)-m-tolyl isopropylphosphoramidate (phenamiphos) or S-methyl 1-(dimethylcarbamoyl)-N-[(methylcarbamoyl)oxy] thioformimidate (oxamyl) retarded infection of sugarbeets by the sugarbeet nematode, Heterodera schachtii under greenhouse conditions. Maximum nematode control was obtained when treatments were applied previous to, or at the time of, inoculation of plants with the nematode. Consecutive foliar applications inhibited nematode development, with four applications giving greatest inhibition of maturation. A treatment with either phenamiphos or oxamyl at 2,000 μg/ml (ppm) resulted in the greatest increase in plant growth, and 4,000 μg/ml gave the best nematode control. A treatment of 4,000 μg/ml of either phenamiphos or oxamyl was phytotoxic. However, this was due to container confinement of the chemical since phytotoxicity at this rate has not been observed under field conditions.  相似文献   

4.
The nematostatic activity of oxamyl, methyl-N'',N''-dimethy]-N-hydroxy-l-thiooxamimidate (oxamyl-oxime) and N,N-dimethyl-l-cyanoformamide (DMCF) was studied by immersing 10 Meloidogyne incognita second-stage juveniles into aqueous solutions of various concentrations of each chemical. At concentrations of 500 to 8,000 μg/ml, oxamyl quickly immobilized immersed juveniles. In all other concentrations studied (down to 4 μg/ml), oxamyl stopped or reduced movement of juveniles within 24 hours. DMCF also quickly immobilized juveniles at concentrations of 4,000 and 8,000 μg/ml and reduced movement at 2,000 μg/ml. Lower concentrations had no observed effect on movement. In solutions of the oxime from 2,000 to 8,000 μg/ml, some reduction of movement was observed, but most juveniles maintained some motion over a period of 24 hours. Juveniles were transferred to water from 4,000 μg/ml solutions of oxamyl and DMCF after various intervals of time in order to determine the effect of duration of exposure to the chemicals on the ability of the immobilized juveniles to recover normal motion. Some recovery was observed even after 24 hours of exposure to DMCF, but none after exposure to oxamyl for longer than 40 minutes.  相似文献   

5.
Oxamyl was applied to both uncut and cut potato tubers in aqueous solutions of 1,000 to 32,000 μg/ml. Emergence in greenhouse pots was delayed for a day or more after soaking cut tuber pieces in 32,000 μg/ml. After 10 weeks plant growth was greater, relative to the control, when Pratylenchus penetrans-infested soil was planted with cut tubers soaked for 20 minutes in 32,000 μg/ml. Soaking for 40 minutes did not increase nematode control nor affect plant growth. Oxamyl applied to tubers at 1,000 μg/ml reduced the numbers of P. penetrans in the soil by 20% and in the roots by 35%; at 32,000 μg/ml, the numbers of P. penetrans in the soil were reduced by 73-86% and in the roots by 86-97%. The numbers of P. penetrans did not increase in the roots of plants developed from cut tubers soaked in 32,000 μg/ml over a period of 10 weeks, but numbers of lesion nematodes had begun to increase in the soil.  相似文献   

6.
The toxic effects of sublethal concentrations ofaldicarb were studied on eggs and second-stage larvae and males of Heterodera schachtii and second-stage larvae only of Meloidogyne javanica in a quartz sand substrate. Aldicarb was more toxic to eggs of H. schachtii than to those of M. javanica. Complete suppression of hatching occurred between 0.48 and 4.8 μg/ml aldicarb for H. schachtii whereas 100% inhibition of hatch of M. javanica occurred between 4.8 and 48.0 μg/ml. M. javanica hatch was stimulated at 0.48 μg/ml aldicarb. Migration of second-stage larvae of H. schachtii and M. javanica in sand columns was inhibited under continuous exposure to 1 μg/ml aldicarb. Infection of sugarbeet and tomato seedlings by larvae was inhibited at 1 μg/ml. H. schachtii males failed to migrate toward nubile females at 0.01 μg/ml aldicarb. This was partially confirmed in a field study in which adding aldicarb to soil resulted in fewer females being fertilized.  相似文献   

7.
An in vitro bioassay with a 96-well microtiter plate was used to study the effect of lectins on burrowing nematode penetration of citrus roots. In each well, one 4-mm root segment, excised from the zone of elongation of rough lemon roots, was buried in 0.88 g dry sand. Addition of a Radopholus citrophilus suspension containing ca. 300 nematodes in 50 μ1 test solution completely moistened the sand in each well. The technique assured uniform treatment concentration throughout the medium. Within 16-24 hours, burrowing nematodes penetrated citrus root pieces, primarily through the cut ends. The lectins (100 μg/ml) Concanavalin A (Con A), soybean agglutinin (SBA), wheat germ agglutinin (WGA), and Lotus tetragonolobus agglutinin (LOT) stimulated an increase in penetration of citrus root segments by Radopholus citrophilus. Concentrations as low as 12.5 μg/ml Con A, LOT, and WGA stimulated burrowing nematode penetration of citrus roots. Heat denaturation of the lectins reversed their effect on penetration; however, incubation of nematodes in lectin (25 μg/ml) with 25 mM competitive sugars did not. The reason for enhanced penetration associated with lectins is unclear.  相似文献   

8.
Twelve soil drenches over a period of 30 days with DBCP concentrations of 40 μg/ml did not completely prevent infection of tomato plants by root-knot nematode juveniles. Repeated DBCP drenches of 40 μg/ml halted gall development during the drenches, but 10 days after drenching was discontinued galls were apparent. DBCP drenches at 200 μg/ml prevented tomato root development, and 40 μg/ml slowed it. Ten μg/ml increased the height of root-knot-infected plants, but not their top weights. Treated plants were lanky. Protective drenches of 2.5 to 40 μg/ml of DBCP decreased nematode populations and increased fruitfulness. DBCP as a therapeutant reduced the incidence of galling on new roots and halted increases in gall size on previously infected roots but did not improve fruitfulness or plant size significantly.  相似文献   

9.
Seed treatments of improved Kentucky bluegrass and fescue cultivars with carbofuran, oxamyl, and phenamiphos dissolved in acetone reduced seedling emergence, but treatments were not extremely phytotoxic. Phenamiphos was the most toxic, particularly at the 5,000 μg/ml concentration. Fresh weight of grass clippings 35 d following planting generally was greater in treatments than in controls except for the 5,000 μg/ml phenamiphos treatments on certain cultivars. All nematicide seed treatments reduced the number of Pratylenchus penetrans subsequently recovered from Pennlawn creeping red fescue roots 4-5 wk after treatment. The infusion of nematicides into grass seed with organic solvents appears to be an effective means of reducing nematode damage to turfgrass seedling with little environmental hazard.  相似文献   

10.
Aqueous solutions of 5-500 μg/ml aldicarb inhibited hatching of Heterodera schachtii. Addition of hatching agents, zinc chloride, or sugarbeet root diffusate, to the aldicarb solutions did not decrease the inhibition of hatching. When cysts were removed from the aldicarb solufions and then treated for 4 wk in sugarbeet root diffusate, larvae hatched and emerged. Treatments of newly hatched larvae of H. schachtii with 5-100 μg/ml aldicarb depressed later development of larvae on sugarbeet (Beta vulgaris). Similar treatments with aldicarb sulfoxide had less effect on larval development, and aldicarb sulfone had no effect. Numbers of treated larvae that survived and developed were inversely proportional to concentration (0.1-5.0 μg/ml) and duration (0-14 days) of aldicarb treatments. Development of H. schachtii on sugarbeet grown in aldicarb-treated soil was inversely proportional to the concentration of aldicarb in the tested range of 0.75 - 3.0 μg aldicarb/g of soil. Transfer of nematode-infected plants to soil with aldicarb retarded nematode development, whereas transfer of plants first grownin treated soil to nematode-infested soil only slightly suppressed nematode development. Development of H. schachtii was inhibited in slices of storage roots of table beet (B. vulgaris), sugarbeet and turnip, (Brassica rapa), that had grown in soil treated with aldicarb.  相似文献   

11.
The population dynamics of the citrus nematode, Tylenchulus semipenetrans, on navel orange trees was studied from January 2012 to September 2012. The highest population of the citrus nematode appeared in May 2012 in the soil of navel orange trees, and the highest nematode population in roots appeared in August in the same year. Control of the citrus nematode by using smashed garlic cloves, powders of olive leaves and orange peels, an organic manure, chicken litter, either alone or in combination with a biocide, and sincocin compared to two nematicides, fenamiphos 10%G and oxamyl 24%L, was carried out in April 2012 .The best results for controlling the citrus nematode were obtained four months after the addition of the tested materials in soil; the highest nematode percentages reduction obtained were 90.9%, for smashed garlic cloves, and 72.8%, for chicken litter. On roots, the best results were 92.3% for garlic cloves and 92.0% for oxamyl, one month after application. The concomitant treatments of sincocin plus garlic clove or sicocin plus chicken litter were most effective in managing T. semipenetrans on navel orange trees after four and five months of application.  相似文献   

12.
The root-knot nematode Meloidogyne incognita was monoxenically cultured on excised roots of soybean cv. Pickett and tomato cv. Rutgers in agar media containing either 0 to 1,600 μg/ml ammonium nitrate or 0 to 100 μg/ml urea. Observations with scanning and transmission electron microscopy indicated that an elevated concentration of ammonium nitrate or urea inhibited giant cell formation and suppressed nematode development in the infected soybean roots. In the tomato roots, concentrations of ammonium nitrate above 400 μg/ml or urea above 25 μg/ml inhibited giant cell formation and nematode development. Coincident with the nitrogen concentrations that suppressed giant cell formation was the appearance of electron-dense spherical bodies in the cortical parenchyma cells of both the soybean and tomato roots. These bodies, which were 1-4 μm in diameter, appeared to form in the cytoplasm and migrate to the cell vacuole.  相似文献   

13.
Aqueous solutions of technical-grade phenamiphos [ethyl 3-methyl-4-(methylthio) phenyl (1-methylethyl) phosphoratnidale] were used in hatching chambers to test, under laboratory tory conditions, the effect of phenamiphos on the hatching and movement of Meloiclogyne javanica and Heterodera schachtii. Hatch of M. javanica and H. schachtii eggs was depressed 70 and 88% by nematicide at 0.48 and 4.80 μg/ml, respectively. The infectivity of second-stage larvae of both species was affected by concentrations as low as 0.01 μg/ml. At least 0.5 μg/ml was required to decrease the movement of larvae of M. javanica and H. schachtii. To decrease the movement of H. schachtii males toward females, 10 μg/ml was required. In a field experiment using a 15% granular formulation, 5 kg/ha a.i. significantly reduced infection of sugarbeet roots by H. schachtii.  相似文献   

14.
Egg hatch of Meloidogyne exigua was significantly inhibited in 14 days pretreatment with aldicarb, ethoprop, or carbofnran at concentrations higher than 0.1 μg/ml; these eggs were found to delay hatch in 19 days posttreatment in ethoprop. Aldicarb and carbofuran solutions at concentrations greater than 0.1 μg/ml significantly decreased the motility and the life span of the second-stage juveniles; aldicarb was more toxic than carbofuran to the nematode. In a field test, aldicarb (Temik 10G), ethoprop (Mocap 10G), and carbofuran (Furadan 5G and Furadan Liquid 350F) significantly decreased M. exigua populations.  相似文献   

15.
The sting nematode, Belonolaimus longicaudatus, was associated with poor growth of citrus in a central Florida nursery. Foliage of trees was sparse and chlorotic. Affected rootstocks included Changsha and Cleopatra mandarin orange; Flying Dragon, Rubidoux, and Jacobsen trifoliate orange; Macrophylla and Milam lemon; Palestine sweet lime; sour orange; and the hybrids - Carrizo, Morton, and Rusk citrange and Swingle citrumelo. Root symptoms included apical swelling, development of swollen terminals containing 3-5 apical meristems and hyperplastic tissue, coarse roots, and a reduction in the number of fibrous roots. Population densities as high as 392 sting nematodes per liter soil were detected, with 80% of the population occurring in the top 30 cm of soil; however, nematodes were detected to 107 cm deep. Although an ectoparasite, the nematode was closely associated with citrus root systems and was transported with bare root nursery stock. Disinfestation was accomplished by hot water treatment (49 C for 5 minutes).  相似文献   

16.
The motility of Meloidogyne incognita second-stage juveniles (J2) and their ability to induce root galls in tomato were progressively decreased upon exposure to nicotine at concentrations of 1-100 μg/ml. EC₅₀ values ranged from 14.5 to 22.3 μg/ml, but J2 motility and root-gall induction were not eliminated at 100 μg/ml nicotine. Nicotine in both resistant NC 89 and susceptible NC 2326 tobacco roots was increased significantly 4 days after exposure to M. incognita. The increase was greater in resistant than in susceptible tobacco. Root nicotine concentrations were estimated to be 661.1-979.1 μg/g fresh weight. More M. incognita were detected in roots of susceptible than in roots of resistant tobacco. Numbers of nematodes within resistant roots decreased as duration of exposure to M. incognita was increased from 4 to 16 days. Concentrations of nicotine were apparently sufficient to affect M. incognita in both susceptible and resistant tobacco roots. Localization of nicotine at infection sites must be determined to ascertain its association with resistance.  相似文献   

17.
Soaking potato tuber pieces for 15 min in 8,000 μg/ml of oxamyl just before planting reduced the number of Globodera rostochiensis cysts that developed on potato roots, but this treatment was phytotoxic. Five foliar applications of 1.12 kg a.i./ha of oxamyl or carbofuran at 10-day intervals beginning when 90% of the plants had emerged suppressed increase in G. rostochiensis densities. Similar foliar applications of phenamiphos were ineffective in controlling G. rostochiensis. Soil applications (in the row at planting) of aldicarb, carbofuran, phenamiphos, ethoprop, and oxamyl at 5.6 kg a.i./ha reduced the numbers of white females that developed on potato roots, but only those treatments involving aldicarb and oxamyl suppressed G. rostochiensis population increase. Combined soil and foliar treatments did not provide any advantage over soil treatment alone, as soil applications of 5.6 kg a.i./ha alone were equal to, or better than, combined soil (3.4 kg a.i./ha) and foliar (2.2 kg a.i./ha) applications in controlling G. rostochiensis.  相似文献   

18.
The influence of two vesicular-arbuscular mycorrhizal fungi and phosphorus (P) nutrition on penetration, development, and reproduction by Meloidogyne incognita on Walter tomato was studied in the greenhouse. Inoculation with either Gigaspora margarita or Glomus mosseae 2 wk prior to nematode inoculation did not alter infection by M. incognita compared with nonmycorrhizal plants, regardless of soil P level (either 3 μg [low P] or 30 μg [high P] available P/g soil). At a given soil P level, nematode penetration and reproduction did not differ in mycorrhizal and nonmycorrhizal plants. However, plants grown in high P soil had greater root weights, increased nematode penetration and egg production per plant, and decreased colonization by mycorrhizal fungi, compared with plants grown in low P soil. The number of eggs per female nematode on mycorrhizal and nonmycorrhizal plants was not influenced by P treatment. Tomato plants with split root systems grown in double-compartment containers which had either low P soil in both sides or high P in one side and low P in the other, were inoculated at transplanting with G. margarita and 2 wk later one-half of the split root system of each plant was inoculated with M. incognita larvae. Although the mycoorhizal fungus increased the inorganic P content of the root to a level comparable to that in plants grown in high P soil, nematode penetration and reproduction were not altered. In a third series of experiments, the rate of nematode development was not influenced by either the presence of G. margarita or high soil P, compared with control plants grown in low P soil. These data indicate that supplemental P (30 μ/g soil) alters root-knot nematode infection of tomato more than G. mosseae and G. margarita.  相似文献   

19.
The interaction among Glomus intraradices, Meloidogyne incognita, and cantaloupe was studied at three soil phosphorus (P) levels in a greenhouse. All plants grew poorly in soil not amended with P, regardless of mycorrhizal or nematode status. In soil amended with 50 μg P /g soil, M. incognita suppressed the growth of nonmycorrhizal plants by 84%. In contrast, growth of mycorrhizal plants inoculated with M. incognita was retarded by only 21%. A similar trend occurred in plants grown in soil with 100 μg P /g soil. Mycorrhizal infection had no effect on the degree of root-knot gall formation and did not affect the number of nematode eggs per egg mass. Mineral levels in plant shoots generally declined as soil P levels increased and were not significantly influenced by G. intraradices or M. incognita.  相似文献   

20.
Laboratory studies were conducted to evaluate effects of selected herbicides on hatching of free eggs of the soybean cyst nematode, Heterodera glycines. The herbicides used were Atrazine (atrazine), Basagran (bentazon), Bladex (cyanazine), Blazer (acifluorfen), Command (clomazone), Lasso (alachlor), Sonalan (ethalfluralin), and Treflan (trifluralin). Treatments comprised two concentrations of commercial herbicide formulations and deionized water and 3.14 mM zinc sulfate as negative and positive controls, respectively. Eggs were extracted from females and cysts, surface disinfested, and incubated in herbicide or control solutions at 25 ± 2 C in darkness. Hatched second-stage juveniles were counted every other day for 24 days. Hatching of H. glycines eggs in 50 and 500 μg/ml Blazer was 42 to 67% less than that in deionized water and 6l to 78% less than that in zinc sulfate solution. Zinc sulfate significantly increased hatching activity in 50 μg/ml but not 500 μg/ml Blazer. The other herbicides tested at various concentrations had no significant effect on egg hatching. The specific component of Blazer inhibiting egg hatching is unknown. Suppression of hatching by Blazer indicates that this postemergence soybean herbicide may have a potential role in managing H. glycines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号