首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-linked cone-rod dystrophy (COD1) is a retinal disease that primarily affects the cone photoreceptors; the disease was originally mapped to a limited region of Xp11.4. We evaluated the three families from our original study with new markers and clinically reassessed all key recombinants; we determined that the critical intervals in families 2 and 3 overlapped the RP3 locus and that a status change (from affected to probably unaffected) of a key recombinant individual in family 1 also reassigned the disease locus to include RP3 as well. Mutation analysis of the entire RPGR coding region identified two different 2-nucleotide (nt) deletions in ORF15, in family 2 (delAG) and in families 1 and 3 (delGG), both of which result in a frameshift leading to altered amino acid structure and early termination. In addition, an independent individual with X-linked cone-rod dystrophy demonstrated a 1-nt insertion (insA) in ORF15. The presence of three distinct mutations associated with the same disease phenotype provides strong evidence that mutations in RPGR exon ORF15 are responsible for COD1. Genetic heterogeneity was observed in three other families, including the identification of an in-frame 12-nt deletion polymorphism in ORF15 that did not segregate with the disease in one of these families.  相似文献   

2.
Retinitis pigmentosa is the name given to a heterogeneous group of hereditary retinal degenerations characterized by progressive visual field loss, pigmentary changes of the retina, abnormal electroretinograms, and, frequently, night blindness. In this study, we investigated a family with dominant cone-rod degeneration, a variant form of retinitis pigmentosa. We used microsatellite markers to test for linkage to the disease locus and excluded all mapped autosomal loci. However, a marker from the short arm of the X chromosome, DXS989, showed 0% recombination to the disease locus, with a maximum lod (log-odds) score of 3.3. On the basis of this marker, the odds favoring X-linked dominant versus autosomal dominant inheritance are > 10(5):1. Haplotype analysis using an additional nine microsatellite markers places the disease locus in the Xp22.13-p22.11 region and excludes other X-linked disease loci causing retinal degeneration. The clinical expression of the retinal degeneration is consistent with X-linked dominant inheritance with milder, variable effects of Lyonization affecting expression in females. On the basis of these data we propose that this family has a novel form of dominant, X-linked cone-rod degeneration with the gene symbol "RP15."  相似文献   

3.
Progressive X-linked cone-rod dystrophy (COD1) is a retinal disease affecting primarily the cone photoreceptors. The COD1 locus originally was localized, by the study of three independent families, to a region between Xp11.3 and Xp21.1, encompassing the retinitis pigmentosa (RP) 3 locus. We have refined the COD1 locus to a limited region of Xp11.4, using two families reported elsewhere and a new extended family. Genotype analysis was performed by use of eight microsatellite markers (tel-M6CA, DXS1068, DXS1058, DXS993, DXS228, DXS1201, DXS1003, and DXS1055-cent), spanning a distance of 20 cM. Nine-point linkage analysis, by use of the VITESSE program for X-linked disorders, established a maximum LOD score (17.5) between markers DXS1058 and DXS993, spanning 4.0 cM. Two additional markers, DXS977 and DXS556, which map between DXS1058 and DXS993, were used to further narrow the critical region. The RP3 gene, RPGR, was excluded on the basis of two obligate recombinants, observed in two independent families. In a third family, linkage analysis did not exclude the RPGR locus. The entire coding region of the RPGR gene from two affected males from family 2 was sequenced and was found to be normal. Haplotype analysis of two family branches, containing three obligate recombinants, two affected and one unaffected, defined the COD1 locus as distal to DXS993 and proximal to DXS556, a distance of approximately 1.0 Mb. This study excludes COD1 as an allelic variant of RP3 and establishes a novel locus that is sufficiently defined for positional cloning.  相似文献   

4.
FG syndrome (FGS, MIM 305450) is a rare X-linked recessive disorder comprising mental retardation and multiple malformations. Various families have been described to date, increasing our knowledge of the phenotype variability and making the clinical diagnosis complex, especially in sporadic patients. The first locus for FG syndrome (FGS1) was linked to chromosome region Xq12-q21.31, but other families have been excluded from this locus. The genetic heterogeneity of FG syndrome has been confirmed by analysis of an X chromosome inversion [inv(X)(q11q28)] in an affected boy and in his mentally retarded maternal uncle, suggesting that an additional locus for FG syndrome (FGS2, MIM 300321) is located at either Xq11 or Xq28. Recently, a third locus (FGS3) has been mapped to Xp22.3. We have identified and clinically characterized an Italian FG family, including 31 members with three affected males in two generations and two obligate carriers. We have excluded linkage to known FGS loci, whereas an extensive study of the whole X chromosome has yielded a maximum LOD score (Z(max)) of 2.66 (recombination fraction=0) for markers between DXS8113 and sWXD805. This new locus for FG syndrome corresponds to a region of approximately 4.6 Mb on the X chromosome.  相似文献   

5.
The X-linked form of retinitis pigmentosa (XLRP) is a severe disease of the retina, characterised by night blindness and visual field constriction in a degenerative process, culminating with complete loss of sight within the third decade of life. Genetic mapping studies have identified two major loci for XLRP: RP3 (70%–75% of XLRP) and RP2 (20%–25% of XLRP). The RPGR (retinitis pigmentosa GTPase regulator) gene has been cloned within the RP3 genomic interval and it has been shown that 10%–20% of XLRP families have mutations in this gene. Here, we describe a single-strand conformational polymorphism-based mutation screening of RPGR in a pool of 29 XLRP families for which the disease segregates with the RP3 locus, in order to investigate the proportion of RP3 families with RPGR mutations and to relate the results to previous reports. Five different new mutations have been identified: two splice site mutations for exon 1 and three frameshift mutations in exons 7, 10 and 11. The percentage of RPGR mutations identified is 17% (5/29) in our genetically well-defined population. This figure is comparable to the percentage of RP2 gene mutations that we have detected in our entire XLRP patient pool (10%–15%). A correlation of RPGR mutations with phenotype in the families described in this study and the biochemical characterisation of reported mutations may provide insights into the function of the protein. Electronic Publication  相似文献   

6.
The aim of this study was to identify the chromosomal location of the disease-causing gene in a family apparently segregating X-linked optic atrophy. A large family of 45 individuals with a four-generation history of X-linked optic atrophy was reexamined in a full ophthalmic as well as electrophysiological examination. A DNA linkage analysis of the family was undertaken in order to identify the chromosomal location of the disease-causing gene. Linkage analysis was performed with 26 markers that spanned the entire X chromosome. The affected males showed very early onset and slow progression of the disease. Ophthalmic study of the female carriers did not reveal any abnormalities. Close linkage without recombination was found at the MAOB locus (maximum LOD score [Zmax] 4.19). The Zmax - 1 support interval was found at a recombination fraction of .076 distal and .018 proximal to MAOB. Multipoint linkage analysis placed the optic atrophy-causing gene in the Xp11.4-p11.21 interval between markers DXS993 and DXS991, whereas any other localization along the X chromosome could be excluded.  相似文献   

7.
8.
9.
A physical map internal to the markers DXS1368 and DXS228 was developed for the p11.4 region of the human X chromosome. Twenty-four BACs and 10 PACs with an average insert size of 149 kb were aligned to form a contig across an estimated 1.4 Mb of DNA. This contig, which has on average fourfold clone coverage, was assembled by STS and EST content analysis using 46 markers, including 8 ESTs, two retinally expressed genes, and 22 new STSs developed from BAC- and PAC-derived DNA sequence. The average intermarker distance was 30 kb. This physical map provides resources for high-resolution mapping as well as suitable clones for large-scale sequencing efforts in Xp11.4, a region known to contain the gene for complete X-linked congenital stationary night blindness.  相似文献   

10.
The porphyrias are disorders that result from the inherited or acquired dysregulation of one of the eight enzymes in the heme biosynthetic pathway. Variegate porphyria (VP) is characterized by deficiencies in protoporphyrinogen oxidase (PPO) and has recently been genetically linked (Z = 6.62) to the PPO gene on chromosome 1q21. In this study, we have identified two sequence variants in the PPO gene in a family with VP. The first is a neutral polymorphism at the -47 position of intron 2; this polymorphism is present in the general population and is unlikely to underlie the VP phenotype. The second is a mutation in the PPO gene in a patient with VP; the mutation consists of an apparently de novo 2-bp insertion in exon 3 of PPO and results in a frameshift and downstream premature termination codon. These data establish that a frameshift mutation in PPO is the underlying mutation in this patient with VP and explain the sporadic occurrence of the phenotype in this family. Received: 29 May 1996 / Revised: 20 August 1996  相似文献   

11.
Molecular genetic studies were carried out on two maternal cousins with X-linked chronic granulomatous disease (X-CGD). Sequencing analysis of polymerase chain reaction (PCR)-amplified DNA fragments from both patients revealed a 15-base pair (bp) insertion associated with a 3-bp deletion in exon 10 of the cytochrome b heavy chain (gp91-phox) gene. Results of genomic PCR with primers flanking the insertion/deletion site confirmed the mutation, and also demonstrated that their mothers were carriers for the disease. Palindromic sequences were found in the 15-bp insertion as well as in the flanking 3-bp deletion site, which may play a role in the mechanism of this mutation.  相似文献   

12.
MOTIVATION: DNA repeats are a common feature of most genomic sequences. Their de novo identification is still difficult despite being a crucial step in genomic analysis and oligonucleotides design. Several efficient algorithms based on word counting are available, but too short words decrease specificity while long words decrease sensitivity, particularly in degenerated repeats. RESULTS: The Repeat Analysis Program (RAP) is based on a new word-counting algorithm optimized for high resolution repeat identification using gapped words. Many different overlapping gapped words can be counted at the same genomic position, thus producing a better signal than the single ungapped word. This results in better specificity both in terms of low-frequency detection, being able to identify sequences repeated only once, and highly divergent detection, producing a generally high score in most intron sequences. AVAILABILITY: The program is freely available for non-profit organizations, upon request to the authors. CONTACT: giorgio.valle@unipd.it SUPPLEMENTARY INFORMATION: The program has been tested on the Caenorhabditis elegans genome using word lengths of 12, 14 and 16 bases. The full analysis has been implemented in the UCSC Genome Browser and is accessible at http://genome.cribi.unipd.it.  相似文献   

13.
Protein identification has been greatly facilitated by database searches against protein sequences derived from product ion spectra of peptides. This approach is primarily based on the use of fragment ion mass information contained in a MS/MS spectrum. Unambiguous protein identification from a spectrum with low sequence coverage or poor spectral quality can be a major challenge. We present a two-dimensional (2D) mass spectrometric method in which the numbers of nitrogen atoms in the molecular ion and the fragment ions are used to provide additional discriminating power for much improved protein identification and de novo peptide sequencing. The nitrogen number is determined by analyzing the mass difference of corresponding peak pairs in overlaid spectra of (15)N-labeled and unlabeled peptides. These peptides are produced by enzymatic or chemical cleavage of proteins from cells grown in (15)N-enriched and normal media, respectively. It is demonstrated that, using 2D information, i.e., m/z and its associated nitrogen number, this method can, not only confirm protein identification results generated by MS/MS database searching, but also identify peptides that are not possible to identify by database searching alone. Examples are presented of analyzing Escherichia coli K12 extracts that yielded relatively poor MS/MS spectra, presumably from the digests of low abundance proteins, which can still give positive protein identification using this method. Additionally, this 2D MS method can facilitate spectral interpretation for de novo peptide sequencing and identification of posttranslational or other chemical modifications. We envision that this method should be particularly useful for proteome expression profiling of organelles or cells that can be grown in (15)N-enriched media.  相似文献   

14.
15.
16.
X-linked agammaglobulinemia (XLA) is an inherited recessive disorder in which the primary defect is not known and the gene product has yet to be identified. Utilizing genetic linkage analysis, we previously localized the XLA gene to the map region of Xq21.3-Xq22 with DNA markers DXS3 and DXS17. In this study, further mapping was performed with two additional DNA probes, DXS94 and DXS178, by means of multipoint analysis of 20 families in which XLA is segregating. Thirteen of these families had been previously analyzed with DXS3 and DXS17. Three crossovers were detected with DXS94 and no recombinations were found between DXS178 and the XLA locus in 9 informative families. Our results show that XLA is closely linked to DXS178 with a two-point lod score of 4.82 and a multipoint lod score of 10.24. Thus, the most likely gene order is DXS3-(XLA,DXS178)-DXS94-DXS17, with the confidence interval for location of XLA lying entirely between DXS3 and DXS94. In 2 of these families, we identified recombinants with DXS17, a locus with which recombination had not previously been detected by others in as many as 40 meiotic events. Furthermore, DXS178 is informative in both of these families and does not show recombination with the disease locus. Therefore, our results indicate that DXS178 is linked tightly to the XLA gene.  相似文献   

17.
One of the major causes of blindness is primary open-angle glaucoma, which affects millions of elderly people worldwide. Genetic studies have so far mapped three loci for the adult-onset form of this condition to the 2cen-q13, 3q21-q24, and 8q23 regions. Herein, we report the localization of a fourth locus, to the 10p15-p14 region, in one large British family with a classical form of normal-tension open-angle glaucoma. Of the 42 meioses genotyped in this pedigree, 39 subjects (16 affected) inherited a haplotype compatible with their prior clinical designation, whereas the remaining 3 were classified as unknown. Although a maximum LOD score of 10.00 at a recombination fraction of straight theta=.00 was obtained with D10S1216, 21 other markers provided significant values, varying between 3.77 and 9.70. When only the affected meioses of this kindred were analyzed, LOD scores remained statistically significant, ranging from 3.16 (D10S527) to 3.57 (D10S506). Two critical recombinational events in the affected subjects positioned this new locus to a region of approximately 21 cM, flanked by D10S1729 and D10S1664. However, an additional recombination in a 59-year-old unaffected female suggests that this locus resides between D10S585 (or D10S1172) and D10S1664, within a genetic distance of 5-11 cM. However, the latter minimum region must be taken cautiously, because the incomplete penetrance has previously been documented for this group of eye conditions. A partial list of genes that positionally are considered as candidates includes NET1, PRKCT, ITIH2, IL2RA, IL15RA, IT1H2, hGATA3, the mRNA for open reading frame KIAA0019, and the gene for D123 protein.  相似文献   

18.
19.
Congenital stationary night blindness (CSNB) is a nonprogressive retinal disorder characterized by night blindness, nystagmus, myopia, a variable decrease in visual acuity, an abnormal electroretinographic response, and a disturbance in dark adaptation. Two forms of X-linked CSNB have been defined, complete CSNB in which rod function is extinguished, and incomplete CSNB in which rod function is reduced but not extinguished, as seen by electroretinography and dark adaptometry. In studying a large family of Mennonite ancestry, we have confirmed linkage between the locus (CSNB2) for incomplete CSNB and genetic markers in the Xp11 region. In particular, lod scores of 12.25 and 15.26 at zero recombination were observed between CSNB2 and the markers DXS573 and DXS255. Detailed analysis of critical recombinant chromosomes in this extended family have refined the minimal region for the CSNB2 locus to the interval between DXS6849 and DXS8023 in Xp11.23. Received: 5 November 1997 / Accepted: 23 February 1998  相似文献   

20.
Human pyruvate dehydrogenase (PDH)-complex deficiency is an inborn error of metabolism that is extremely heterogeneous in its presentation and clinical course. In a study of 14 patients (7 females and 7 males), we have found a mutation in the coding region of the E1 alpha gene in all 14 patients. Two female patients had the same 7-bp deletion at nt 927; another female patient had a 3-bp deletion at nt 931. Another female patient was found to have a deletion of exon 6 in her cDNA. Two other female patients were found to have insertions, one of 13 bp at nt 981 and one of 46 bp at nucleotide 1078. Two male patients were found to have a 4-bp insertion at nucleotide 1163. The remaining six patients all had missense mutations. A male patient and a female patient both had an A1133G mutation. The other missense mutations were C214T, C615A, and C787G (two patients). Five of these mutations are novel mutations, five have been previously reported in other patients, and two were published observations in other patients in an E1 alpha-mutation summary. In the four cases where parent DNA was available, only one mother was found to be a carrier of the same mutation as her child.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号