首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recombinant DNA technology can permit study of the regulation of steroid hydroxylase gene expression at three levels. The first of these is cAMP-regulated gene expression. In the adrenal, ACTH, via cAMP, increases the expression of the genes for all of the cytochrome P-450 species involved in the steroid biosynthetic pathway, as well as the iron-sulfur protein, adrenodoxin. This action of cAMP is inhibited by cycloheximide, suggestive of the involvement of a regulatory protein factor in mediating this action of cAMP. The second level is tissue-specific regulation of steroid hydroxylase gene expression. An example of this which we have studied is the expression of cholesterol side-chain cleavage cytochrome P-450 (P-450sec) and 17 alpha-hydroxylase cytochrome P-450 (P-450(17) alpha) in the bovine ovary. P-450sec is expressed at high levels in the corpus luteum but at low levels in follicles, whereas P-450(17)alpha is expressed in follicles, but is undetectable in the corpus luteum. The third level is fetal imprinting. A number of the cytochrome P-450 species involving in the steroidogenic pathway are expressed in the fetal adrenal at a time when exposure of the gland to ACTH is very low, suggestive that factor(s) other than pituitary ACTH mediate this expression in fetal life.  相似文献   

3.
Steroid 17 alpha-hydroxylase has emerged as a key enzyme in steroidogenic cells: (i) it represents the branch point between the 17-deoxy (mineralo) and the 17-hydroxy (gluco) corticosteroid pathways in the adrenal cortex; (ii) the corresponding specific cytochrome (P-450(17 alpha] is highly dependent upon hormonal regulation; and (iii) the enzyme also catalyzes the steroid 17-20 lyase reaction, leading to the major androgens in the testis. As a prerequisite to the study of its regulation in intact cell, 17 alpha-hydroxylase was purified from calf testis microsomal preparations. Following five chromatographic steps, the enzyme was obtained as an apparently homogeneous protein of Mr = 57 kDa upon gel electrophoresis. The procedure yielded a recovery of about 10% as judged by cytochrome P-450 assay. Whereas 17 alpha-hydroxylase specific activity was about 30-fold enriched during the purification, that of the C17-20 lyase was increased by about 6-fold, strongly suggesting that its organelle environment may modulate the enzymatic activity. The purified enzyme yielded a 20 N-terminal amino-acid sequence showing a complete homology with that of its adrenal counterpart and a polyclonal antibody raised against our preparation revealed a 57 kDa protein band in bovine adrenocortical microsomal extracts, upon immunoblotting experiments. It was thus concluded that bovine 17 alpha-hydroxylase activity is supported by highly similar if not identical enzymatic proteins in both testis and adrenal cortex tissues. The purified P-450(17 alpha) preparation is now being used in reconstitution experiments which suggest that microsomal components may contribute to a different expression of the enzyme specificity in its native testis or adrenocortical intracellular environment, respectively.  相似文献   

4.
Li LA  Xia D  Wei S  Hartung J  Zhao RQ 《Steroids》2008,73(8):806-814
Our previous study demonstrated significant difference in the basal plasma cortisol levels between Erhualian (EHL) and Pietrain (PIE) pigs, implicating fundamental breed difference in adrenocortical function. The objectives of the present study were therefore to characterize the expression pattern of proteins involved in adrenal ACTH signaling and, including melanocortin type 2 receptor (MC2R), cAMP response element binding protein (CREB) and phosphorylated CREB (pCREB), steroidogenic acute regulatory protein (StAR), as well as that of the key enzymes involved in steroidogenesis in EHL and PIE pigs, in association with the plasma corticotrophin (ACTH) and cortisol levels. The plasma concentrations of the substrates for adrenal steroidogenesis, cholesterol and low-density lipoprotein (LDL) cholesterol, did not differ between breeds. Plasma concentration of ACTH and the adrenal contents of MC2R mRNA and protein were similar in two breeds of pigs, whereas the basal plasma concentrations of cortisol in EHL pigs were 1.5 folds higher than that in PIE pigs. The higher basal plasma cortisol levels in EHL pigs were found to be accompanied with the higher expression of ACTH post-receptor signaling components, cAMP, pCREB and StAR, as well as the higher expression of cholesterol side-chain cleavage cytochrome P450 (P450scc), 17alpha-hydroxylase cytochrome P450 (P450(17alpha)), 21-hydroxylase cytochrome P450 (P450c21) and 11beta-hydroxylase cytochrome P450 (P450(11beta)). These results indicated that the enhanced cAMP/PKA/pCREB-signaling system and augmented expression of StAR and steroidogenic enzymes are major attributes to the higher basal plasma cortisol concentrations in pigs.  相似文献   

5.
Using bovine adrenocortical cells in monolayer culture it has been shown that treatment with adrenocorticotropin (ACTH) causes a dramatic increase in 17 alpha-hydroxylase activity. In postmitochondrial supernatant fractions (PMS) prepared from cells maintained in culture, there was a 15-fold increase in 17 alpha-hydroxylase activity 36 h following initiation of ACTH treatment compared with the activity measured in PMS prepared from control cells. In the continued presence of ACTH, 17 alpha-hydroxylase activity declined; however, even after 60 h of exposure to ACTH, 17 alpha-hydroxylase activity was eight times higher than that present in control cells. The dramatic increase in 17 alpha-hydroxylase activity provides an explanation for the previously observed phenomenon that following initiation of ACTH treatment of bovine adrenocortical cells in monolayer culture there is a shift in the pattern of corticosteroid secretion from approximately equal amounts of cortisol and corticosterone to almost exclusively cortisol. Thus, the modulation of 17 alpha-hydroxylase activity by ACTH action appears to serve a key regulatory role in the pattern of corticosteroid production. Soluble cytosolic factors apparently do not participate in the regulation of 17 alpha-hydroxylase activity in the bovine adrenal cortex. Increases in the magnitude of substrate-induced absorbance changes are indicative that the increase in 17 alpha-hydroxylase activity is due, at least in part, to an elevation of cytochrome P-450(17)alpha synthesis.  相似文献   

6.
7.
Two inhibitors of the cholesterol side chain cleavage reaction were tested for their ability to inhibit bovine adrenocortical 17 alpha-hydroxylase and 21-hydroxylase activities. One inhibitor, 22-amino-23,24-bisnor-5-cholen-3 beta-ol (22-ABC), was found to be a potent inhibitor of 17 alpha-hydroxylation of either progesterone or pregnenolone but was inactive on 21-hydroxylase activity. 22-ABC was found to be a competitive inhibitor of 17 alpha-hydroxylase (cytochrome P-45017 alpha) activity, having an apparent inhibitor constant of 29 nM when using pregnenolone as the substrate. Spectral binding studies showed that 22-ABC produces a type II difference spectrum when added to a bovine adrenocortical microsomal preparation, due presumably to a coordination of its amine nitrogen atom to the heme-iron of cytochrome P-45017 alpha. The second cholesterol side chain cleavage inhibitor tested, (20R)-20-phenyl-5-pregnene-3 beta,20-diol (20-PPD), was found not to inhibit either the 21- or 17 alpha-hydroxylase activities. It is proposed that the phenyl group projecting from C-20 of 20-PPD prevents this steroid from binding to cytochrome P-45017 alpha. The discriminatory interaction of these two steroids with adrenocortical cytochromes P-450 provides some insight with respect to possible structural features of the active-site regions of these enzymes.  相似文献   

8.
Cytochrome P-450(17 alpha,lyase) mediating pathway of dehydroepiandrosterone (DHA) formation from pregnenolone was investigated in primary cultures of bovine adrenocortical fasciculata-reticularis cells. To determine whether DHA formation proceeds predominantly by successive monooxygenase reactions without 17 alpha-hydroxypregnenolone leaving P-450(17 alpha,lyase) the cells were incubated with [14C]pregnenolone and 17 alpha-[3H]hydroxypregnenolone in the presence of Trilostane. Results of the double-substrate double-label experiments indicate that in the presence of high concentration of pregnenolone most of DHA was formed, directly from pregnenolone by the successive reactions. Since the concentration of pregnenolone usually exceeds that of 17 alpha-hydroxypregnenolone in the adrenal glands, DHA is concluded to be formed predominantly by successive reactions from pregnenolone without 17 alpha-hydroxypregnenolone leaving P-450(17 alpha,lyase) in vivo. By chronic ACTH treatment, the activities of 17 alpha-hydroxylation and DHA formation in adrenocortical cultured cells became higher concomitantly with the increase of P-450(17 alpha,lyase) content. Most of DHA was found to be formed by successive reactions from pregnenolone even under such conditions.  相似文献   

9.
Bovine adrenocortical cells in primary culture were used to examine the trophic effect of ACTH on the induction of the 17 alpha-hydroxylase and C-17,20-lyase activities. The addition of exogenous pregnenolone to bovine adrenal microsomes showed the appearance of 17 alpha-hydroxy-pregnenolone before the formation of dehydroepiandrosterone. The same sequence of activities was evident in postmitochondrial supernate from bovine adrenocortical cells cultured 36 h in the presence of 1 microM ACTH but not in postmitochondrial supernate from control cells. In another study, bovine adrenocortical cells were cultured for 36 h after which 30 microM 17 alpha-hydroxypregnenolone was added to the medium and the incubation continued 1 h; there was a 4-fold increase in androgen content in the media from ACTH-treated cells over controls. Measurement of the 17 alpha-hydroxylase and C-17,20-lyase reactions in postmitochondrial supernate from cells cultured 0-72 h in the presence of ACTH or 1 mM dibutyryl cAMP showed concomitant increases in the two activities and both activities were inhibited by the same compounds known to inhibit 17 alpha-hydroxylase activity. These observations support the concept of the co-induction of 17 alpha-hydroxylase and C-17,20-lyase activities in response to ACTH; results in keeping with previous studies indicating that the two activities are catalyzed by a single gene product, the polypeptide chain P-45017a.  相似文献   

10.
The properties and the purity of a cytochrome P-450 (17 alpha-hydroxylase) from porcine adrenal microsomes have been examined following a report that the corresponding enzyme from bovine adrenocortical microsomes is inactive as a 17 alpha-hydroxylase and fails to show a high spin spectrum on addition of substrate, once the enzyme has been purified (Bumpus, J. A., and Dus, K. M. (1982) J. Biol. Chem. 257, 12696-12704). The purity of the porcine enzyme was demonstrated by electrophoresis on polyacrylamide with sodium dodecyl sulfate, immunoelectrophoresis, and NH2-terminal amino acid sequence (16 residues). The pure enzyme shows Mr = 54,000, heme content of greater than 0.8 nmol/nmol of protein, and absorption spectra typical of cytochrome P-450. The enzyme is active with both delta 4 (progesterone) and delta 5 (pregnenolone) substrates as a 17 alpha-hydroxylase and with the corresponding 17 alpha-hydroxysteroids as a C17,20-lyase. All four substrates produce typical type I spectra with the enzyme (so-called high spin form). We conclude that: 1) porcine adrenal microsomes contain a 17 alpha-hydroxylase/C17,20-lyase which is a single protein molecule readily purified to an enzymatically active form; 2) the C17,20-lyase activity is largely suppressed in the microsomes; and 3) the enzyme closely resembles that found in testicular microsomes. We propose that this enzyme be referred to as the adrenal C21 steroid side chain cleavage enzyme.  相似文献   

11.
The developmental expression of adrenocortical steroid hydroxylases was studied in bovine fetuses from 40 to 280 days gestational age. The expression of P-450(17 alpha) is first detected at a gestational age of 50 days and reaches a maximum at 60-70 days. The expression of P-450(17 alpha) then declines and is nondetectable at a gestational age of 100 days. P-450(17 alpha) is not expressed again until about 240 days, i.e. shortly before birth (approximately 280 days). P-450scc, P-450c21, P-450(11 beta) and adrenodoxin were present in fetal adrenals throughout gestation. This "on-off-on" pattern of P-450(17 alpha) expression during fetal development was associated with a corresponding episodic production of cortisol. Immunoreactive corticotropin (ACTH) levels in fetal plasma were elevated in small fetuses (corresponding to less than or equal to 100 days) and in near-term fetuses (corresponding to greater than 250 days) compared with those in mid-gestation fetuses. In primary culture, adrenal cells from mid-gestation fetuses contained no detectable P-450(17 alpha) but rapidly responded to ACTH with an increase in P-450(17 alpha) protein and mRNA. The tissue specificity of the developmental patterns is emphasized by the fact that both P-450(17 alpha) and P-450scc were detectable throughout the development of the fetal testes, whereas only P-450scc was detectable in fetal bovine ovary prior to 200 days. Thus, in fetal bovine adrenal it appears that ACTH is the major regulatory factor effecting the intermittent presence of P-450(17 alpha), whereas the presence of the other steroid hydroxylases is either regulated by additional factors or shows a much different sensitivity to ACTH.  相似文献   

12.
Bovine steroid 21-hydroxylase: regulation of biosynthesis   总被引:1,自引:0,他引:1  
  相似文献   

13.
The regulation of the novo synthesis of the microsomal cytochrome P-450 enzyme, P-450(17 alpha), was studied in mouse Leydig cell cultures. Chronic treatment with 0.05 mM 8-Br-cAMP (cAMP) caused a time-dependent increase in 17 alpha-hydroxylase activity and in the amount of P-450(17 alpha), quantitated by immunoblotting. This increase in both activity and amount was enhanced by inhibiting testosterone production with aminoglutethimide, an inhibitor of cholesterol side-chain cleavage or SU 10603, an inhibitor of 17 alpha-hydroxylase. To examine the mechanism by which cAMP or cAMP plus inhibitors of testosterone production increased the activity and amount of P-450(17 alpha), changes in the rate of de novo synthesis were studied by measuring [35S]methionine incorporation into newly synthesized protein. Treatment with cAMP plus aminoglutethimide or SU 10603 caused a 2-fold or greater increase in the rate of de novo synthesis of P-450(17 alpha) compared to treatment with cAMP only. The addition of exogenous testosterone reversed this increase in the rate of synthesis, indicating that testosterone modulates the extent of cAMP-stimulated induction of P-450(17 alpha). This negative effect of testosterone could be mimicked by the addition of the androgen agonist, mibolerone, and prevented by the addition of the antiandrogen, hydroxyflutamide. Neither estradiol nor dexamethasone had any effect on the synthesis of P-450(17 alpha). Studies on the degradation of newly synthesized P-450(17 alpha) demonstrated that testosterone had no effect on the decay of P-450(17 alpha) during the first 24 h but caused a significant increase in the rate of decay between 24 and 48 h. These data indicate that testosterone produced during cAMP induction of P-450(17 alpha) negatively regulates the amount of this cytochrome P-450 enzyme by two distinct mechanisms: by repressing cAMP-induced synthesis of P-450(17 alpha) by an androgen receptor-mediated mechanism and by increasing the rate of degradation of P-450(17 alpha). A model is proposed for the regulation of P-450(17 alpha) in Leydig cells.  相似文献   

14.
Modes of inhibition and binding of ketoconazole, an orally antimycotic agent, to NADPH-cytochrome P-450 dependent enzymes were investigated using subcellular fractions of human and rat testes, human adrenocortical adenoma tissue and rat adrenals and livers. Ketoconazole competitively inhibited the activities of steroid 17 alpha-hydroxylase and C17-20 lyase in rat and human testes, 16 alpha-hydroxylase in human testes and 21-hydroxylase in rat adrenal glands. Ki values were in the order of 10(-8)M for human testicular enzymes, while the order was 10(-7)-10(-6) M for rat adrenal and testicular enzymes. Kinetic studies indicated that ketoconazole bound to cytochrome P-450 and not to other components of monooxygenase systems. Spectrophotometric studies also revealed direct binding of ketoconazole to cytochrome P-450 component by inducing type II difference spectra in all tissue preparations examined, indicating that ketoconazole is possibly a universal inhibitor of NADPH-cytochrome P-450 dependent monooxygenases which are involved in metabolism of many substances including steroids, toxins, carcinogens and others.  相似文献   

15.
To provide a basis for investigation of the molecular mechanisms underlying the hormonal regulation of steroid 17 alpha-hydroxylase (P-450 17 alpha) activity in adrenal, ovary, and testis as well as human 17 alpha-hydroxylase deficiency, we have isolated from a human fetal adrenal cDNA library a cDNA sequence complementary to the mRNA that encodes the human P-450 17 alpha enzyme. Of 75,000 colonies from the library that were screened by use of a nick-translated 5'-specific bovine P-450 17 alpha cDNA probe, 10 positive colonies were isolated and the clone with the longest insert (pcD-17 alpha H) was selected for further characterization. pcD-17 alpha H encodes the complete human P-450 17 alpha protein having approximately 78% homology at the nucleotide level and 71% homology at the amino acid level when the sequence of pcD-17 alpha H is compared to the bovine P-450 17 alpha cDNA sequence. By transient expression of the human P-450 17 alpha cDNA clone in COS 1 cells, we have demonstrated that the 17 alpha-hydroxylase and 17,20 lyase activities reside within the same human P-450 17 alpha polypeptide chain. The insert was also used as a probe to investigate, by means of Southern blot analysis, possible alterations in the P-450 17 alpha gene sequence in DNA isolated from skin fibroblasts from three patients with clinically characterized 17 alpha-hydroxylase deficiencies. No changes were detected in the DNA of any of the patients by this analysis.  相似文献   

16.
17.
The turnover of newly synthesized cytochromes P-450scc and P-45011 beta, and adrenodoxin was investigated in bovine adrenocortical cells in primary monolayer cultures. Cells were pulse-radiolabeled with [35S]methionine, and specific newly synthesized enzymes were immunoisolated at various times following labeling and quantitated. Adrenocorticotropin (ACTH) treatment did not alter the average turnover rate of total cellular proteins or that of total mitochondrial proteins. The half-life of total cellular proteins of control and ACTH-treated cells was determined to be 20.5 and 23 h, respectively. The half-life of mitochondrial proteins of control and ACTH-treated cells was determined to be 42.5 and 44 h, respectively. The turnover rate of newly synthesized cytochrome P-450scc was approximately the same as total mitochondrial protein (t1/2 = 38 h), and was unchanged by ACTH treatment (t1/2 = 42 h). ACTH treatment did not greatly alter the turnover rate of adrenodoxin. The half-life of adrenodoxin from control and ACTH-treated cells was determined to be 20 and 17 h, respectively. However, ACTH treatment appeared to increase the half-life of cytochrome P-45011 beta from 16 h in control cells to 24 h in treated cells. The differential rate of turnover of mitochondrial proteins studied here supports the contention that mitochondria are subject to heterogeneous degradation. It appears that chronic treatment of bovine adrenocortical cells in culture with ACTH leads to increased steroidogenic capacity, primarily as a result of increased synthesis of steroidogenic enzymes, although, as shown for cytochrome P-45011 beta, ACTH action might also increase steroidogenic capacity by increasing the half-life of this steroid hydroxylase.  相似文献   

18.
To investigate the molecular basis for the pattern of ovarian steroid production during the bovine estrous cycle, the relative levels of mRNA specific for cholesterol side-chain cleavage cytochrome P-450, 17 alpha-hydroxylase cytochrome P-450, adrenodoxin, and low density lipoprotein receptor were determined in ovarian antral follicles of differing size (less than 3-18 mm) and corpora lutea from the early, early-mid, late-mid, and regressionary stages. Total and poly(A)+ RNA was size-fractionated on agarose-formaldehyde gels, transferred to nylon filters and hybridized to specific 32P-labeled probes. The levels of mRNAs for the rate-limiting enzymes in the conversion of cholesterol into progesterone, namely cholesterol side-chain cleavage cytochrome P-450 and its electron donor, adrenodoxin, were higher in corpora lutea than in follicles. Conversely the levels of mRNA specific for the key regulatory enzyme in the conversion of pregnenolone or progesterone to androgen, namely 17 alpha-hydroxylase cytochrome P-450, were high in all antral follicles examined but were low in young corpora lutea and undetectable in more mature corpora lutea. Low density lipoprotein receptor mRNA was detectable in antral follicles and corpora lutea but the levels were greater in corpora lutea. These results suggest that the pattern of changes in steroid hormone biosynthesis during the bovine estrous cycle and in the ovarian content of steroidogenic enzymes is related to and probably dependent upon the pattern of change in levels of mRNAs for steroidogenic enzymes and related proteins.  相似文献   

19.
To further elucidate the mechanisms by which ACTH (adrenocorticotropin) exerts its long-term action to maintain normal levels of adrenocortical cytochromes P-450 and related enzymes, the abilities of cholera toxin and prostaglandins E2 and F2 alpha to induce the synthesis of cytochromes P-450scc, P-45011 beta, and P-450C21 and adrenodoxin have been examined. These effectors stimulate the production of cyclic AMP and thus steroidogenesis in the adrenal cortex. Using bovine adrenocortical cells in primary monolayer culture, we have shown that treatment with cholera toxin results in increased synthesis of cytochromes P-450scc and P-45011 beta and adrenodoxin, similar to the effect observed upon ACTH treatment. Prostaglandins E2 and F2 alpha are less effective at inducing the synthesis of the mitochondrial cytochromes P-450, and do not seem to induce the synthesis of adrenodoxin. Furthermore, cholera toxin was found to be less effective at inducing the synthesis of microsomal cytochrome P-450C21 than ACTH, and no more effective than the prostaglandins. Thus, while it appears that elevation of cyclic AMP levels is a necessary step leading to increased synthesis of adrenocortical forms of cytochrome P-450, the detailed mechanism of this induction will be found to be different for each of the different enzymes.  相似文献   

20.
Stress susceptibility in pigs is inherited by a single recessive gene (Hal(n)), and homozygous individuals can be identified by exposure to halothane anesthesia. Previous studies have shown that in stress-susceptible pigs, exposure to a high ambient temperature resulted in a twofold increase in corticotropin (ACTH) and lower plasma cortisol. To determine whether there is a fundamental difference in adrenocortical function between halothane-sensitive (HAL-S) and halothane-resistant (HAL-R) pigs, independent of other factors influencing the hypothalamic-pituitary-adrenal (HPA) axis, we compared cortisol responses to ACTH and 8-bromo-cyclic AMP (8-Br-cAMP) in HAL-S and HAL-R pig adrenocortical cells in vitro. We also determined directly the accumulation of four different mRNAs encoding cholesterol side-chain cleavage cytochrome P450 (P450(scc)), 17alpha-hydroxylase cytochrome P450 (P450(17alpha)), 21-hydroxylase cytochrome P450 (P450(c21)) and 11beta-hydroxylase cytochrome P450 (P450(11beta)) in HAL-S pig adrenal cells and compared them to HAL-R pigs. A time- and dose-dependent increase in medium content of cortisol and cAMP was observed after ACTH treatment. 8-Br-cAMP also caused a time- and dose-dependent increase in cortisol production in the medium. Addition of ACTH or 8-Br-cAMP to HAL-S and HAL-R male Lanyu small-ear miniature pig adrenocortical cells increased cortisol production in a dose- and time-related manner. However, cells isolated from HAL-S pigs had a lower cortisol production in response to ACTH or 8-Br-cAMP compared to those from HAL-R pigs. Treatment of cultured cells with 8-Br-cAMP (0.5 mM) for 18 h resulted in a significant increase in P450(scc), P450(17alpha), P450(c21), and P450(11beta) mRNA levels. In the absence of 8-Br-cAMP, the four genes were expressed constitutively in both HAL-S and HAL-R pig adrenal cells. Densitometric scanning of the autoradiograph indicated that the relative amounts of P450(scc) and P450(17(alpha)) mRNAs in HAL-S pig adrenal cells were between 48% and 53% of those detected in HAL-R pig adrenal cells (P < 0.05). No difference in the amounts of P450(c21) and P450(11beta) was seen in HAL-S and HAL-R pig adrenal cells. Addition of 8-Br-cAMP (0.5 mM) resulted in a uniform increase in the levels of all four P450 mRNAs in both HAL-S and HAL-R pig adrenal cells. However, the amounts of P450(scc) mRNA in HAL-S pig adrenal cells were 67% (P < 0.05) of those measured in HAL-R pig adrenal cells, whereas the amounts of P450(17alpha ), P450(c21), and P450(11beta) mRNAs were similar in these cells. Our data suggest an HPA axis defect in HAL-S pigs at the adrenal level. This defect appears to be at the level of P450scc gene expression, which could be partially related to reduced cortisol production by ACTH stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号