首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Leafcutter ants depend on the cultivation of symbiotic Attamyces fungi for food, which are thought to be grown by the ants in single-strain, clonal monoculture throughout the hundreds to thousands of gardens within a leafcutter nest. Monoculture eliminates cultivar-cultivar competition that would select for competitive fungal traits that are detrimental to the ants, whereas polyculture of several fungi could increase nutritional diversity and disease resistance of genetically variable gardens.

Methodology/Principal Findings

Using three experimental approaches, we assessed cultivar diversity within nests of Atta leafcutter ants, which are most likely among all fungus-growing ants to cultivate distinct cultivar genotypes per nest because of the nests'' enormous sizes (up to 5000 gardens) and extended lifespans (10–20 years). In Atta texana and in A. cephalotes, we resampled nests over a 5-year period to test for persistence of resident cultivar genotypes within each nest, and we tested for genetic differences between fungi from different nest sectors accessed through excavation. In A. texana, we also determined the number of Attamyces cells carried as a starter inoculum by a dispersing queens (minimally several thousand Attamyces cells), and we tested for genetic differences between Attamyces carried by sister queens dispersing from the same nest. Except for mutational variation arising during clonal Attamyces propagation, DNA fingerprinting revealed no evidence for fungal polyculture and no genotype turnover during the 5-year surveys.

Conclusions/Significance

Atta leafcutter ants can achieve stable, fungal monoculture over many years. Mutational variation emerging within an Attamyces monoculture could provide genetic diversity for symbiont choice (gardening biases of the ants favoring specific mutational variants), an analog of artificial selection.  相似文献   

2.
We investigated the diversity of fungal communities in nine different deep-sea sediment samples of the South China Sea by culture-dependent methods followed by analysis of fungal internal transcribed spacer (ITS) sequences. Although 14 out of 27 identified species were reported in a previous study, 13 species were isolated from sediments of deep-sea environments for the first report. Moreover, these ITS sequences of six isolates shared 84–92 % similarity with their closest matches in GenBank, which suggested that they might be novel phylotypes of genera Ajellomyces, Podosordaria, Torula, and Xylaria. The antimicrobial activities of these fungal isolates were explored using a double-layer technique. A relatively high proportion (56 %) of fungal isolates exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among four marine pathogenic microbes (Micrococcus luteus, Pseudoaltermonas piscida, Aspergerillus versicolor, and A. sydowii). Out of these antimicrobial fungi, the genera Arthrinium, Aspergillus, and Penicillium exhibited antibacterial and antifungal activities, while genus Aureobasidium displayed only antibacterial activity, and genera Acremonium, Cladosporium, Geomyces, and Phaeosphaeriopsis displayed only antifungal activity. To our knowledge, this is the first report to investigate the diversity and antimicrobial activity of culturable deep-sea-derived fungi in the South China Sea. These results suggest that diverse deep-sea fungi from the South China Sea are a potential source for antibiotics’ discovery and further increase the pool of fungi available for natural bioactive product screening.  相似文献   

3.
Leaf-cutting ants of the genera Acromyrmex and Atta forage vegetation for incorporation into their mutualistic fungal gardens. However, the presence of certain endophytic fungi in this predominantly leaf-based material could affect the fungal garden and thus the choice of material by the ants. The present study was conducted to document the endophytic fungal communities occurring in the vegetation being transported by workers of Atta laevigata into their nests and to compare this community structure with that of the vegetative material subsequently rejected from the nests. We found considerable diversity in the fungi isolated. Acremonium, Cylindrocladium, Drechslera, Epicoccum, Fusarium, Trichoderma, Ulocladium and two unidentified morphospecies were significantly more common in rejected compared with foraged material, and some of these genera include mycoparasites, which could represent a threat to the fungal gardens. Conversely, Colletotrichum, Pestalotiopsis, Phomopsis, Xylaria and an unidentified morphospecies were more common in carried compared with rejected material. The possibility that ants have a ‘quality-control’ mechanism based on the presence of antagonistic fungal endophytes is discussed, as is the potential use of these fungi as biocontrol agents against Attini pests.  相似文献   

4.
真菌是巢穴微生物的重要组成部分,与鸟类的生存、繁殖和环境适应息息相关。本研究通过悬挂人工巢箱招引绿背山雀(Parus monticolus)入住,基于内转录间隔区(ITS)测序技术,对绿背山雀繁殖成功巢箱与筑巢未产卵巢箱真菌群落的组成差异进行探究。结果显示,在门水平上,子囊菌门(Ascomycota,98.81%)是繁殖成功巢箱内微生物的主要菌门;子囊菌门(85.59%)和担子菌门(Basidiomycota,8.33%)是筑巢未产卵巢箱内微生物的主要菌门。在属水平上,繁殖成功巢箱的优势属为拟单宽皿菌属(Phialemoniopsis,83.04%)、曲霉属(Aspergillus,4.75%)、子囊菌属(Arthroderma,4.29%)和柄帚霉属(Scopulariopsis,1.78%);筑巢未产卵巢箱的优势属为拟单宽皿菌属(36.06%)、曲霉属(14.53%)、青霉属(Penicilliu,6.22%)、单端孢霉属(Trichothecium,5.80%)、德巴利酵母菌属(Debaryomyces,1.67%)和蝶孔耳属(Papiliotrema,1.09%)。Alpha多样性分析表明,筑巢未产卵巢箱中真菌的多样性和丰富度均显著高于繁殖成功巢箱(P < 0.05);Beta多样性分析表明,繁殖成功巢和筑巢未产卵巢箱之间的真菌群落存在显著差异;LEfSe分析共检测到19个具有统计学差异的生物标记物,繁殖成功巢箱和筑巢未产卵巢箱的显著生物标志物分布在子囊菌门和担子菌门中,两种巢箱的标记物种存在显著差异。整体来说,与繁殖成功巢相比,筑巢未产卵巢内分布有更多的潜在病原菌。  相似文献   

5.
The microbiomes associated with bee nests influence colony health through various mechanisms, although it is not yet clear how honeybee congeners differ in microbiome assembly processes, in particular the degrees to which floral visitations and the environment contribute to different aspects of diversity. We used DNA metabarcoding to sequence bacterial 16S rRNA from honey and stored pollen from nests of 4 honeybee species (Apis cerana, A. dorsata, A. florea, and A. laboriosa) sampled throughout Yunnan, China, a global biodiversity hotspot. We developed a computational pipeline integrating multiple databases for quantifying key facets of diversity, including compositional, taxonomic, phylogenetic, and functional ones. Further, we assessed candidate drivers of observed microbiome dissimilarity, particularly differences in floral visitations, habitat disturbance, and other key environmental variables. Analyses revealed that microbiome alpha diversity was broadly equivalent across the study sites and between bee species, apart from functional diversity which was very low in nests of the reclusive A. laboriosa. Turnover in microbiome composition across Yunnan was driven predominantly by pollen composition. Human disturbance negatively impacted both compositional and phylogenetic alpha diversity of nest microbiomes, but did not correlate with microbial turnover. We herein make progress in understanding microbiome diversity associated with key pollinators in a biodiversity hotspot, and provide a model for the use of a comprehensive informatics framework in assessing pattern and drivers of diversity, which enables the inclusion of explanatory variables both subtly and fundamentally different and enables elucidation of emergent or unexpected drivers.  相似文献   

6.
Several studies isolated fungal and bacterial species from extreme environments, such as Sabkha and hot deserts, as their natural habitat, some of which are of medicinal importance. Current research aimed investigating the microbial (fungi and bacteria) diversity and abundance in Sabkha and desert areas in Saudi Arabia. Soil samples from nine different geographical areas (Al-Aushazia lake, AlQasab, AlKasar, Tabuk, Al-Kharj, Al-Madina, Jubail, Taif and Abqaiq) were collected and cultured for microbial isolation. Isolated fungi and bacteria were identified by molecular techniques (PCR and sequencing). Based on 18S rDNA sequencing, 203 fungal species belonging to 33 genera were identified. The most common fungal genera were Fusarium, Alternaria, Chaetomium, Aspergillus Cochliobolus and Pencillium, while the most common species were Chaetomium globosum and Fusarium oxysporum. By 16S rDNA sequencing 22 bacterial species belonging to only two genera, Bacillus and Lactobacillus, were identified. The most commonly isolated bacterial species were Bacillus subtilis and Lactobacillus murinus. Some fungal species were confined to specific locations, such as Actinomyces elegans, Fusarium proliferatum, Gymnoascus reesii and Myzostoma spp. that were only isolated from Al-Aushazia soil. AlQasab soil had the highest microbial diversity among other areas with abundances of 23.5% and 4.4% of total fungi, and bacteria, respectively. Findings of this study show a higher degree of fungal diversity than that of bacteria in all studied areas. Further studies needed to investigate the connection between some isolated species and their habitat ecology, as well as to identify those of medicinal importance.  相似文献   

7.
Selection for probiotic candidates by in vivo experimental trials is time and labor consuming; more informed strategy is needed to select successful probiotic candidates. The aim of the study was to elucidate the microbial taxa transmitted from maize seeds to seedlings during the germination process of maize and their probiotic effects. The bacterial and fungal taxa in kernel germs and sprouts were analyzed by Illumina-based sequencing. The sprouts contained more diverse fungi than those in germs. The bacterial species (OTUs) declined with the germination from germs to the sprouts. However, the endophytic fungal diversity increased during the germination process. Seed-borne dominant bacterial genera Bacillus, Halomonas, and Shewanella and dominant fungal genera Aspergillus were also detected in sprouts. The spore-forming bacteria BS3 isolated directly from sprouts could promote growth of maize seedling and resistance to F. verticillioides under F. verticillioides-infested soils. The results suggested that maize contained core bacterial and fungal taxa during the development from seeds to sprouts, and the core endophytes showed more intimate correlation with host plants than did other microbial taxa. Illumina-based sequence analysis is feasible to guide probiotic candidate selection and isolation.  相似文献   

8.
Birds’ nests may be refuges for various species of fungi including that which are potentially phytopathogenic and zoopathogenic. Among the 2449 isolates of fungi obtained from nests of Marsh harriers 96.8% belonged to filamentous fungi. In total, 37 genera were identified from 63 fungi species. Within the mycobiotas of the examined nests populations of fungi which are potentially pathogenic for humans, homoiothermous animals and plants dominated. Among 63 species, 46 (72%) were potentially pathogenic fungi of which 18 species were potentially phytopathogenic and 32 species were pathogenic for homoiothermous animals. Inter alia species of fungi were found in the Marsh harriers nests: Aspergillus fumigatus, Aspergillus flavus, Scopulariopsis brevicaulis, Chrysosporium keratinophilum and Fusarium poae, Fusarium sporotrichioides. In terms of numbers, dominant in Marsh harrier nests were fungi pathogenic to birds, other homoiothermous animals and humans. On that basis it was concluded that Marsh harrier nests are both a source of fungal infections for that species and one of the links in the epidemiological cycle of opportunistic fungi for humans.  相似文献   

9.
Exploring processes of coevolution of microorganisms and their hosts is a new imperative for life sciences. If bacteria protect hosts against pathogens, mechanisms facilitating the intergenerational transmission of such bacteria will be strongly selected by evolution. By disentangling the diversity of bacterial strains from the uropygium of hoopoes (Upupa epops) due to genetic relatedness or to a common environment, we explored the importance of horizontal (from the environment) and vertical (from parents) acquisition of antimicrobial-producing symbionts in this species. For this purpose, we compared bacterial communities among individuals in nonmanipulated nests; we also performed a cross-fostering experiment using recently hatched nestlings before uropygial gland development and some nestlings that were reared outside hoopoe nests. The capacity of individuals to acquire microbial symbionts horizontally during their development was supported by our results, since cross-fostered nestlings share bacterial strains with foster siblings and nestlings that were not in contact with hoopoe adults or nests also developed the symbiosis. Moreover, nestlings could change some bacterial strains over the course of their stay in the nest, and adult females changed their bacterial community in different years. However, a low rate of vertical transmission was inferred, since genetic siblings reared in different nests shared more bacterial strains than they shared with unrelated nestlings raised in different nests. In conclusion, hoopoes are able to incorporate new symbionts from the environment during the development of the uropygium, which could be a selective advantage if strains with higher antimicrobial capacity are incorporated into the gland and could aid hosts in fighting against pathogenic and disease-causing microbes.  相似文献   

10.
We examined a novel hypothesis for the maintenance of communal nesting in the salamander, Hemidactylium scutatum, namely that communal nests are more likely than solitary nests to be associated with cutaneous antifungal bacteria, which can inhibit fungal infections of embryos. A communal nest contains eggs of two or more females of the same species. The nesting behavior of H. scutatum females and survival of embryos were determined by frequent nest surveys at three ponds. For communal nests, embryonic survival tended to be higher and catastrophic nest failure was lower. Pure bacterial cultures of resident species were obtained from the salamanders’ skins by swabbing and tested against a fungal pathogen of embryos (Mariannaea sp.) in laboratory assays. We found that 27% of females had skin bacteria inhibitory to Mariannaea sp. Communal nests were more likely to have at least one female with antifungal bacteria than were solitary nests. Using a culture-independent assay (denaturing gradient gel electrophoresis of 16S rRNA gene fragments), we found that bacterial species on females and embryos were more similar to each other than they were to bacterial species found in soil within the nest, suggesting that females transmitted skin bacteria to embryos. The presence of anti-Mariannaea skin bacteria identified from the laboratory assays did not prevent fungal presence in field nests. However, once a nest was visibly infected with fungi, presence of anti-Mariannaea bacteria was positively correlated with survival of embryos. Microbe transmission is usually thought to be a cost of group living, but communal nesting in H. scutatum may facilitate the transmission of antifungal bacteria to embryos.  相似文献   

11.
The use of feathers to line bird’s nests has traditionally been interpreted as having a thermoregulatory function. Feather-degrading bacteria growing on feathers lining nests may have antimicrobial properties, which may provide an additional benefit to lining nests with feathers. We test the hypothesis that the production of antimicrobial substances by feather bacteria affects the microbiological environment of the nest, and therefore the bacterial density on eggshells and, indirectly, hatching success. These effects would be expected to differ between nests lined with pigmented and white feathers, because bacteria grow differently on feathers of different colors. We experimentally manipulated the composition of pigmented and unpigmented feathers in nests of the barn swallow (Hirundo rustica) and studied the antimicrobial properties against the keratin-degrading bacterium Bacillus licheniformis of bacteria isolated from feathers of each color. Analyzed feathers were collected at the end of the incubation period, and antimicrobial activity was defined as the proportion of bacteria from the feathers that produce antibacterial substances effective against B. licheniformis. Our experimental manipulation affected antimicrobial activity, which was higher in nests with only white feathers at the beginning of incubation. Moreover, white feathers showed higher antimicrobial activity than black ones. Interestingly, antimicrobial activity in feathers of one of the colors correlated negatively with bacterial density on feather of the opposite color. Finally, antimicrobial activity of white feathers was negatively related to eggshell bacterial load. These results suggest that antimicrobial properties of feathers in general and of white feathers in particular affect the bacterial environment in nests. This environment in turn affects the bacterial load on eggshells, which may affect hatching success.  相似文献   

12.
13.
A study was performed on the numbers and species diversity of thermophilic fungi (growing at 45 °C in vitro) in 38 nests of 9 species of wetland birds, taking into account the physicochemical properties of the nests and the bird species. It was found that in nests with the maximum weight (nests of Mute Swan), the number and diversity of thermophilic fungi were significantly greater than in other nests, with lower weight. The diversity of the thermophilic biota was positively correlated with the individual mass of bird and with the level of phosphorus in the nests. The dominant species within the mycobiota under study was Aspergillus fumigatus which inhabited 95 % of the nests under study, with average frequency of ca. 650 cfu g?1 of dry mass of the nest material. In a majority of the nests studied (nests of 7 bird species), the share of A. fumigatus exceeded 50 % of the total fungi growing at 45 °C. Significantly higher frequencies of the fungal species were characteristic of the nests of small and medium-sized piscivorous species, compared with the other bird species. The number of A. fumigatus increased with increase in the moisture level of the nests, whereas the frequency of occurrence of that opportunistic pathogen, opposite to the general frequency of thermophilic mycobiota, was negatively correlated with the level of phosphorus in the nest material, and with the body mass and length of the birds. The authors indicate the causes of varied growth of thermophilic fungi in nests of wetland birds and, in particular, present a discussion of the causes of accumulation of A. fumigatus, the related threats to the birds, and its role as a source of transmission in the epidemiological chain of aspergillosis.  相似文献   

14.
The diversity of sponge-associated fungi has been poorly investigated in remote geographical areas like Antarctica. In this study, 101 phenotypically different fungal isolates were obtained from 11 sponge samples collected in King George Island, Antarctica. The analysis of ITS sequences revealed that they belong to the phylum Ascomycota. Sixty-five isolates belong to the genera Geomyces, Penicillium, Epicoccum, Pseudeurotium, Thelebolus, Cladosporium, Aspergillus, Aureobasidium, Phoma, and Trichocladium but 36 isolates could not be identified at genus level. In order to estimate the potential of these isolates as producers of interesting bioactivities, antimicrobial, antitumoral and antioxidant activities of fungal culture extracts were assayed. Around 51 % of the extracts, mainly from the genus Geomyces and non identified relatives, showed antimicrobial activity against some of the bacteria tested. On the other hand, around 42 % of the extracts showed potent antitumoral activity, Geomyces sp. having the best performance. Finally, the potential of the isolated fungi as producers of antioxidant activity seems to be moderate. Our results suggest that fungi associated with Antarctic sponges, particularly Geomyces, would be valuable sources of antimicrobial and antitumoral compounds. To our knowledge, this is the first report describing the biodiversity and the metabolic potential of fungi associated with Antarctic marine sponges.  相似文献   

15.
The predominant hypothesis regarding the composition of microbial assemblages in indoor environments is that fungal assemblages are structured by outdoor air with a moderate contribution by surface growth, whereas indoor bacterial assemblages represent a mixture of bacteria entered from outdoor air, shed by building inhabitants, and grown on surfaces. To test the fungal aspect of this hypothesis, we sampled fungi from three surface types likely to support growth and therefore possible contributors of fungi to indoor air: drains in kitchens and bathrooms, sills beneath condensation-prone windows, and skin of human inhabitants. Sampling was done in replicated units of a university-housing complex without reported mold problems, and sequences were analyzed using both QIIME and the new UPARSE approach to OTU-binning, to the same result. Surfaces demonstrated a mycological profile similar to that of outdoor air from the same locality, and assemblages clustered by surface type. “Weedy” genera typical of indoor air, such as Cladosporium and Cryptococcus, were abundant on sills, as were a diverse set of fungi of likely outdoor origin. Drains supported more depauperate assemblages than the other surfaces and contained thermotolerant genera such as Exophiala, Candida, and Fusarium. Most surprising was the composition detected on residents’ foreheads. In addition to harboring Malassezia, a known human commensal, skin also possessed a surprising richness of non-resident fungi, including plant pathogens such as ergot (Claviceps purperea). Overall, fungal richness across indoor surfaces was high, but based on known autecologies, most of these fungi were unlikely to be growing on surfaces. We conclude that while some endogenous fungal growth on typical household surfaces does occur, particularly on drains and skin, all residential surfaces appear – to varying degrees – to be passive collectors of airborne fungi of putative outdoor origin, a view of the origins of the indoor microbiome quite different from bacteria.  相似文献   

16.
Leaf‐cutting ants maintain a symbiotic relationship with basidiomycetous fungi cultivated as food. Here, we profiled the non‐symbiotic filamentous fungi in laboratory nests of Atta sexdens rubropilosa submitted to treatments with different toxic bait formulations (using the insecticide sulfluramide as the active ingredient). After treatment, several filamentous fungi were found in different nest compartments. Culture‐dependent techniques recovered a total of 93 fungal isolates comprising 10 genera, 11 species and four unidentified fungi. The genus Penicillium was prevalent in both control and insecticide treatments. Overall, the majority of fungal isolates obtained in this study are commonly found in soil. Escovopsis spp., the specialized parasite of the ant‐fungus mutualism was only recorded in the fungus gardens of nests submitted to the toxic treatments. Moreover, no correlation was found regarding the presence of fungi in the different nest compartments (chi‐square, P > 0.4182). This study reveals that Escovopsis spp. is not the only fungus to overgrow the fungus garden of debilitated nests, thus adding more evidence on the possible negative impacts of such alien fungi. As suggested by previous studies, fast‐growing filamentous fungi likely overgrow the fungus garden in such conditions.  相似文献   

17.
The Thailand flood crisis in 2011 was one of the largest recorded floods in modern history, causing enormous damage to the economy and ecological habitats of the country. In this study, bacterial and fungal diversity in sediments and waters collected from ten flood areas in Bangkok and its suburbs, covering residential and agricultural areas, were analyzed using high-throughput 454 pyrosequencing of 16S rRNA gene and internal transcribed spacer sequences. Analysis of microbial community showed differences in taxa distribution in water and sediment with variations in the diversity of saprophytic microbes and sulfate/nitrate reducers among sampling locations, suggesting differences in microbial activity in the habitats. Overall, Proteobacteria represented a major bacterial group in waters, while this group co-existed with Firmicutes, Bacteroidetes, and Actinobacteria in sediments. Anaeromyxobacter, Steroidobacter, and Geobacter were the dominant bacterial genera in sediments, while Sulfuricurvum, Thiovirga, and Hydrogenophaga predominated in waters. For fungi in sediments, Ascomycota, Glomeromycota, and Basidiomycota, particularly in genera Philipsia, Rozella, and Acaulospora, were most frequently detected. Chytridiomycota and Ascomycota were the major fungal phyla, and Rhizophlyctis and Mortierella were the most frequently detected fungal genera in water. Diversity of sulfate-reducing bacteria, related to odor problems, was further investigated using analysis of the dsrB gene which indicated the presence of sulfate-reducing bacteria of families Desulfobacteraceae, Desulfobulbaceae, Syntrobacteraceae, and Desulfoarculaceae in the flood sediments. The work provides an insight into the diversity and function of microbes related to biological processes in flood areas.  相似文献   

18.
Soil-borne plant diseases are increasingly causing devastating losses in agricultural production. The development of a more refined model for disease prediction can aid in reducing crop losses through the use of preventative control measures or soil fallowing for a planting season. The emergence of high-throughput DNA sequencing technology has provided unprecedented insight into the microbial composition of diseased versus healthy soils. However, a single independent case study rarely yields a general conclusion predictive of the disease in a particular soil. Here, we attempt to account for the differences among various studies and plant varieties using a machine-learning approach based on 24 independent bacterial data sets comprising 758 samples and 22 independent fungal data sets comprising 279 samples of healthy or Fusarium wilt-diseased soils from eight different countries. We found that soil bacterial and fungal communities were both clearly separated between diseased and healthy soil samples that originated from six crops across nine countries or regions. Alpha diversity was consistently greater in the fungal community of healthy soils. While diseased soil microbiomes harbored higher abundances of Xanthomonadaceae, Bacillaceae, Gibberella, and Fusarium oxysporum, the healthy soil microbiome contained more Streptomyces Mirabilis, Bradyrhizobiaceae, Comamonadaceae, Mortierella, and nonpathogenic fungi of Fusarium. Furthermore, a random forest method identified 45 bacterial OTUs and 40 fungal OTUs that categorized the health status of the soil with an accuracy >80%. We conclude that these models can be applied to predict the potential for occurrence of F. oxysporum wilt by revealing key biological indicators and features common to the wilt-diseased soil microbiome.Subject terms: Molecular ecology, Infectious-disease diagnostics  相似文献   

19.
Bark represents a unique microbial habitat. Revealing the interactions among bark-associated microbes is important for understanding their diversity, stability, and function, and how core microbiome influences the health and production of the host plant. We used amplicon sequencing of bark from the medicinal plant Eucommia ulmoides collected across nine distinct biogeographical regions in China, and comprehensively analyzed the diversity, rare biosphere and core taxa of bark fungi. The co-occurrence network results showed significant differences in the compositions of core mycobiota in E. ulmoides bark between the nine regions. Ecological factors (e.g., temperature and rainfall) were crucial determinants of differences in the unique core mycobiota of E. ulmoides from different regions. The metacommunity-scale network indicated that Cladosporium, Alternaria, and Teratosphaeria were core fungal taxa of E. ulmoides bark. Moreover, some core fungal taxa included rare taxa in particular local communities which, despite their relatively low abundance, may play a significant role in the community structure of E. ulmoides bark.  相似文献   

20.
In this study, our aim was to assess several traits of cavity‐nesting Hymenopteran taxa in a low‐intensity agricultural landscape in Transylvania. The study took place between May and August 2018 at eight study sites in the hilly mountainous central part of Romania, where the majority of the landscape is used for extensive farming or forestry. During the processing of the trap nest material, we recorded several traits regarding the nests of different cavity‐nesting Hymenopteran taxa and the spider prey found inside the nests of the spider‐hunting representatives of these taxa. We also evaluated the relationship between the edge density and proportion of low‐intensity agricultural areas surrounding the study sites and some of these traits.The majority of nests were built by the solitary wasp genus Trypoxylon, followed by the solitary wasp taxa Dipogon and Eumeninae. Solitary bees were much less common, with Hylaeus being the most abundant genus. In the nests of Trypoxylon, we mostly found spider prey from the family of Araneidae, followed by specimens from the families of Linyphiidae and Theridiidae. In the nests of Dipogon, we predominantly encountered spider prey from the family of Thomisidae. We found significant effects of low‐intensity agricultural areas for the genera of Auplopus, Megachile, Osmia, and the Thomisid prey of Dipogon. We also found that the spider prey of Trypoxylon was significantly more diverse at study sites with higher proportions of low‐intensity agricultural areas.Our results indicate that solitary bees seem to be more abundant in areas, where the influence of human activities is stronger, while solitary wasps seem to rather avoid these areas. Therefore, we suggest that future studies not only should put more effort into sampling in low‐intensity agricultural landscapes but also focus more on solitary wasp taxa, when sampling such an area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号