首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes of glomerular volume in rats were measured up to 21 weeks following subtotal nephrectomy, using morphometric methods. A linear increase of glomerular volume was observed between 2 and 21 weeks after subtotal nephrectomy. This progressive increase in glomerular volume may reflect compensatory hemodynamic changes leading to an increased single nephron glomerular filtration rate.  相似文献   

2.
To define the effector loci for the tubuloglomerular feedback system, the determinants of the single-nephron glomerular filtration rate (SNGFR) were assessed in Munich-Wistar rats by direct glomerular puncture during perfusion of Henle's loop with isotonic Ringer's solution at rates of 0 and 40 nl/min. At the higher flow rate, SNGFR averaged only approximately 65% that measured during the lower flow rate. Whereas mean glomerular capillary hydraulic pressure was unaffected, both glomerular plasma flow rate and ultrafiltration coefficient Kf were found to decrease significantly in response to increase in loop perfusion rate, thereby accounting for the measured reduction in SNGFR. These changes were associated with increased afferent (RA) and efferent (RE) arteriolar resistances. Based on the close anatomic contact between mesangial cells and these arterioles, a single effector mechanism channeled through mesangial contractility is suggested to account for the observed reduction in Kf and increase in RA and RE. Mesangial contractility appears to be under sympathetic nerve control. In our recent micropuncture study with Munich-Wistar rats, a marked reduction in SNGFR was observed during high-frequency stimulation (5 Hz) of the renal nerve. This reduction in SNGFR was accompanied by a marked fall in Kf and increase in RA and RE. When kidneys were perfusion-fixed during high-frequency stimulation, a marked reduction in the number of open channels was demonstrated together with marked narrowing of afferent and efferent arterioles. These observations are consistent with the view that sympathetic innervation of mesangium may modulate GFR through its ability to regulate mesangial contractility.  相似文献   

3.
Kidney weight, length of superficial and juxtamedullary proximal tubules, glomerular diameter, kidney filtration rate and PAH clearance, sodium excretion and intrarenal distribution of filtration (with 14C-ferrocyanide) were measured in the remaining hypertrophic kidneys of dogs 10 days after unilateral nephrectomy. Whereas kidney weight increased to 75 percent of the original total renal mass, proximal tubule length and mean glomerular diameter remained unchanged. PAH and creatinine clearance, and absolute, but not fractional, sodium excretion, rose significantly. The ratio superficial/juxtamedullary filtration rate remained unchanged, indicating parallel increases of filtration in both cortical regions of hypertrophied kidneys.  相似文献   

4.
Glomerular filtration rate and renal plasma flow were simultaneously determined in comparable groups of 43 diabetics less than 40 years of age and with a duration of diabetes less than 10 years and 32 control subjects. The average glomerular filtration rate in the diabetic group was significantly higher than that in the control group (P <0·01). The average renal plasma flow in the diabetic group was found to be significantly lower than that in the control group (P <0·05). The filtration fraction in both male and female diabetics was significantly higher than in the male and female control groups (P <0·001). These changes were found to be present even in recent juvenile diabetics with disease of a duration of less than one year. No correlation was apparent between the average levels of serum growth hormone and glomerular filtration rate.The urinary protein excretion was determined in 36 diabetic and 38 healthy subjects comparable with regard to glomerular filtration rate. In the diabetic group there was a greater frequency of cases with higher protein excretion rates (P <0·02). The average protein excretion rate was increased even in diabetics with less than one year''s duration of the disease.The results of the changes in renal haemodynamics in subjects with recent and short-term diabetes are compatible with the presence of a constrictive state of the vas efferens leading to an increase in the filtration pressure. The increase in protein excretion rate may similarly be a consequence of this process or of an increase in the glomerular permeability with augmented molecular sieving of proteins or both.  相似文献   

5.
This study was undertaken to determine whether hyperfiltration exists at the single nephron level and whether albumin excretion is increased early in the course of diabetes in Biobreeding rats. Diabetic rats were studied at 8-12 weeks after the onset of diabetes. Control animals were age-matched, diabetes-resistant rats. Urinary and tubular fluid albumin concentrations were measured by polyacrylamide gel electrophoresis. Clearance and micropuncture techniques were used to determine whole kidney and single nephron glomerular filtration rate, renal blood flow, and glomerular capillary pressure. The urinary albumin excretion rate (1.3 +/- 0.1 mg/24 hr) and the tubular fluid albumin concentration (4.7 +/- 0.7 mg/dl) in the diabetic group were significantly elevated when compared with urinary albumin excretion (0.9 +/- 0.1 mg/24 hr) and tubular fluid albumin concentration (2.5 +/- 0.5 mg/dl) in the control group. There were no significant differences in glomerular hemodynamics (whole kidney or single nephron glomerular filtration rate or glomerular capillary pressure) between diabetic and control rats. The kidney weight and kidney weight to body weight ratio were significantly higher in diabetic rats when compared with control rats. Early diabetes in Biobreeding rats is characterized by mild albuminuria and increased kidney size, but not glomerular hyperfiltration.  相似文献   

6.
The present work is a mathematical model of the fluid filtration in the glomerular network occurring in snakes. The model is based on the differential form of Starling's hypothesis and takes into account the angioarchitecture of the network and the behaviour on the microrheology of blood with nucleated red cells. The model predicts the hemodynamics and the transvascular fluxes in each vascular segment within the network. The model is applied to a vascular network of the glomerulus of the garter snake. A value of 0.593 microns/(s.mmHg) was determined for the hydraulic conductivity of the glomerular capillaries using the geometrical data of the network together with experimental data for the pressures and the blood flow rate reported in the literature. The analysis shows that the local filtration rates cover a wide range. In some of the vascular segments, the filtration leads to such a high increase in colloid-osmotic pressure that the level of the transvascular hydrostatic pressure difference is reached. Mathematical simulations of the variation of the glomerular blood flow rate due to vasoactivity of preglomerular arterioles show the effect on the filtration rate and the hemorheologic parameters.  相似文献   

7.
Glomerular filtration rate and renal plasma flow were examined in 16 young male non-proteinuric diabetics (mean age 28·4 years) with a duration of diabetes of over 15 years (mean duration 21·5 years.) In this selected group of long-term diabetics the glomerular filtration rate was clearly increased, the mean being 136 ml/min (±S.D. 11·8) (normal value 114 ml/min (±14·1), being comparable to that found earlier in short-term diabetics. There was no change in renal plasma flow. It is concluded that kidney function is generally well preserved in long-term diabetics who have not developed proteinuria.  相似文献   

8.
In renal artery stenosis severe enough to cause hypertension, angiotensin II maintains glomerular filtration rate (GFR) both in the initial high renin phase of hypertension and later when plasma levels are normal. Angiotensin II also maintains GFR in less severe stenosis, which does not cause hypertension. This homeostatic action of angiotensin II to maintain GFr has minimal effects on blood flow. In renal-wrap hypertension, plasma renin levels are elevated for longer than after renal artery stenosis, but in other respects this initial phase of the hypertension is similar to that after renal artery stenosis. GFR is reduced, the rate of development of hypertension is accelerated by angiotensin II, and angiotensin II maintains the glomerular filtration fraction. Renal resistance is markedly increased owing to both compression of the kidney by the hypertrophying renal capsule and to angiotensin II. Thus angiotensin II apparently plays a primarily homeostatic role in renovascular hypertension to maintain glomerular ultrafiltration. It is suggested that the angiotensin II may be formed intrarenally and may act on sites other than resistance blood vessels.  相似文献   

9.
Summary Cytoplasmic filaments have been observed in the cells of normal and pathological kidneys. These filaments are usually grouped into bundles anchored to electron dense bodies underlying the cell membrane. In the embryonic human metanephros the filaments are found within the cells of different portions of the nephron at various stages of development. They appear first in the podocytes, almost simultaneously in the Bowman's capsule and tubular cells, then in the mesangial cells, and finally in the cells of the media of the afferent glomerular and interlobular arterioles.The presence of filaments and their attachment bodies in the mammalian nephron suggests that the podocytes and the so-called mesangial cells have a contractile activity, thus representing an intraglomerular apparatus which regulates the intravascular pressure, blood flow and filtration rate in the glomerular capillaries, whilst the contractile activity of the Bowman's capsule and proximal, distal, and collecting tubules, could facilitate the progression of the filtrate.The increase in number of the filaments in some pathological conditions is probably related to the functional changes of the intraluminal pressure in the glomerular capillaries, in the Bowman's space, and in the tubular lumen.Part of this material was presented at the Colloque Franco-Suisse de Microscopie Electronique (Lausanne 19 may 1969) and published as an abstract in the J. de Microscopie 8, 45a, 1969.This investigation was supported in part by Consiglio Nazionale delle Ricerche (C.N.R.), grant N. 70.0150823.  相似文献   

10.
The injection of Freund's adjuvant into the pericardial sac of 29 dogs resulted in chronic pericardial tamponade with persistent sodium retention. Micropuncture, clearance, and radioactive microsphere experiments were initiated 6--13 days after pericardial injection and 60 min after pericardiocentesis. Pericardiocentesis increased sodium excretion (from 12.2 to 41.3 microequiv./min) and mean arterial pressure (+ 20 mmHg (1 mmHg = 133.322 Pa)). Central venous pressure decreased 6.5 mmHg, as did hematocrit (from 45.7 to 39.8%) and plasma protein concentration (from 5.88 to 5.15 g%). Pericardiocentesis had no significant effect on renal blood flow (RBF), nor plasma flow. Redistribution of glomerular filtrate was suggested by the observation that superficial nephron glomerular filtration rate increased (from 91 to 108 nL/min) while glomerular filtration rate remained unaltered. Determination of intrarenal distribution of RBF revealed that cortical blood flow also distributed superficially. A significant increase in the fraction of RBF perfusing zone 1 (outer cortex) and a decrease in fractional perfusion of zones 2, 3 and 4 (juxtamedullary cortex) were observed in each experiment following pericardiocentesis. RBF distribution examined in a series of six animals prior to and during the development of pericardial tamponade showed the opposite effect. These results indicate that pericardiocentesis causes redistribution of both glomerular filtrate and RBF to superficial nephrons. The development of pericardial tamponade was associated with increased fractional juxtamedullary blood flow. These changes may have been the result of altered blood pressure, hematocrit, plasma protein concentration, or altered renal resistance.  相似文献   

11.
The glomerular filtration rate (GFR), effective renal plasma flow (ERPF), systolic blood pressure (SBP) and urinary protein excretion (UpV) were determined in 12-week-old male rats of the spontaneously hypertensive Fawn-Hooded (FH) strain. These data were compared with those of either age-matched or weight-matched male, normotensive Wistar Albino Glaxo (WAG) rats. The GFR was significantly higher in FH rats than in both WAG control groups. In contrast, the ERPF did not differ between the FH and WAG rats. Thus, a higher filtration fraction was present in the FH rats. As no differences were found in the total number of glomeruli per kidney comparing FH and WAG rats, the high GFR was not due to an increase in the number of glomeruli. The SBP and the UpV were significantly higher in FH rats than in WAG rats. To our opinion, the arterial hypertension associated with glomerular hyperfiltration proteinuria suggests the presence of glomerular hypertension in FH rats.  相似文献   

12.
Changes in the excretion of water and electrolyte in one kidney after exclusion of its partner have been studied in anesthetized dogs and rabbits. Complete clamping of the contralateral kidney pedicle or ureter results in a rapid increase in the excretion of water, sodium, potassium, chloride, calcium, phosphate and bicarbonate. This response is also observed in denervated kidneys. Pretreatment with the loop inhibitor, furosemide, does not preclude adaptation which, however, is blunted by acetazolamide, an inhibitor of proximal sodium and bicarbonate reabsorption. Free-water reabsorption during hypertonic saline diuresis is normal in the remaining kidney. Compensatory adaptation, thus, appears to be located in the proximal tubule. The regulatory response to contralateral kidney exclusion is already fully developed in one-month-old rabbits. Compensatory adaptation of electrolyte excretion is not accounted for by changes in extracellular fluid volume, plasma composition, glomerular filtration rate, effective renal plasma flow, aldosterone or vasopressin.  相似文献   

13.
Renal glomerular evolution in Antarctic notothenioid fishes   总被引:2,自引:0,他引:2  
Light and electron microscopy were used to document the degree of glomerular development in 10 species of Antarctic notothenioid fishes. When combined with results of previous studies, data revealed that 16 of 20 species inhabiting subzero sea water were aglomerular. One subantarctic and two temperate species were pauciglomerular, and an additional temperate species had a moderate number of glomeruli. Renal corpuscles were variable in number and diameter among the pauciglomerular species, and most had few patent glomerular capillaries. Radiolabelled markers indicated that the glomerular filtration rate was low in the pauciglomerular Notothenia angustata , ranging from 0.005 to 0.124 ml h−1 kg−1 in eight specimens. Arterial perfusion of Microfil demonstrated that arteries supplying aglomerular and pauciglomerular kidneys were confined largely to the periphery of the organ, and glomerular capillaries were absent or few in number. As ancestral notothenioids probably had glomerular kidneys, data from 20–25% of the fauna suggest that there has been an evolutionary loss of glomeruli in many species. The pattern of glomerular reduction is consistent with the hypothesis that the selective advantage of aglomerularism is in the urinary conservation of small molecular weight antifreeze glycopeptide compounds that are vital to survival in sub-zero Antarctic waters.  相似文献   

14.
The objective of this study was to evaluate the renal actions of atrial natriuretic peptide (ANP) in the unilateral postischemic kidney of anesthetized dogs with a severe reduction in glomerular filtration rate. The dose of atrial natriuretic peptide (50 ng.kg-1.min-1) we gave did not alter the mean systemic arterial pressure, renal blood flow, and glomerular filtration rate in the normal kidney, as determined in foregoing studies. ANP was infused into the intrarenal artery continuously for 60 min after the release from 45 min of complete renal artery occlusion. In the vehicle-infused group, the glomerular filtration rate fell dramatically (6% of control), the renal blood flow decreased (60% of control), and the mean systemic arterial pressure tended to increase (136% of control). The urine flow rate and urinary excretion of sodium decreased significantly (25 and 25%, respectively) at 30 min after reflow in the postischemic period. Continuous renal artery infusion of ANP resulted in a marked increase in urine flow rate (246% of control) and the urinary excretion of sodium (286% of control). The administration of ANP led to an improvement in renal blood flow (99% of control) and glomerular filtration rate (40% of control), and attenuated the rise in mean systemic arterial pressure (109% of control), compared with findings in the vehicle-infused group. Plasma renin activity and prostaglandin E2 concentration in the renal venous blood were elevated after the release from complete renal artery occlusion in both groups. These results indicate that the vascular effects of ANP on the postischemic kidney were enhanced and that the peptide maintained the natriuretic effect.  相似文献   

15.
Head-down tilt (HDT) is utilized to simulate microgravity and produces a cephalad fluid shift, which results in alterations in fluid and electrolyte balance. These changes in volume homeostasis are due, in part, to alterations in multiple volume control mechanisms in which renal function is a major participant. We have previously demonstrated that glomerular filtration rate increases early in HDT and eventually returns to values not different from non-tilt measurements. This early increase in glomerular filtration rate was also demonstrated during days 2 and 8 of the SLS-1 mission. However, urine flow and electrolyte excretion does not parallel the alterations in glomerular filtration rate and the site of this change in nephron fluid reabsorption pattern has not been previously examined. Through determination of the location of alterations in tubular fluid reabsorption within the nephron, a more detailed hypothesis can be forwarded as to which specific neuro-humoral agents participating in control of renal function in microgravity conditions. The importance of this type of examination is that measurements in circulating neuro-humoral agents and urinary excretion patterns alone are not accurate predictors of how renal functional response may alter to head-down tilt or other models of simulated weightlessness. To examine this issue, renal micropuncture techniques were utilized in Munich-Wistar rats submitted 24 hours and 14 day head-down tilt, measuring all the determinants of glomerular ultrafiltration and obtaining data regarding segmental tubular fluid reabsorption. Following these measurements, the rats were returned to an orthostatic position and after 60 min, the measurements were repeated.  相似文献   

16.
The effects of intravenous infusion of ornithine-vasopressin (OVP) and desamino-D-arginine-vasopressin (dDAVP) were studied in normal and hydrated Merino sheep. In normal sheep, OVP resulted in a diuresis, increased urinary sodium and potassium excretion, and a fall in the plasma potassium concentration. Renal plasma flow remained constant but glomerular filtration rate and filtration fraction rose markedly. dDAVP in normal sheep was antidiuretic, but its only significant effect was a small decrease in plasma osmolality. In the hydrated sheep OVP was antidiuretic and resulted in increased urinary excretion of sodium and potassium, and a fall in the plasma potassium level. Renal plasma flow fell, but glomerular filtration and filtration fraction tended to rise. dDAVP in the hydrated sheep was also antidiuretic but urinary sodium and potassium excretion was reduced. Renal plasma flow and glomerular filtration fell, with a small decrease in filtration fraction. These results suggest that the diuretic effect in normal sheep and the electrolyte-excreting effects in both normal and hydrated sheep of OVP are related to the increase in glomerular filtration, which in turn is dependent on the vasopressor activity of the hormone. The increase in glomerular filtration caused by OVP is due to an increase in the filtration fraction of an unchanged renal plasma flow, which could be brought about by an increase in renal efferent arteriolar tone. The effects of hydration of the sheep were the conventional increased urine flow, decreased urine osmolality and decreased solute-free water reabsorption. Sodium and potassium excretion rose slightly and plasma osmolality fell. Renal plasma flow and glomerular filtration both increased with little change in filtration fraction. These effects could be brought about by suppression of endogenous vasopressin and a decrease in both afferent and efferent renal arteriolar tone.  相似文献   

17.
To assess if the renal damage observed in rats with diabetes and hypertension is due to hemodynamic or metabolic changes, a progressive aortic constriction between the two renal arteries has been done in streptozotocin-induced diabetic rats (constriction + diabetes group) and in nondiabetic rats (constriction group). This model allows us to study two kidneys subjected to different perfusion pressure (PP) in the same metabolic environment. One-month-old rats (100-120 g body wt) were subjected to the aortic constriction procedure. Three months after constriction, glomerular filtration rate and renal plasma flow were similar in both kidneys of the two groups. PP was greater in the kidney placed over the ligature [constriction high-pressure kidney (CH) or constriction + diabetic high-pressure kidney (DH)] than in the one placed below the ligature [constriction low pressure (CL) or constriction + diabetic low pressure (DL)]. Proteinuria was higher in the CH than in the CL kidneys (512 +/- 61 vs. 361 +/- 38 microg/30 min, respectively) and much higher in the DH kidney (770 +/- 106 microg/30 min). Renal fibrosis was measured in tissue sections stained with Syrius red using a computer-assisted image analysis system. DH and DL kidneys showed higher corpuscular cross-sectional and capillary tuft areas than the CH and CL ones. The DH kidney showed slight mesangial expansion and thickening of the capillary walls, which were more pronounced in the former. Most renal corpuscles from CH and DH groups were nearly normal in morphology appearance, and only in some instances a slight increment in mesangium was observed. Transforming growth factor-beta1 (TGF-beta1) immunostaining revealed that DH kidneys showed the highest glomerular expression. We concluded that 1) diabetic animals develop glomerular but not interstitial fibrosis to a greater extent than nondiabetic animals and that this lesion principally occurs in the hypertensive kidney (DH), and 2) increased TGF-beta expression is associated with diabetic renal damage.  相似文献   

18.
Two to 4 hours after unilateral renal exclusion in rats, urine flow rate from the remaining kidney had increased to twice the control level, whereas the filtration rate remained unchanged. After contralateral nephrectomy, NGFR was similar to that of controls, but fractional water reabsorption along proximal tubules decreased. Protein concentration in efferent arteriolar plasma, and hydrostatic pressure gradient between proximal tubules and peritubular capillaries were similar in experimental and control kidneys. Unilateral renal exclusion was followed by a rapid increase of blood pressure. Prevention of this rise depressed but did not abolish functional compensatory adaptation. The occurrence of compensatory adaptation was not affected by decreased renal perfusion pressure.  相似文献   

19.
Renal hemodynamic and natriuretic effects of atrial natriuretic factor   总被引:1,自引:0,他引:1  
In this article we review the renal hemodynamic and excretory actions of atrial natriuretic factor (ANF) and consider some of the mechanisms of its vascular and natriuretic effects. ANF leads to a marked, sustained, and parallel increase in whole-organ and superficial single-nephron glomerular filtration rate (GFR) while mean blood pressure is decreased and renal blood flow (RBF) is unchanged or even decreased. The increase in GFR is caused by an efferent arteriolar vasoconstriction or by a combination of afferent vasodilation and efferent vasoconstriction. ANF also leads to a decrease in the hypertonicity of the innermedullary interstitium. Together with the increase in GFR, this phenomenon accounts wholly or in great part for the ANF-induced natriuresis. The overall renal vascular effects of ANF are complex and may tentatively be conceptualized as a behavior of a functional partial agonist: slight vasoconstriction in vasodilated kidneys, no sustained effects on the vascular resistance in normal kidneys, and vasodilation in vasoconstricted kidneys. The vasoconstrictor effect of ANF may be direct or indirect and depends on extracellular calcium whereas the antagonist effect likely results from alterations in intracellular calcium homeostasis. The data raise the perspective that ANF is not only a powerful natriuretic substance but has the potential of being an important modulator of GFR and RBF in intact animals.  相似文献   

20.
This study demonstrates the feasibility of using focused ultrasound (FUS) to modulate glomerular ultrafiltration by renal artery sonication and determine if protein-creatinine ratios are estimated through vascular parameters. All animal experiments were approved by our Animal Care and Use Committee. The renal arteries of Sprague-Dawley rats were surgically exposed and sonicated at various acoustic power levels using a FUS transducer with a resonant frequency of 1 MHz. The mean peak systolic velocity (PSV) of the blood flow was measured by Doppler ultrasound imaging. Urinary protein-creatinine ratios were calculated during the experiments. Histological examination of renal arteries and whole kidneys was performed. The PSV, pulsatility index, and resistance index of blood flow significantly increased in the arteries after FUS sonication without microbubbles (p<0.05). The change in normalized protein-creatinine ratios significantly increased with increasing acoustic power, but such was not observed when microbubbles were administered. Furthermore, no histological changes were observed in the hematoxylin- and eosin-stained sections. Glomerular ultrafiltration is regulated temporarily by renal artery sonication without microbubbles. Monitoring vascular parameters are useful in estimating the normalized change in protein-creatinine ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号