首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Amino acid control of ribonucleic acid (RNA) synthesis in bacteria is known to be governed genetically by the rel locus. We investigated whether the rel gene of the host would also exert its effect on the regulation of phage-specific RNA synthesis in T4 phage-infected Escherichia coli cells. Since T-even phage infection completely shuts off host macromolecular synthesis, phage RNA synthesis could be followed specifically by the cumulative incorporation of radioactivity from labeled precursors into RNA of infected cells. Labeled uracil was shown to accumulate in phage-specific RNA for 30 to 35 min after infection, a phenomenon which probably reflects an expansion of the labile phage-RNA pool. Amino acid starvation was effected by the use of auxotrophic bacterial strains or thienylalanine. The latter substance is an amino acid analogue which induces a chemical auxotrophy by inhibiting the biosynthesis of phenylalanine, tyrosine, and tryptophan. Phage RNA synthesis was strictly dependent on the presence of amino acids, whereas phage deoxyribonucleic acid synthesis was not. By the use of several pairs of bacterial strains which were isogenic except for the rel gene, it was demonstrated that amino acid dependence was related to the allelic state of this gene. If the rel gene was mutated, amino acid starvation did not restrict phage RNA synthesis.  相似文献   

2.
3.
One of the mechanisms underlying the regulation of the bacteriophage f2 RNA translation is the repression of the phage RNA-replicase formation by coat protein. This repression is due to the formation of a complex between f2 RNA and coat protein (complex I). In this work the mechanism of complex I formation as well as the effect of this complex on the f2 RNA-replicase formation was followed by inhibition of alanine incorporation into RNA-replicase polypeptide which was separated by polyacrylamide gel electrophoresis. The molar ratios of protein to f2 RNA in complex I were analyzed by sucrose gradient sedimentation. It was been found that complex I consists of six molecules of coat protein bound per one molecule of RNA. Ribonuclease digestion of the glutaraldehyde-fixed complex resulted in a mixture of products in which the hexamers of coat protein molecules were predominant. This indicates that the six molecules of coat protein bound to f2 RNA are neighbouring. It has been also shown that under conditions required for phage protein synthesis, coat protein occurs in solution is dimer. The results show that the translational repression of the RNA-replicase cistron is due to the cooperative attachment of three dimers of coat protein to phage template, forming a hexameric cluster on the RNA strand. The proposed mechanism of the complex I formation seems to be in good agreement with the sequence of events in the phage F2 life cycle. It is known that shortly after infection of the host cell the coat protein and phage RNA-replicase begin to be synthesised. According to our findings, the first portions of coat protein do not affect the translation of the RNA-replicase gene since at low concentration the coat protein occure in the form of monomers. At a later period of phage development, when the concentration of coat protein is sufficiently high to promote the formation of protein dimers, the translational repressor complex is formed and the RNA-replicase gene becomes inoperative.  相似文献   

4.
5.
6.
Formation of complex I between phage f2 RNA and coat protein, leading to repression of phage RNA polymerase synthesis, depends nonlinearly upon the concentration of the coat protein. Maximum formation of complex I was observed when six molecules of coat protein were bound to one molecule of RNA. RNase digestion of a glutaraldehyde-fixed complex left, as the products, coat protein oligomers. The heaviest, hexamers, predominated in the mixture. It was also shown that, in an ionic environment required for phage protein synthesis, coat protein at a concentration optimum for complex I formation exists in solution as a dimer. The results indicate that the translational repression of the RNA polymerase cistron is due to a cooperative attachment to phage template of three dimers of coat protein, forming a hexameric cluster on an RNA strand.  相似文献   

7.
The regulation of uracil uptake in bacteria was studied in bacteriophage T4-infected cells, where host-specific, stable RNA synthesis is completely shut-off by phage, and where phage-specific RNA synthesis, which is not stringently regulated, could be followed by a continuous incorporation of uracil. This incorporation into phage RNA was found to be dependent on the allelic state of the rel gene and it was thus severely restricted under stringent conditions. This was not the case with adenine, which was incorported into RNA to almost the same extent under stringent and relaxed conditions, respectively. The inhibition of uracil uptake under proceeding RNA formation, which was furthermore found to be reversed by addition of chloramphenicol, indicated a specific mechanism governing the cellular entry of uracil. This is suggested to involve the allosteric regulation of uracil phosphoribosyltransferase (EC 2.4.2.9.). The enzyme was partially purified by ammonium sulfate precipitation and gel chromatography. The dependence on GDP and GTP as positive effectors was demonstrated. The stimulatory effect of GTP was abolished in vitro by the addition of guanosine 5'-diphosphate 3-diphosphate, which is known to accumulate during amino acid starvation in stringent bacteria. The reversible inactivation of the enzyme by dilution suggested a subunit structure of uracil phosphoribosyltransferase.  相似文献   

8.
We isolated fairly stable lysogenic-like bacteria from a lysogenic state established between an amber mutant for the maturation protein gene of RNA phage Q beta (Q beta am 205) and its nonpermissive host BE110. These bacteria contained few mature phages intracellularly (less than 10(-3) plaque forming unit per cell), continued to grow with a potentiality to produce Q beta am 205 spontaneously, and showed an immunity-like response against homologous phage infection. These characteristics were maintained by growth in liquid medium containing anti-Q beta serum. We designated these cells as pseudolysogenic bacteria. The relative amounts of RNA genomes in these pseudolysogenic cells (about 10(2) infectious RNA strands per cell) indicated that the RNA genomes could replicate in nonpermissive cells and be distributed in daughter cells synchronizing well with cell division.  相似文献   

9.
Starvation for a required amino acid of normal or RC(str)Escherichia coli infected with T-even phages arrests further synthesis of phage deoxyribonucleic acid (DNA). This amino acid control over phage DNA synthesis does not occur in RC(rel)E. coli mutants. Heat inactivation of a temperature-sensitive aminoacyl-transfer ribonucleic acid (RNA) synthetase similarly causes an arrest of phage DNA synthesis in infected cells of RC(str) phenotype but not in cells of RC(rel) phenotype. Inhibition of phage DNA synthesis in amino acid-starved RC(str) host cells can be reversed by addition of chloramphenicol to the culture. Thus, the general features of amino acid control over T-even phage DNA synthesis are entirely analogous to those known for amino acid control over net RNA synthesis of uninfected bacteria. This analogy shows that the bacterial rel locus controls a wider range of macromolecular syntheses than had been previously thought.  相似文献   

10.
11.
We have identified, for the first time, regions of cis-acting RNA elements within the bacteriophage Q beta replicase cistron by analyzing the infectivities of 76 replicase gene mutant phages in the presence of a helper replicase. Two separate classes of mutant Q beta phage genomes (35 different insertion mutants, each containing an insertion of 3 to 15 nucleotides within the replicase gene, and 41 deletion genomes, each having from 15 to 935 nucleotides deleted from different regions of the gene) were constructed, and their corresponding RNAs were tested for the ability to direct the formation of progeny virus particles. Each mutant phage was tested for plaque formation in an Escherichia coli (F+) host strain that supplied helper Q beta replicase in trans from a plasmid DNA. Of the 76 mutant genomes, 34% were able to direct virus production at or close to wild-type levels (with plaque yield ratios of greater than 0.5), another 36% also produced virus particles, but at much lower levels than those of wild-type virus (with plaque yield ratios of less than 0.05), and the remaining 30% produced no virus at all. From these data, we have been able to define regions within the Q beta replicase gene that contain functional cis-acting RNA elements and further correlate them with regions of RNA that are solely required to code for functional RNA polymerase.  相似文献   

12.
Autogenous regulation of RNA polymerase beta subunit synthesis in vitro.   总被引:4,自引:0,他引:4  
The effects of Escherichia coli RNA polymerase and its subassemblies and subunits on the in vitro synthesis of beta subunit directed by DNA from a lambda transducing phage lambdadrif+-6 were investigated. This phage carries the structural gene (rpoB) for beta subunit as well as the genes for EF (translation elongation factor)-Tu, some ribosomal proteins, and stable RNAs of the E. coli chromosome. Among the RNA polymerase proteins examined, the two oligomers, holoenzyme and alpha2beta complex, repressed the synthesis of only the beta subunit but not of other proteins encoded by the phage DNA. The results indicate that the expression of at least the betabeta' (rpoBC) operon is under autogenous regulation, in which both holoenzyme and alpha2beta complex function as regulatory molecules with repressor activity.  相似文献   

13.
14.
Rifampin interferes exclusively with RNA replication in vivo of the group I phages MS2, f2, and R17, whereas QbetaRNA replication is unaffected by the drug. In addition, rifampin has a discriminative effect of group I phage RNA replication. In the experimental system employed by us the antibiotic differentially interferes with the synthesis of minus RNA strands in f2, whereas it has almost no effect on the synthesis of progeny plus strands. In MS2, the drug differentially arrests the synthesis of progeny plus strands and almost fails to affect the synthesis of minus RNA strands. In R17 both steps of its RNA replication are affected by rifampin, although each step is only partially (approximately 50%) inhibited. The relation of the present results to the possible role of bacterial proteins and tertiary structure of phage RNA in the process of template recognition is discussed.  相似文献   

15.
16.
17.
Rescue of abortive T7 gene 2 mutant phage infection by rifampin.   总被引:2,自引:1,他引:1       下载免费PDF全文
Infection of Escherichia coli with T7 gene 2 mutant phage was abortive; concatemeric phage DNA was synthesized but was not packaged into the phage head, resulting in an accumulation of DNA species shorter in size than the phage genome, concomitant with an accumulation of phage head-related structures. Appearance of concatemeric T7 DNA in gene 2 mutant phage infection during onset of T7 DNA replication indicates that the product of gene 2 was required for proper processing or packaging of concatemer DNA rather than for the synthesis of T7 progeny DNA or concatemer formation. This abortive infection by gene 2 mutant phage could be rescued by rifampin. If rifampin was added at the onset of T7 DNA replication, concatemeric DNA molecules were properly packaged into phage heads, as evidenced by the production of infectious progeny phage. Since the gene 2 product acts as a specific inhibitor of E. coli RNA polymerase by preventing the enzyme from binding T7 DNA, uninhibited E. coli RNA polymerase in gene 2 mutant phage-infected cells interacts with concatemeric T7 DNA and perturbs proper DNA processing unless another inhibitor of the enzyme (rifampin) was added. Therefore, the involvement of gene 2 protein in T7 DNA processing may be due to its single function as the specific inhibitor of the host E. coli RNA polymerase.  相似文献   

18.
Q beta phage RNAs with inactivating insertion (8-base) or deletion (17-base) mutations within their replicase genes were prepared from modified Q beta cDNAs and transfected into Escherichia coli spheroplasts containing Q beta replicase provided in trans by a resident plasmid. Replicase-defective (Rep-) Q beta phage produced by these spheroplasts were detected as normal-sized plaques on lawns of cells containing plasmid-derived Q beta replicase, but were unable to form plaques on cells lacking this plasmid. When individual Rep- phage were isolated and grown to high titer in cells containing plasmid-derived Q beta replicase, revertant (Rep+) Q beta phage were obtained at a frequency of ca. 10(-8). To investigate the mechanism of this reversion, a point mutation was placed into the plasmid-derived Q beta replicase gene by site-directed mutagenesis. Q beta mutants amplified on cells containing the resultant plasmid also yielded Rep+ revertants. Genomic RNA was isolated from several of the latter phage revertants and sequenced. Results showed that the original mutation (insertion or deletion) was no longer present in the phage revertants but that the marker mutation placed into the plasmid was now present in the genomic RNAs, indicating that recombination was one mechanism involved in the reversion of the Q beta mutants. Further experiments demonstrated that the 3' noncoding region of the plasmid-derived replicase gene was necessary for the reversion-recombination of the deletion mutant, whereas this region was not required for reversion or recombination of the insertion mutant. Results are discussed in terms of a template-switching model of RNA recombination involving Q beta replicase, the mutant phage genome, and plasmid-derived replicase mRNA.  相似文献   

19.
The 4.5 S RNA gene of Escherichia coli is essential for cell growth   总被引:22,自引:0,他引:22  
The Escherichia coli gene coding for the metabolically stable 4.5 S RNA (ffs) has been shown to be required for cell viability. Essentiality was demonstrated by examining the recombination behavior of substitution mutations of ffs generated in vitro. Substitution mutants of ffs are able to replace the chromosomal allele only in the presence of a second, intact copy of ffs. Independent evidence of essentiality and the finding that 4.5 S RNA is important for protein synthetic activity came from characterization of cells dependent on the lac operon inducer isopropyl-beta-D-thiogalactoside for ffs gene expression. Here, a strain dependent on isopropyl-beta-D-thiogalactoside for 4.5 S RNA synthesis was developed by inactivation of the chromosomal ffs allele and lysogenization by a lambda phage containing 4.5 S DNA fused to a hybrid trp-lac promoter. Withdrawal of the thiogalactoside leads to a deficiency in 4.5 S RNA, a dramatic loss in protein synthesis activity, and eventual cell death. Tagging of the chromosomal ffs region with a kanamycin-resistance gene allowed mapping of the 4.5 S RNA gene. Results from this analysis place ffs near lon at approximately ten minutes on the E. coli linkage map.  相似文献   

20.
A crude P-100 fraction prepared from Bacillus subtilis 21 min after infection with wild-type phage phi 29 supported the in vitro synthesis of late phi 29 RNA by added RNA polymerase. Synthesis of late RNA was also detected when purified phi 29 DNA was transcribed by RNA polymerase in the presence of an S-150 fraction obtained by lysis of phi 29-infected cells in the presence of 1 M NaCl. Late phi 29 RNA was not synthesized when either the P-100 or the S-150 fraction was prepared from cultures infected with phi 29 having a mutation in gene 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号