首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two equations have been developed that describe the interrelationship of the clinically measurable variables of the human systemic arterial system. An approximation method is given for their simultaneous solution for systolic and diastolic pressures in terms of heart rate, cardiac output, total peripheral resistance, and aortic distensibility. In this way, blood pressures were calculated for various clinically important and didactically useful situations. The effects on systolic and diastolic pressures due to changing either cardiac output or peripheral resistance or heart rate or aortic distensibility alone are shown. The effects on pulse pressure of varying cardiac output and peripheral resistance while holding mean arterial pressure constant are demonstrated. Compensatory mechanisms in hypertension and exercise are explored. Opinions and conclusions contained in this report are those of the author. They are not to be construed as necessarily reflecting the views or the endorsement of the Navy Department.  相似文献   

2.
We studied the effects of HCI-induced metabolic acidaemia on cardiac output, contractile function, myocardial blood flow, and myocardial oxygen consumption in nine unanaesthetized newborn lambs. Through a left thoracotomy, catheters were placed in the aorta, left atrium and coronary sinus. A pressure transducer was placed in the left ventricle. Three to four days after surgery, we measured cardiac output, dP/dt, left ventricular end diastolic and aortic mean blood pressures, heart rate, aortic and coronary sinus blood oxygen contents, and left ventricular myocardial blood flow during a control period, during metabolic acidaemia, and after the aortic pH was restored to normal. We calculated systemic vascular resistance, myocardial oxygen consumption and left ventricular work. Acidaemia was associated with reduction in cardiac output, maximal dP/dt, and aortic mean blood pressure. Left ventricular end diastolic pressure and systemic vascular resistance increased, and heart rate did not change significantly. The reduction in myocardial blood flow and oxygen consumption was accompanied by fall in cardiac work. Cardiac output returned to control levels after the pH had been normalized but maximal dP/dt was incompletely restored. Myocardial blood flow and oxygen consumption increased beyond control levels. This study demonstrates that HCI-induced metabolic acidaemia in conscious newborn lambs is associated with a reduction in cardiac output which could have been mediated by the reduction in contractile function and/or the increase in systemic vascular resistance. The decreases in myocardial blood flow and oxygen consumption appear to reflect diminished cardiac work. The restoration of a normal cardiac output after normalization of the pH appears to have resulted from the increases in heart rate and left ventricular filling pressures in conjunction with an incomplete restoration of contractile function.  相似文献   

3.
A correlation function of cardiac output and mean arterial pressure is presented for the human cardiovasular system. The function is developed using an energy transfer balance for a unit volume of blood which flows in the vascular system between the aorta and the vena cava. The energy transfer balance equates the energy utilized in the vascular system to the algebraic sum of the pulse energy, the kinetic energy and the potential energy in the vascular system. Each of these energies is defined in terms of the physiology of the cardiovascular system. Pulse energy is defined in terms of the work done by the heart on the aorta. Kinetic energy is defined in terms of the cardiac output and the potential energy is defined in terms of the diastolic pressure in the aorta. The utilization energy is equivalent to the energy transfer in the work done by the blood on the viscoelastic blood vessels, and to the frictional energy loss due to drag on the blood mass as it flows through the vascular system.The correlation function of cardiac output with mean arterial pressure demonstrates that the cardiac output is a double-valued function of the mean arterial pressure. The function also varies with the ratio of the fourth power of the Shear Modulus of the blood vessels to the third power of Young's Modulus. The function shows that mean arterial pressure minimizes for a cardiac output of approximately 51 per min when one holds the ratio of the elastic moduli constant. Further discussion indicates how clinicians can use the function, developed in this research, to interpret the experimental data obtained from cardiac output studies.  相似文献   

4.
Left ventricle (LV) function and systemic hemodynamic changes after coronary artery embolization by 15 microns radioactive microspheres were studied in anesthetized rats. Selective coronary embolization was produced by microsphere injection during ascending aorta occlusion in closed chest animal by using "L"-shaped wire. Maximal pressure (Pmax) developed was evaluated during ascending aorta occlusion. Coronary embolization evoked dose-dependent reduction in Pmax and dP/dtmax and then decrease in basal LV systolic pressure. dP/dt/P, with parallel increase in end diastolic LV pressure. Changes of cardiac output were bidirectional: after administration of relatively small amount of microspheres cardiac output increased. This method can be used for producing quantitative myocardial ischemia and we suggest that it may be a suitable model of the chronic heart failure.  相似文献   

5.
The role of beta-adrenergic agonists, such as isoproterenol, on vascular capacitance is unclear. Some investigators have suggested that isoproterenol causes a net transfer of blood to the chest from the splanchnic bed. We tested this hypothesis in dogs by measuring liver thickness, cardiac output, cardiopulmonary blood volume, mean circulatory filling pressure, portal venous, central venous, pulmonary arterial, and systemic arterial pressures while infusing norepinephrine (2.6 micrograms.min-1.kg-1), or isoproterenol (2.0 micrograms.min-1.kg-1), or histamine (4 micrograms.min-1.kg-1), or a combination of histamine and isoproterenol. Norepinephrine (an alpha- and beta 1-adrenergic agonist) decreased hepatic thickness and increased mean circulatory filling pressure, cardiac output, cardiopulmonary blood volume, total peripheral resistance, and systemic arterial and portal pressures. Isoproterenol increased cardiac output and decreased total peripheral resistance, but it had little effect on liver thickness or mean circulatory filling pressure and did not increase the cardiopulmonary blood volume or central venous pressure. Histamine caused a marked increase in portal pressure and liver thickness and decreased cardiac output, but it had little effect on the estimated mean circulatory filling pressure. Isoproterenol during histamine infusions reduced histamine-induced portal hypertension, reduced liver size, and increased cardiac output. We conclude that the beta-adrenergic agonist, isoproterenol, has little influence on vascular capacitance or liver volume of dogs, unless the hepatic outflow resistance is elevated by agents such as histamine.  相似文献   

6.
The systemic and regional hemodynamic effects of endothelin (ET), a novel endothelial derived vasoconstrictor peptide were studied in Wistar Kyoto rats. A bolus of 1 nmol/Kg ET intravenously induced a transient 43% decrease in blood pressure associated with a 57% decrease in systemic resistance and a 30% increase in cardiac output (p less than 0.01 for all parameters). This was followed by an increase of 20% in arterial pressure and of 71% in systemic resistance and a decrease of 30% in cardiac output at 10 minutes. The initial fall in blood pressure was not abolished by pretreatment with verapamil, captopril, indomethacin, ketanserin, atropine, methylene blue or ethanol. Verapamil abolished the hypertensive phase by markedly decreasing cardiac output. ET had selective effects on the arterial tree; during the hypotensive phase it caused a transient increase in blood flow in the carotid and femoral arteries (+41% and +83% respectively, p less than 0.01) but a decrease in flow in the renal and mesenteric arteries (-53% and -44% respectively, p less than 0.05). Accordingly, there was a decrease in resistance in the carotid and femoral beds (-55% and -67% respectively, p less than 0.01) and an increase in resistance in the renal and mesenteric beds (+102%; p less than 0.01 and +23%; p = N.S. respectively). Subsequently there was an increase in resistance in all vascular beds to variable degrees. The maximal increase in resistance was in the renal bed (+156%). Thus, ET causes initially a potent systemic vasorelaxation and an increase in cardiac output later progressing to systemic vasoconstriction and a decrease in cardiac output. The initial vasodilation is selective, appearing in musculocutaneous beds but not in visceral beds.  相似文献   

7.
目的:监测中国南极冰盖考察预选队员心血管系统随海拔增高的变化,探讨筛查低氧易感队员和急性高原病的防治。方法:用无创血流动力学监护仪和十二导联心电图机,在北京(40 m)、拉萨(3 650 m)、羊八井(4 300 m)对第25次和26次南极冰盖考察预选队员心血管功能进行连续动态性监测。结果:随着海拔的增高,心率、收缩压、舒张压、平均动脉压、外周血管阻力、外周血管阻力指数显著升高(P0.05),心输出量、心指数、搏出量、搏出指数、加速度指数、速度指数、左心射血时间显著降低(P0.05),预射血期呈降低趋势(P0.05)。结论:随着海拔的增高,预选队员的外周血管阻力显著升高,左心泵血和收缩功能减弱且与Q-TC间期呈负相关。  相似文献   

8.
Based on observations that as cardiac output (as determined by an artificial pump) was experimentally increased the right atrial pressure decreased, Arthur Guyton and coworkers proposed an interpretation that right atrial pressure represents a back pressure restricting venous return (equal to cardiac output in steady state). The idea that right atrial pressure is a back pressure limiting cardiac output and the associated idea that "venous recoil" does work to produce flow have confused physiologists and clinicians for decades because Guyton's interpretation interchanges independent and dependent variables. Here Guyton's model and data are reanalyzed to clarify the role of arterial and right atrial pressures and cardiac output and to clearly delineate that cardiac output is the independent (causal) variable in the experiments. Guyton's original mathematical model is used with his data to show that a simultaneous increase in arterial pressure and decrease in right atrial pressure with increasing cardiac output is due to a blood volume shift into the systemic arterial circulation from the systemic venous circulation. This is because Guyton's model assumes a constant blood volume in the systemic circulation. The increase in right atrial pressure observed when cardiac output decreases in a closed circulation with constant resistance and capacitance is due to the redistribution of blood volume and not because right atrial pressure limits venous return. Because Guyton's venous return curves have generated much confusion and little clarity, we suggest that the concept and previous interpretations of venous return be removed from educational materials.  相似文献   

9.
In the present study 36 police officers were exposed to a psychological stressor (IQ quiz) and to cold pressor stress while several cardiovascular variables were monitored. Impedance cardiography was used to provide measures of heart rate, stroke volume, cardiac output, myocardial contractility, and total peripheral resistance. In addition, measures of systolic and diastolic blood pressure and peripheral skin temperature were obtained. A multivariate analysis of variance (MANOVA) indicated that significant increases in diastolic and systolic blood pressure during the cold pressor test were mediated by large increases in total peripheral resistance, whereas blood pressure elevation during the IQ quiz were accompanied by significant increases in heart rate and, to a lesser extent, cardiac output. Peripheral skin temperature decreased in response to each stressor. Additional analysis indicated a degree of stimulus specificity for several variables. For example, diastolic blood pressure showed greater increases to cold pressor than quiz, whereas systolic blood pressure increased more with the psychological than the physical stressor. Directional fractionation occurred for both myocardial contractility and cardiac output.  相似文献   

10.
In the present study 36 police officers were exposed to a psychological stressor (IQ quiz) and to cold pressor stress while several cardiovascular variables were monitored. Impedance cardiography was used to provide measures of heart rate, stroke volume, cardiac output, myocardial contractility, and total peripheral resistance. In addition, measures of systolic and diastolic blood pressure and peripheral skin temperature were obtained. A multivariate analysis of variance (MANOVA) indicated that significant increases in diastolic and systolic blood pressure during the cold pressor test were mediated by large increases in total peripheral resistance, whereas blood pressure elevation during the IQ quiz were accompanied by significant increases in heart rate and, to a lesser extent, cardiac output. Peripheral skin temperature decreased in response to each stressor. Additional analysis indicated a degree of stimulus specificity for several variables. For example, diastolic blood pressure showed greater increases to cold pressor than quiz, whereas systolic blood pressure increased more with the psychological than the physical stressor. Directional fractionation occurred for both myocardial contractility and cardiac output.  相似文献   

11.
The left ventricular power (LVP), stroke volume (SV), cardiac output (Q), systolic blood pressure (BPs), and the overall physical activity of schoolgirls attending gymnasium classes with in-depth instruction in specific subjects were lower than in those attending general education classes with the standard curriculum. There were no differences in heart rate (HR), specific peripheral resistance (SPR), or diastolic blood pressure. The stroke index (SI) and cardiac index (CI) were, respectively, moderately and strongly correlated with the degree of motor activity.  相似文献   

12.
During moderate actual or simulated hemorrhage, as cardiac output decreases, reductions in systemic vascular conductance (SVC) maintain mean arterial pressure (MAP). Heat stress, however, compromises the control of MAP during simulated hemorrhage, and it remains unknown whether this response is due to a persistently high SVC and/or a low cardiac output. This study tested the hypothesis that an inadequate decrease in SVC is the primary contributing mechanism by which heat stress compromises blood pressure control during simulated hemorrhage. Simulated hemorrhage was imposed via lower body negative pressure (LBNP) to presyncope in 11 passively heat-stressed subjects (increase core temperature: 1.2 ± 0.2°C; means ± SD). Cardiac output was measured via thermodilution, and SVC was calculated while subjects were normothermic, heat stressed, and throughout subsequent LBNP. MAP was not changed by heat stress but was reduced to 45 ± 12 mmHg at the termination of LBNP. Heat stress increased cardiac output from 7.1 ± 1.1 to 11.7 ± 2.2 l/min (P < 0.001) and increased SVC from 0.094 ± 0.018 to 0.163 ± 0.032 l·min(-1)·mmHg(-1) (P < 0.001). Although cardiac output at the onset of syncopal symptoms was 37 ± 16% lower relative to pre-LBNP, presyncope cardiac output (7.3 ± 2.0 l/min) was not different than normothermic values (P = 0.46). SVC did not change throughout LBNP (P > 0.05) and at presyncope was 0.168 ± 0.044 l·min(-1)·mmHg(-1). These data indicate that in humans a cardiac output adequate to maintain MAP while normothermic is no longer adequate during a heat-stressed-simulated hemorrhage. The absence of a decrease in SVC at a time of profound reductions in MAP suggests that inadequate control of vascular conductance is a primary mechanism compromising blood pressure control during these conditions.  相似文献   

13.
We tested the hypothesis that the changes in venous tone induced by changes in arterial blood oxygen or carbon dioxide require intact cardiovascular reflexes. Mongrel dogs were anesthetized with sodium pentobarbital and paralyzed with veruronium bromide. Cardiac output and central blood volume were measured by indocyanine green dilution. Mean circulatory filling pressure, an index of venous tone at constant blood volume, was estimated from the central venous pressure during transient electrical fibrillation of the heart. With intact reflexes, hypoxia (arterial PaO2 = 38 mmHg), hypercapnia (PaCO2 = 72 mmHg), or hypoxic hypercapnia (PaO2 = 41; PaCO2 = 69 mmHg) (1 mmHg = 133.32 Pa) significantly increased the mean circulatory filling pressure and cardiac output. Hypoxia, but not normoxic hypercapnia, increased the mean systemic arterial pressure and maintained the control level of total peripheral resistance. With reflexes blocked with hexamethonium and atropine, systemic arterial pressure supported with a constant infusion of norepinephrine, and the mean circulatory filling pressure restored toward control with 5 mL/kg blood, each experimental gas mixture caused a decrease in total peripheral resistance and arterial pressure, while the mean circulatory filling pressure and cardiac output were unchanged or increased slightly. We conclude that hypoxia, hypercapnia, and hypoxic hypercapnia have little direct influence on vascular capacitance, but with reflexes intact, there is a significant reflex increase in mean circulatory filling pressure.  相似文献   

14.
The circulatory and metabolic effects of inhalation of oxygen in high concentration were investigated in 50 patients with acute myocardial infarction. The heart rate, arterial blood pressure, cardiac out-put, blood gas tensions, pH, and lactate and pyruvate levels were measured. In general, oxygen inhalation produced a fall in cardiac output and stroke volume and a rise in blood pressure and systemic vascular resistance. In a small number of patients with very low cardiac out-puts there was a rise in output. A substantial rise in arterial oxygen tension was obtained even in patients with low initial values. The raised arterial blood lactate levels which were frequently present were reduced after oxygen. The therapeutic implications of these effects are discussed.  相似文献   

15.
The aim of the present study was to evaluate the effects of endothelin-l-elicited cardiovascular events on respiratory gas transfer in the freshwater rainbow trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias). In both species, endothelin-1 (666 pmol kg(-1)) caused a rapid (within 4 min) reduction (ca. 30-50 mmHg) in arterial blood partial pressure of O2. The effects of endothelin-1 on arterial blood partial pressure of CO2 were not synchronised with the changes in O2 partial pressure and the responses were markedly different in trout and dogfish. In trout, arterial CO2 partial pressure was increased transiently by approximately 1.0 mmHg but the onset of the response was delayed and occurred 12 min after endothelin-1 injection. In contrast, CO2 partial pressure remained more-or-less constant in dogfish after injection of endothelin-1 and was increased only slightly (approximately 0.1 mmHg) after 60 min. Pre-treatment of trout with bovine carbonic anhydrase (5 mg ml(-1)) eliminated the increase in CO2 partial pressure that was normally observed after endothelin-1 injection. In both species, endothelin-1 injection caused a decrease in arterial blood pH that mirrored the changes in CO2 partial pressure. Endothelin-1 injection was associated with transient (trout) or persistent (dogfish) hyperventilation as indicated by pronounced increases in breathing frequency and amplitude. In trout, arterial blood pressure remained constant or was decreased slightly and was accompanied by a transient increase in systemic resistance, and a temporary reduction in cardiac output. The decrease in cardiac output was caused solely by a reduction in cardiac frequency; cardiac stroke volume was unaffected. In dogfish, arterial blood pressure was lowered by approximately 10 mmHg at 6-10 min after endothelin-1 injection but then was rapidly restored to pre-injection levels. The decrease in arterial blood pressure reflected an increase in branchial vascular resistance (as determined using in situ perfused gill preparations) that was accompanied by simultaneous decreases in systemic resistance and cardiac output. Cardiac frequency and stroke volume were reduced by endothelin-1 injection and thus both variables contributed to the changes in cardiac output. We conclude that the net consequences of endothelin-1 on arterial blood gases result from the opposing effects of reduced gill functional surface area (caused by vasoconstriction) and an increase in blood residence time within the gill (caused by decreased cardiac output.  相似文献   

16.
两种心衰模型大鼠心功能的比较   总被引:10,自引:2,他引:8  
目的 比较两种心衰模型大鼠心功能的特点。方法 用腹主动脉、下腔静脉穿刺造瘘法及冠脉结扎法建立不同的心衰模型 ,用Doppler超声心动图及心脏称重的方法比较其心功能的各项参数。结果 两组大鼠的相对心脏重量均有所增高。造瘘组射血分数有所下降 ,但心输出量、血压维持正常 ,而冠脉结扎组术后 3周射血分散、心输出量和平均动脉压均明显下降 ,等容舒张期延长。结论 腹主动脉、下腔静脉穿刺造瘘所造成的是高输出量心衰 ,而冠脉结扎法所造成的是低输出量心衰 ,其心衰程度更为严重。Doppler超声心动图为大鼠心功能的检测提供了一种简单、可靠、可随访的无创伤性检查方法。  相似文献   

17.
The aim of the present study was to evaluate the effects of endothelin-1-elicited cardiovascular events on respiratory gas transfer in the freshwater rainbow trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias). In both species, endothelin-1 (666 pmol kg-1) caused a rapid (within 4 min) reduction (ca. 30-50 mmHg) in arterial blood partial pressure of O2. The effects of endothelin-1 on arterial blood partial pressure of CO2 were not synchronised with the changes in O2 partial pressure and the responses were markedly different in trout and dogfish. In trout, arterial CO2 partial pressure was increased transiently by ~1.0 mmHg but the onset of the response was delayed and occurred 12 min after endothelin-1 injection. In contrast, CO2 partial pressure remained more-or-less constant in dogfish after injection of endothelin-1 and was increased only slightly (~0.1 mmHg) after 60 min. Pre-treatment of trout with bovine carbonic anhydrase (5 mg ml-1) eliminated the increase in CO2 partial pressure that was normally observed after endothelin-1 injection. In both species, endothelin-1 injection caused a decrease in arterial blood pH that mirrored the changes in CO2 partial pressure. Endothelin-1 injection was associated with transient (trout) or persistent (dogfish) hyperventilation as indicated by pronounced increases in breathing frequency and amplitude. In trout, arterial blood pressure remained constant or was decreased slightly and was accompanied by a transient increase in systemic resistance, and a temporary reduction in cardiac output. The decrease in cardiac output was caused solely by a reduction in cardiac frequency; cardiac stroke volume was unaffected. In dogfish, arterial blood pressure was lowered by ~10 mmHg at 6-10 min after endothelin-1 injection but then was rapidly restored to pre-injection levels. The decrease in arterial blood pressure reflected an increase in branchial vascular resistance (as determined using in situ perfused gill preparations) that was accompanied by simultaneous decreases in systemic resistance and cardiac output. Cardiac frequency and stroke volume were reduced by endothelin-1 injection and thus both variables contributed to the changes in cardiac output. We conclude that the net consequences of endothelin-1 on arterial blood gases result from the opposing effects of reduced gill functional surface area (caused by vasoconstriction) and an increase in blood residence time within the gill (caused by decreased cardiac output.  相似文献   

18.
A haemodynamic examination of 10 dogs was carried out at rest, during volume loading and after ligation of the right coronary artery in the presence of a closed pericardium. Ligation of the right coronary artery led to haemodynamic signs of depression of right ventricular function--a drop in systolic pressure and an increase in end diastolic pressure, together with a shift of the functional curve to the right and downwards. Overall performance of the heart (cardiac output and the mean systemic pressure, also fell. Our results show that the depression of the systolic function of the myocardium in the presence of right ventricular infarction can be an important factor in the genesis of low cardiac output syndrome observed in clinical situations. Its pathophysiological mechanisms and some of the clinical consequences are discussed.  相似文献   

19.
The cardiac output of isolated working rat heart and left ventricular pressure were estimated in either almost complete inhibition of creatine kinase by iodoacetamide or predominant fall in adenine nucleotides (AdN) content induced by 2-deoxyglucose treatment. In the former case, a profound cardiac pump failure was observed despite almost normal levels of myocardial AdN and phosphocreatine. Those hearts could not maintain the aortic output at standard load due to lower LV systolic pressure, that was accompanied by increased minimal and maximal diastolic pressures by 5-7 mm Hg as well as by LV diastolic stiffness. As LV systolic pressure in those hearts was unchanged in retrogradely perfused and unloaded hearts it might be suggested that the cardiac pump failure was caused by the decreased LV distensibility. On the contrary, deoxyglucose treatment that resulted in 70% fall in the AdN content was accompanied by only moderate reduction of the cardiac output and insignificant changes in LV diastolic pressure and stiffness. The results suggested that creatine kinase plays a crucial role in the maintenance of normal myofibrillar compliance, which is necessary for cardiac filling and pump function.  相似文献   

20.
To assess the characteristics of blockade induced by 1-Sar, 8-Ala angiotensin II (P113) in the rat, dose-response relationships were established for angiotensin II and blood pressure, cardiac output and renal blood flow (measured with microspheres) and calculated total peripheral resistance. P113 infused at 1.0 μg/kg/min reduced renal and systemic vascular responses to angiotensin II, but did not modify the pressor response because of compensatory increase in cardiac output. Ganglionic blockade (pentolinium tartrate 2.5 mg) uncovered a significant influence of P113 at 1.0 μg/kg/ min on pressor responses to angiotensin II. P113 at 10 μg/kg/min totally prevented the pressor and renal vascular response to 1.0 μg/kg/min of angiotensin II. P113 at 10 and 100 μg/kg/min did not influence renal blood flow, cardiac output or total peripheral resistance, and had only a transient, small influence on blood pressure. P113 did not modify the renal or systemic vascular response to norepinephrine. The failure of P113 to influence renal blood flow in the rat and the relative insensitivity of the renal vasculature to angiotensin II suggest that the vascular receptor for angiotensin II in the rat differs from that in other species including the dog, rabbit and man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号