首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computerized instrumentation and software have been developed to obtain maximum expiratory flow-volume (MEFV) and partial expiratory flow-volume (PEFV) curves. The computerized system calculates and prints out the flow at 25% and 40% of control vital capacity (VC), the expiratory volume, peak expiratory flow rate and expiratory volume at one second (FEV1) divided by VC, the latter expressed as a percent. The flow-volume curves can be displayed on an oscilloscope or plotter and stored on magnetic tape. A pilot study was completed to demonstrate the reliability and validity of the data obtained.  相似文献   

2.
Airway hysteresis can be evaluated by comparing maximal (MEFV) and partial (PEFV) expiratory flow-volume curves. The maneuvers are often obtained from pulmonary function systems that are subject to gas-compression artifacts. Because gas-compression artifacts might differentially affect PEFV vs. MEFV curves, we simultaneously obtained MEFV and PEFV curves by use of a spirometer and a volume-displacement plethysmograph (a method not subject to gas-compression artifacts) in normal and asthmatic subjects. Plethysmographic flow rates exceeded spirometric flow rates on all MEFV and PEFV maneuvers. When maximal flow exceeded partial flow (or vice versa) in the plethysmograph, the same result was virtually always observed for spirometric measurements. Alveolar pressure (PA) was higher on MEFV than on PEFV maneuvers in asthmatic subjects; comparisons between PA (on PEFV and MEFV maneuvers) in normal subjects varied at different lung volumes. Ratios of Vmax on PEFV maneuvers to Vmax on MEFV maneuvers (Vmax-p/Vmax-c) obtained from a volume-displacement plethysmograph differ quantitatively from ratios determined in systems subject to gas-compression artifacts; qualitatively, however, failure to account for thoracic gas compression ordinarily will not influence the ability to identify airway hysteresis (or lack thereof) by use of Vmax-p-to-Vmax-c ratios.  相似文献   

3.
The effects of aging on changes in maximal expiratory flow rates and specific airway conductance after a deep breath were evaluated in 64 normal subjects. Flow rates (Vp) on partial expiratory flow-volume curves (PEFV), initiated from 60-70% of the vital capacity (VC), were compared with those (Vc) on maximal flow-volume curves (MEFV), initiated from total lung capacity (TLC), at a lung volume corresponding to 25% of VC on the MEFV curves. Specific airway conductance was measured before (sGaw) and after a deep inspiration (sGawDI). Bronchodilation after inspiration to TLC was inferred by Vp/Vc less than 1 and sGaw/sGawDI less than 1. The mean Vp was less than Vc. However, the ratio Vp/Vc increased significantly with age (r = 0.75, P less than 0.001). Specific conductance also increased after a deep inspiration (sGaw less than sGawDI). The ratio sGaw/sGawDIj increased slightly but significantly with age (r = 0.28, P less than 0.02). Measurement of lung elastic recoil pressures before and after a deep breath in a subgroup of patients (n = 14) suggested that the age-related increase in Vp/Vc was secondary to a decrement in the ability of a deep breath to decrease the upstream airway resistance. These findings suggest that even though changes in airway size after a deep breath as measured by sGaw/sGawDI have minimal age dependence, aging diminishes expiratory flow rates of MEFV curves relative to PEFV curves because of a decrease in the ability of a deep breath to increase the size of the peripheral airways.  相似文献   

4.
A deep inflation (DI) reverses induced bronchoconstriction in normal human subjects whether assessed by airway resistance before and after a DI or by isovolumic maximal expiratory flows (Vmax) from partial expiratory flow-volume (PEFV) vs. maximum expiratory flow-volume (MEFV) maneuvers. These observations suggest that with induced constriction the hysteresis of airways exceeds that of the parenchyma. In contrast with humans, a previous study of ours on dogs indicated that induced increases in airway resistance were unaffected by DI, suggesting that hysteresis of airways and parenchyma were equal. We hypothesized therefore that in constricted dog lungs, any differences that might arise in isovolumic Vmax between PEFV and MEFV maneuvers would not be due to changes in airway caliber but rather would be wholly determined by isovolumic differences in deflational recoil pressures. Recoil pressures were dynamically measured using six separate alveolar capsules in each of six dogs. At base line there were no significant differences between isovolumic recoil pressures or maximal flows with volume history, suggesting equal degrees of airway and parenchymal hysteresis. After histamine-induced constriction there were also no isovolumic differences in flows, but due to striking nonhomogeneities in dynamic recoil pressure among alveolar capsules, it was not possible to express a single meaningful recoil pressure pertinent to the lungs as a whole. These findings are consistent with the idea that isovolumic comparisons of Vmax serve as a reasonable indicator of changes in the relative degree of airway and parenchymal hysteresis.  相似文献   

5.
Threshold of airway response to inhaled methacholine was determined using maximum expiratory partial flow-volume curves in 21 men and 36 women with similar age distribution, all of them healthy nonsmokers. Mean threshold was on average 1.3 doubling dose lower in women than men. There were no sex differences in the increase of maximum expiratory flows after a full inspiration when the airways were constricted by methacholine.  相似文献   

6.
Partial expiratory flow-volume (PEFV) curves in infants are generated by applying a compressive pressure over the chest wall with an inflatable jacket. This study addresses two issues: pressure transmission to and across the chest wall and whether flow limitation can be identified. Eleven infants sedated with chloral hydrate were studied. Pressure transmission to the chest wall, measured with neonatal blood pressure cuffs placed on the infant's body surface, was 72 +/- 4% of jacket pressure during compression maneuvers. The pressure transmission to the air spaces, determined by measuring airway pressure during a compression maneuver against an occluded airway, was 56 +/- 6% of jacket pressure. A significant amount of the applied pressure is therefore lost across both the jacket and chest wall. Rapid pressure oscillations (RPO) were superimposed on static jacket pressures while expiratory flow was measured. Absence of associated oscillations of flow measured at the mouth was taken to indicate that flow was independent of driving pressure and therefore limited. Flow limitation was demonstrable with the RPO technique in all infants for jacket pressures greater than 50 cmH2O; however, it was evident at jacket pressures less than 30 cmH2O jacket pressure in four infants with obstructive airway disease. The RPO technique is a useful adjunct to the compression maneuver utilized to generate PEFV curves in infants because it facilitates the recognition of expiratory flow limitation.  相似文献   

7.
To determine the characteristics and reproducibility of circadian rhythms of airway responsiveness to histamine and methacholine and their relationship to airway tone in patients with mild asthma, we studied nine subjects with complaints of nighttime awakening due to dyspnea and/or cough at least once a week. Their mean age was 31.4 yr (range 17-65) and their mean daytime FEV1 was 99 +/- 14 (SD) % predicted. Forced expiratory volume in 1 s (FEV1) and the provocative concentrations of histamine and methacholine necessary to decrease FEV1 by 20% (PC20FEV1) were determined every 4 h for 13 consecutive measurements. Three subjects were measured with histamine, three with methacholine, and three with both histamine and methacholine. Data were evaluated on an individual basis. PC20FEV1 to histamine and methacholine showed significant and reproducible circadian variations in all cases (P less than 0.01 each) with a mean amplitude of 1.00 +/- 0.17 (SD) doubling concentrations for histamine and 1.35 +/- 0.29 doubling concentrations for methacholine. The amplitude of PC20FEV1 was significantly larger (P less than 0.05) and the time of maximum responsiveness was significantly earlier (P less than 0.05) with methacholine compared with histamine. FEV1 showed significant (P less than 0.05) circadian variations in three of nine subjects, and peak expiratory flow rate showed variations in two subjects. Correlation between the variations of FEV1 and PC20FEV1 was significant (P less than 0.05) in 5 of 12 cases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Several lines of evidence suggest that the healthy mammalian lung empties homogeneously during a maximally forced deflation. Nonetheless, such behavior would appear to be implausible if for no other reason than that airway structure is known to be substantially heterogeneous among parallel pathways of gas conduction. To resolve this paradox we reexamined the degree to which lung emptying is homogeneous, and considered mechanisms that might control differential regional emptying. Twelve excised canine lungs were studied. Regional alveolar pressure relative to pleural pressure was used as an index of regional lung volume. By use of a capsule technique, alveolar pressure was measured simultaneously in each of six regions during flow-limited deflations; flow from the lung was measured plethysmographically. The standard deviation of interregional pressure differences, which was taken as an index of nonuniformity, was 0.0, 0.74, 0.64, and 0.90 cmH2O at mean recoil pressures of 30, 8.4, 4.5, and 2.1 cmH2O (0, 25, 50, and 75% expired vital capacity), indicating that interregional pressure differences increased more rapidly earlier in the deflation. When we examined the time rate of change of regional alveolar pressure as an index of regional flow, we observed an intricate pattern of differential regional behavior that was inapparent in the maximum expiratory flow-volume (MEFV) curve. The most plausible interpretation of these findings is that regions of the healthy excised canine lung empty heterogeneously to a small degree, but in an interdependent compensatory pattern that is inapparent in the configuration of the maximum expiratory flow-volume curve.  相似文献   

9.
Pulmonary and airway mechanics were assessed in seven asthmatic patients in remission, when asthma was induced by exercise and again after spontaneous recovery or bronchodilator treatment. After exercise there was a sustained fall in forced expiratory volume in 1 s (FEV 1.0) in all patients, varying from 30 to 80 percent of the initial value. Total lung capacity (TLC) increased significantly in four of the seven patients. In one of the four patients the increase in TLC was associated with an increase in static transpulmonary pressure at full inflation but in the remaining three patients it was associated with a parallel shift of the pressure-volume curve of the lung without change in its slope. In all patients residual volume increased, regardless of change in TLC; both pressure-volume and maximum expiratory flow-volume curves suggested that widespread airway closure (or virtual closure) occurred at positive transpulmonary pressures when asthma was induced. Loss of lung recoli pressure sometimes contributed to the reduction in maximum expiratory flow but diffuse airway narrowing was probably the dominant abnormality. When air-flow obstruction became more severe the ratio of expiratory to inspiratory time was increased and although expiratory flow limitation was present excessive expiratory pressures were not generated.  相似文献   

10.
In six nonatopic normal subjects, neither intravenous histamine infusion (0.3 mg.kg-1.min-1) nor intravenous propanolol (10 mg) alone produced significant change in pulmonary mechanics. Histamine infusion after propranolol resulted in an increase in pulmonary resistance (RL) from 2.1 +/- 0.41 (mean +/- 1 SE) to 3.3 +/- 0.76 cmH2O./-1.S-1 (P greater than 0.05); maximal flow at 50% total lung capacity (Vmax 50) decreased from 3.6 +/- 0.35 to 2.7 +/- 0.44 l/s (P greater than 0.01). Similar changes in Vmax 50 were observed during partial forced expiratory maneuvers from end-tidal inspiration (PEFV). On 80:20 helium-oxygen mixture Vmax 50 during maximal expiration (MEFV) decreased from 4.9 +/- 0.61 to 3.4 +/- 0.61 l/s (P greater than 0.005) and during PEFV diminished from 4.6 +/- 0.61 to 2.8 +/- 0.46 l/s (P greater than 0.005). Density dependence (deltaVmax 50) decreased significantly (P greater than 0.05) during PEFV but not during MEFV. There were no significant changes in tidal pulmonary compliance, in closing volume and closing capacity (resident gas technique), and in inflation and deflation pressure-volume curves. We conclude that iv histamine in low doses constricts peripheral conducting airways in man but this effect is masked by histamine-induced release of catecholamines from the adrenal glands.  相似文献   

11.
The purpose of this study was to assess whether our method of inducing forced expiration detects small airway obstruction in horses. Parameters derived from forced expiratory flow-volume (FEFV) curves were compared with lung mechanics data obtained during spontaneous breathing in nine healthy horses, in three after histamine challenge, and in two with chronic obstructive pulmonary disease (COPD) pre- and posttherapy with prednisone. Parameters measured in the healthy horses included forced vital capacity (FVC = 41.6 +/- 5.8 liters; means +/- SD) and forced expiratory flow (FEF) at various percentages of FVC (range of 20.4-29.7 l/s). Histamine challenge induced a dose-dependent decrease in FVC and FEF at low lung volume. After therapy, lung function of the two COPD horses improved to a point where one horse had normal lung mechanics during tidal breathing; however, FEF at 95% of FVC (4.9 l/s) was still decreased. We concluded that FEFV curve analysis allowed the detection of induced or naturally occurring airway obstruction.  相似文献   

12.
A total of 28 healthy young subjects have been exposed for 2 h to ozone (0.37-0.75 ppm) under conditions of either rest or intermittent light exercise (sufficient to increase the respiratory minute volume by a factor of 2.5). All pulmonary function tests (vital capacity, forced expiratory volume, maximum expiratory flow-volume curve, slope of phase III of alveolar nitrogen plateau) showed a significant deterioration relative to parallel control experiments. Responses were related to the dose of ozone as calculated from the product of concentration, exposure time, and respiratory minute volume during exposure, changes at 1 h averaging approximately one-half those seen at 2 h.  相似文献   

13.
Maximal flows at functional residual capacity (VmaxFRC) from partial forced expiratory flow-volume (PEFV) curves were obtained in 14 normal preschool children (8 boys, 6 girls) of average age 44 mo, under general anesthesia before elective surgery. PEFV curves were generated from end inspiration by rapid compression of the chest wall with an inflatable jacket. VmaxFRC, expressed in milliliter per second, correlated linearly with height, weight, age, and FRC in milliliter and milliliters per kilogram. The best correlation of VmaxFRC (ml/s) was to height to the power of 2.47, which agrees with the results predicted by wave-speed theory. Mean FRC-corrected VmaxFRC was 2.42 +/- 0.50 (SD) FRC's/s with no significant difference between boys (2.35 FRC's/s) and girls (2.51 FRC's/s). There was no correlation between lung-size corrected VmaxFRC and height, weight, or age, but it tended to decrease with increasing FRC. The intersubject variability for VmaxFRC was reduced by normalizing for FRC, and was significantly better than that reported for awake children. This can be attributed to the greater control over volume history and more reliable maximal flow generation during anesthesia. The intrasubject coefficient of variation (CV) for VmaxFRC was 12.2%, and the intersubject CV was 20.0%. The difference may represent the variability due to dysanapsis. It is concluded that dysanapsis is not a prominent factor in children of this age group. In addition, the similarity of the regression equation for VmaxFRC vs. height to that of FRC vs. height supports the concept of equidimensional growth of the airways and lung parenchyma.  相似文献   

14.
Numerical calculations were performed to study the influence of several physiologic parameters on a forced expiration. It was found that the axial distribution of airway compliance produced profound changes in the detailed flow pattern, as characterized by the axial distributions of speed index and area ratio, but had little effect on the flow-volume curve. Similar results were obtained when the expression for frictional losses was changed to reflect new experimental results. In contrast, changes in airway size and geometry altered both the detailed flow pattern and the mean expiratory flow rate. The shape of the flow-volume curve remained unchanged.  相似文献   

15.
Changes in the configuration of maximum expiratory flow-volume (MEFV) curves following mild degrees of bronchodilation or bronchoconstriction were studied in five normal and five asthmatic subjects. In a volume-displacement plethysmograph, MEFV curves were performed before and after inhalation of aerosolized isoproterenol (I) or histamine (H). Five filtered MEFV curves were averaged, and slope ratio vs. volume (SR-V) plots were obtained from averaged curves. Following I, maximal flows at 75% of the vital capacity (VC) were decreased in asthmatics but not in normal subjects. Flows at 50 and 25% of the VC increased in normal subjects and asthmatics, whereas VC's were unchanged. In asthmatics, sudden large decreases in flow (bumps) occurred at lower lung volumes following I. H reduced flows over the entire VC, with greater reductions occurring in asthmatics than in normals, particularly at low lung volumes. In asthmatics, VC was slightly reduced, and bumps in MEFV curve configuration occurred at higher lung volumes or were abolished entirely following H. A reduction in the amount of configurational detail appreciable in MEFV curves following histamine in asthmatics was best seen in SR-V plots. Following H, SR's decreased regularly with decreasing lung volume in all the asthmatics but in none of the normals. This was the single most striking finding of this study. Mild I- and H-induced perturbations of airway bronchomotor tone produced small but consistent changes in MEFV curve configuration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Mice have been widely used in immunologic and other research to study the influence of different diseases on the lungs. However, the respiratory mechanical properties of the mouse are not clear. This study extended the methodology of measuring respiratory mechanics of anesthetized rats and guinea pigs and applied it to the mouse. First, we performed static pressure-volume and maximal expiratory flow-volume curves in 10 anesthetized paralyzed C57BL/6 mice. Second, in 10 mice, we measured dynamic respiratory compliance, forced expiratory volume in 0.1 s, and maximal expiratory flow before and after methacholine challenge. Averaged total lung capacity and functional residual capacity were 1.05 +/- 0.04 and 0.25 +/- 0.01 ml, respectively, in 20 mice weighing 22.2 +/- 0.4 g. The chest wall was very compliant. In terms of vital capacity (VC) per second, maximal expiratory flow values were 13.5, 8.0, and 2.8 VC/s at 75, 50, and 25% VC, respectively. Maximal flow-static pressure curves were relatively linear up to pressure equal to 9 cm H(2)O. In addition, methacholine challenge caused significant decreases in respiratory compliance, forced expiratory volume in 0.1 s, and maximal expiratory flow, indicating marked airway constriction. We conclude that respiratory mechanical parameters of mice (after normalization with body weight) are similar to those of guinea pigs and rats and that forced expiratory maneuver is a useful technique to detect airway constriction in this species.  相似文献   

17.
Activation of airway smooth muscle (ASM) cells plays a central role in the pathophysiology of asthma. Because ASM is an important therapeutic target in asthma, it is beneficial to develop bioengineered ASM models available for assessing physiological and biophysical properties of ASM cells. In the physiological condition in vivo, ASM cells are surrounded by extracellular matrix (ECM) and exposed to mechanical stresses such as cyclic stretch. We utilized a 3-D culture model of human ASM cells embedded in type-I collagen gel. We further examined the effects of cyclic mechanical stretch, which mimics tidal breathing, on cell orientation and expression of contractile proteins of ASM cells within the 3-D gel. ASM cells in type-I collagen exhibited a tissue-like structure with actin stress fiber formation and intracellular Ca2+ mobilization in response to methacholine. Uniaxial cyclic stretching enhanced alignment of nuclei and actin stress fibers of ASM cells. Moreover, expression of mRNAs for contractile proteins such as α-smooth muscle actin, calponin, myosin heavy chain 11, and transgelin of stretched ASM cells was significantly higher than that under the static condition. Our findings suggest that mechanical force and interaction with ECM affects development of the ASM tissue-like construct and differentiation to the contractile phenotype in a 3-D culture model.  相似文献   

18.
Airway hyperresponsiveness is a characteristic feature in asthmatic subjects, but the mechanism of the hyperresponsiveness is not known. The purpose of this study was to investigate whether methacholine airway responsiveness was increased 24 h after inhalation of adenosine 5'-monophosphate (AMP). Ten atopic asthmatic subjects and six atopic normal subjects were studied on 4 study days. On the 1st day, a methacholine inhalation test was performed, followed within 48 h by an AMP inhalation test. Seven days later the second AMP test was performed, and 24 h later the methacholine inhalation test was repeated. Response was measured using partial flow-volume curves, and the concentration required to cause a 40% fall in the partial flow-volume curve (PC40) was calculated. The geometric mean methacholine PC40 fell from 1.36 mg/ml on day 1 (before AMP inhalation) to 0.71 mg/ml on day 4 (24 h after AMP inhalation, P less than 0.01). There was no change in the mean PC40 for adenosine on the 2 study days (5.82 and 7.06 mg/ml, P greater than 0.1). These findings suggest that adenosine release may contribute to the increase in airway responsiveness after allergen challenge.  相似文献   

19.
Expiratory flow-volume curves with periodic interruption of flow showed flow transients exceeding maximal flow (Vmax) measured on the maximum expiratory flow-volume (MEFV) curve in a mechanical lung model and in five tracheotomized, vagotomized, open-chest, anesthetized dogs. Direct measurement of flow from the collapsing model airway showed that the volume of the flow transients in excess of the MEFV envelope was greater than that from the collapsing airway. Determination of wave-speed flows from local airway transmural pressure-area curves (J. Appl. Physiol. 52: 357-369, 1982) and photography of the airway led to the following conclusions. Flow transients exceeding Vmax are wave-speed flows determined by an initial and unstable configuration of the flow-limiting segment (FLS) with maximum compression in the midportion. The drop in flow from the peak to the following plateau is due to development of a more stable airway configuration with maximum compression at the mouthward end with a smaller area and a smaller maximal flow. When FLS jumps to a more peripheral position, the more distal airways may pass through similar configurational changes that are responsible for the sudden decrease of flow (the "knee") seen on most MEFV curves from dogs.  相似文献   

20.
We examined the interaction between histamine and vagal efferent activity on airway smooth muscle reactivity in 11 anesthetized vagotomized dogs using an isolated closed segment of the intrathoracic trachea filled with Tyrode solution under an isovolumetric condition. Intratracheal pressure change was measured as an index of tracheal smooth muscle tone. The administration into the tracheal segment of histamine (0.1 or 1.0 mg/ml) in six dogs and methacholine chloride (0.001 or 0.01 mg/ml) in the other five dogs elevated intratracheal pressure by about 5 cmH2O. The electrical stimulation of the peripheral ends of both of the cut cervical vagus nerves in the presence of histamine produced significantly greater responses than the additive responses of these two stimuli applied individually (two-way analysis of variance, P less than 0.025). However, the combined effects of vagal stimulation and methacholine were not significantly different from the additive responses of these two stimuli applied individually. The average values of intratracheal pressure elevated by the combined effects of vagal stimulation and histamine were significantly higher than those obtained by the combination of vagal stimulation and methacholine (two-way analysis of variance, P less than 0.01). This suggests that histamine potentiates tracheal smooth muscle reactivity to electrical vagal stimulation, which may contribute to the hyperreactivity observed in patients with asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号