首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural changes in frog skeletal muscle were studied using x-ray diffraction with a time resolution of 0.53–1.02 ms after a single electrical stimulus at 8°C. Tension began to drop at 6 ms (latency relaxation), reached a minimum at 8 ms, and then twitch tension developed. The intensity of the meridional reflection at 1/38.5 nm−1, from troponin molecules on the thin filament, began to increase at 4–5 ms and reached a maximum at ~12 ms. The meridional reflections based on the myosin 43-nm repeat began to decrease when the tension began to develop. The peak position of the third-order myosin meridional reflection began to shift toward the higher angle at ~5 ms, reached a maximum shift (0.02%) at 10 ms, and then moved toward the lower angle. The intensity of the second actin layer line at 1/18 nm−1 in the axial direction, which was measured at 12°C, began to rise at 5 ms, whereas the latency relaxation started at 3.5 ms. These results suggest that 1), the Ca2+-induced structural changes in the thin filament and a structural change in the thick filament have already taken place during latency relaxation; and 2), the Ca2+ regulation of the thin filament is highly cooperative.  相似文献   

2.
Fibrillin-rich microfibrils have endowed tissues with elasticity throughout multicellular evolution. We have used molecular combing techniques to determine Young's modulus for individual microfibrils and X-ray diffraction of zonular filaments of the eye to establish the linearity of microfibril periodic extension. Microfibril periodicity is not altered at physiological zonular tissue extensions and Young's modulus is between 78 MPa and 96 MPa, which is two orders of magnitude stiffer than elastin. We conclude that elasticity in microfibril-containing tissues arises primarily from reversible alterations in supra-microfibrillar arrangements rather than from intrinsic elastic properties of individual microfibrils which, instead, act as reinforcing fibres in fibrous composite tissues.  相似文献   

3.
The divalent cation Sr2+ induced repetitive transient spikes of the cytosolic Ca2+ activity [Ca2+]cy and parallel repetitive transient hyperpolarizations of the plasma membrane in the unicellular green alga Eremosphaera viridis. [Ca2+]cy measurements, membrane potential measurements, and cation analysis of the cells were used to elucidate the mechanism of Sr2+-induced [Ca2+]cy oscillations. Sr2+ was effectively and rapidly compartmentalized within the cell, probably into the vacuole. The [Ca2+]cy oscillations cause membrane potential oscillations, and not the reverse. The endoplasmic reticulum (ER) Ca2+-ATPase blockers 2,5-di-tert-butylhydroquinone and cyclopiazonic acid inhibited Sr2+-induced repetitive [Ca2+]cy spikes, whereas the compartmentalization of Sr2+ was not influenced. A repetitive Ca2+ release and Ca2+ re-uptake by the ER probably generated repetitive [Ca2+]cy spikes in E. viridis in the presence of Sr2+. The inhibitory effect of ruthenium red and ryanodine indicated that the Sr2+-induced Ca2+ release from the ER was mediated by a ryanodine/cyclic ADP-ribose type of Ca2+ channel. The blockage of Sr2+-induced repetitive [Ca2+]cy spikes by La3+ or Gd3+ indicated the necessity of a certain influx of divalent cations for sustained [Ca2+]cy oscillations. Based on these data we present a mathematical model that describes the baseline spiking [Ca2+]cy oscillations in E. viridis.  相似文献   

4.
The mature lactococcal cell envelope proteinase (CEP) consists of an N-terminal subtilisin-like proteinase domain and a large C-terminal extension of unknown function whose far end anchors the molecule in the cell envelope. Different types of CEP can be distinguished on the basis of specificity and amino acid sequence. Removal of weakly bound Ca2+ from the native cell-bound CEP of Lactococcus lactis SK11 (type III specificity) is coupled with a significant reversible decrease in specific activity and a dramatic reversible reduction in thermal stability, as a result of which no activity at 25°C (pH 6.5) can be measured. The consequences of Ca2+ removal are less dramatic for the CEP of strain Wg2 (mixed type I-type III specificity). Autoproteolytic release of CEP from cells concerns this so-called “Ca-free” form only and occurs most efficiently in the case of the Wg2 CEP. The results of a study of the relationship between the Ca2+ concentration and the stability and activity of the cell-bound SK11 CEP at 25°C suggested that binding of at least two Ca2+ ions occurred. Similar studies performed with hybrid CEPs constructed from SK11 and Wg2 wild-type CEPs revealed that the C-terminal extension plays a determinative role with respect to the ultimate distinct Ca2+ dependence of the cell-bound CEP. The results are discussed in terms of predicted Ca2+ binding sites in the subtilisin-like proteinase domain and Ca-triggered structural rearrangements that influence both the conformational stability of the enzyme and the effectiveness of the catalytic site. We argue that distinctive primary folding of the proteinase domain is guided and maintained by the large C-terminal extension.  相似文献   

5.
Mitochondria act as potent buffers of intracellular Ca2+ in many cells, but a more active role in modulating the generation of Ca2+ signals is not well established. We have investigated the ability of mitochondria to modulate store-operated or “capacitative” Ca2+ entry in Jurkat leukemic T cells and human T lymphocytes using fluorescence imaging techniques. Depletion of the ER Ca2+ store with thapsigargin (TG) activates Ca2+ release-activated Ca2+ (CRAC) channels in T cells, and the ensuing influx of Ca2+ loads a TG- insensitive intracellular store that by several criteria appears to be mitochondria. Loading of this store is prevented by carbonyl cyanide m-chlorophenylhydrazone or by antimycin A1 + oligomycin, agents that are known to inhibit mitochondrial Ca2+ import by dissipating the mitochondrial membrane potential. Conversely, intracellular Na+ depletion, which inhibits Na+-dependent Ca2+ export from mitochondria, enhances store loading. In addition, we find that rhod-2 labels mitochondria in T cells, and it reports changes in Ca2+ levels that are consistent with its localization in the TG-insensitive store. Ca2+ uptake by the mitochondrial store is sensitive (threshold is <400 nM cytosolic Ca2+), rapid (detectable within 8 s), and does not readily saturate. The rate of mitochondrial Ca2+ uptake is sensitive to extracellular [Ca2+], indicating that mitochondria sense Ca2+ gradients near CRAC channels. Remarkably, mitochondrial uncouplers or Na+ depletion prevent the ability of T cells to maintain a high rate of capacitative Ca2+ entry over prolonged periods of >10 min. Under these conditions, the rate of Ca2+ influx in single cells undergoes abrupt transitions from a high influx to a low influx state. These results demonstrate that mitochondria not only buffer the Ca2+ that enters T cells via store-operated Ca2+ channels, but also play an active role in modulating the rate of capacitative Ca2+ entry.  相似文献   

6.
Anoxia induces a rapid elevation of the cytosolic Ca2+ concentration ([Ca2+]cyt) in maize (Zea mays L.) cells, which is caused by the release of the ion from intracellular stores. This anoxic Ca2+ release is important for gene activation and survival in O2-deprived maize seedlings and cells. In this study we examined the contribution of mitochondrial Ca2+ to the anoxic [Ca2+]cyt elevation in maize cells. Imaging of intramitochondrial Ca2+ levels showed that a majority of mitochondria released their Ca2+ in response to anoxia and took up Ca2+ upon reoxygenation. We also investigated whether the mitochondrial Ca2+ release contributed to the increase in [Ca2+]cyt under anoxia. Analysis of the spatial association between anoxic [Ca2+]cyt changes and the distribution of mitochondrial and other intracellular Ca2+ stores revealed that the largest [Ca2+]cyt increases occurred close to mitochondria and away from the tonoplast. In addition, carbonylcyanide p-trifluoromethoxyphenyl hydrazone treatment depolarized mitochondria and caused a mild elevation of [Ca2+]cyt under aerobic conditions but prevented a [Ca2+]cyt increase in response to a subsequent anoxic pulse. These results suggest that mitochondria play an important role in the anoxic elevation of [Ca2+]cyt and participate in the signaling of O2 deprivation.  相似文献   

7.
In cardiac muscle, Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) defines the amplitude and time course of the Ca2+ transient. The global elevation of the intracellular Ca2+ concentration arises from the spatial and temporal summation of elementary Ca2+ release events, Ca2+ sparks. Ca2+ sparks represent the concerted opening of a group of ryanodine receptors (RYRs), which are under the control of several modulatory proteins and diffusible cytoplasmic factors (e.g., Ca2+, Mg2+, and ATP). Here, we examined by which mechanism the free intracellular Mg2+ ([Mg2+]free) affects various Ca2+ spark parameters in permeabilized mouse ventricular myocytes, such as spark frequency, duration, rise time, and full width, at half magnitude and half maximal duration. Varying the levels of free ATP and Mg2+ in specifically designed solutions allowed us to separate the inhibition of RYRs by Mg2+ from the possible activation by ATP and Mg2+-ATP via the adenine binding site of the channel. Changes in [Mg2+]free generally led to biphasic alterations of the Ca2+ spark frequency. For example, lowering [Mg2+]free resulted in an abrupt increase of spark frequency, which slowly recovered toward the initial level, presumably as a result of SR Ca2+ depletion. Fitting the Ca2+ spark inhibition by [Mg2+]free with a Hill equation revealed a Ki of 0.1 mM. In conclusion, our results support the notion that local Ca2+ release and Ca2+ sparks are modulated by Mg2+ in the intracellular environment. This seems to occur predominantly by hindering Ca2+-dependent activation of the RYRs through competitive Mg2+ occupancy of the high-affinity activation site of the channels. These findings help to characterize CICR in cardiac muscle under normal and pathological conditions, where the levels of Mg2+ and ATP can change.  相似文献   

8.
The four sperm-specific CatSper ion channel proteins are required for hyperactivated motility and male fertility, and for Ca2+ entry evoked by alkaline depolarization. In the absence of external Ca2+, Na+ carries current through CatSper channels in voltage-clamped sperm. Here we show that CatSper channel activity can be monitored optically with the [Na+]i-reporting probe SBFI in populations of intact sperm. Removal of external Ca2+ increases SBFI signals in wild-type but not CatSper2-null sperm. The rate of the indicated rise of [Na+]i is greater for sperm alkalinized with NH4Cl than for sperm acidified with propionic acid, reflecting the alkaline-promoted signature property of CatSper currents. In contrast, the [Na+]i rise is slowed by candidate CatSper blocker HC-056456 (IC50 ∼3 µM). HC-056456 similarly slows the rise of [Ca2+]i that is evoked by alkaline depolarization and reported by fura-2. HC-056456 also selectively and reversibly decreased CatSper currents recorded from patch-clamped sperm. HC-056456 does not prevent activation of motility by HCO3 but does prevent the development of hyperactivated motility by capacitating incubations, thus producing a phenocopy of the CatSper-null sperm. When applied to hyperactivated sperm, HC-056456 causes a rapid, reversible loss of flagellar waveform asymmetry, similar to the loss that occurs when Ca2+ entry through the CatSper channel is terminated by removal of external Ca2+. Thus, open CatSper channels and entry of external Ca2+ through them sustains hyperactivated motility. These results indicate that pharmacological targeting of the CatSper channel may impose a selective late-stage block to fertility, and that high-throughput screening with an optical reporter of CatSper channel activity may identify additional selective blockers with potential for male-directed contraception.  相似文献   

9.
Damage induces remote occlusion of sieve tubes in Vicia faba by forisome dispersion, triggered during the passage of an electropotential wave (EPW). This study addresses the role of Ca2+ channels and cytosolic Ca2+ elevation as a link between EPWs and forisome dispersion. Ca2+ channel antagonists affect the initial phase of the EPW as well as the prolonged plateau phase. Resting levels of sieve tube Ca2+ of ∼50 nM were independently estimated using Ca2+-selective electrodes and a Ca2+-sensitive dye. Transient changes in cytosolic Ca2+ were observed in phloem tissue in response to remote stimuli and showed profiles similar to those of EPWs. The measured elevation of Ca2+ in sieve tubes was below the threshold necessary for forisome dispersion. Therefore, forisomes need to be associated with Ca2+ release sites. We found an association between forisomes and endoplasmic reticulum (ER) at sieve plates and pore-plasmodesma units where high-affinity binding of a fluorescent Ca2+ channel blocker mapped an increased density of Ca2+ channels. In conclusion, propagation of EPWs in response to remote stimuli is linked to forisome dispersion through transiently high levels of parietal Ca2+, release of which depends on both plasma membrane and ER Ca2+ channels.  相似文献   

10.
Rotavirus infection modifies Ca2+ homeostasis, provoking an increase in Ca2+ permeation, the cytoplasmic Ca2+ concentration ([Ca2+]cyto), and total Ca2+ pools and a decrease in Ca2+ response to agonists. A glycosylated viral protein(s), NSP4 and/or VP7, may be responsible for these effects. HT29 or Cos-7 cells were infected by the SA11 clone 28 strain, in which VP7 is not glycosylated, or transiently transfected with plasmids coding for NSP4-enhanced green fluorescent protein (EGFP) or NSP4. The permeability of the plasma membrane to Ca2+ and the amount of Ca2+ sequestered in the endoplasmic reticulum released by carbachol or ATP were measured in fura-2-loaded cells at the single-cell level under a fluorescence microscope or in cell suspensions in a fluorimeter. Total cell Ca2+ pools were evaluated as 45Ca2+ uptake. Infection with SA11 clone 28 induced an increase in Ca2+ permeability and 45Ca2+ uptake similar to that found with the normally glycosylated SA11 strain. These effects were inhibited by tunicamycin, indicating that inhibition of glycosylation of a viral protein other than VP7 affects the changes of Ca2+ homeostasis induced by infection. Expression of NSP4-EGFP or NSP4 in transfected cells induced the same changes observed with rotavirus infection, whereas the expression of EGFP or EGFP-VP4 showed the behavior of uninfected and untransfected cells. Increased 45Ca2+ uptake was also observed in cells expressing NSP4-EGFP or NSP4, as evidenced in rotavirus infection. These results indicate that glycosylated NSP4 is primarily responsible for altering the Ca2+ homeostasis of infected cells through an initial increase of cell membrane permeability to Ca2+.  相似文献   

11.
The term excitation-coupled Ca2+ entry (ECCE) designates the entry of extracellular Ca2+ into skeletal muscle cells, which occurs in response to prolonged depolarization or pulse trains and depends on the presence of both the 1,4-dihydropyridine receptor (DHPR) in the plasma membrane and the type 1 ryanodine receptor in the sarcoplasmic reticulum (SR) membrane. The ECCE pathway is blocked by pharmacological agents that also block store-operated Ca2+ entry, is inhibited by dantrolene, is relatively insensitive to the DHP antagonist nifedipine (1 μM), and is permeable to Mn2+. Here, we have examined the effects of these agents on the L-type Ca2+ current conducted via the DHPR. We found that the nonspecific cation channel antagonists (2-APB, SKF 96356, La3+, and Gd3+) and dantrolene all inhibited the L-type Ca2+ current. In addition, complete (>97%) block of the L-type current required concentrations of nifedipine >10 μM. Like ECCE, the L-type Ca2+ channel displays permeability to Mn2+ in the absence of external Ca2+ and produces a Ca2+ current that persists during prolonged (∼10-second) depolarization. This current appears to contribute to the Ca2+ transient observed during prolonged KCl depolarization of intact myotubes because (1) the transients in normal myotubes decayed more rapidly in the absence of external Ca2+; (2) the transients in dysgenic myotubes expressing SkEIIIK (a DHPR α1S pore mutant thought to conduct only monovalent cations) had a time course like that of normal myotubes in Ca2+-free solution and were unaffected by Ca2+ removal; and (3) after block of SR Ca2+ release by 200 μM ryanodine, normal myotubes still displayed a large Ca2+ transient, whereas no transient was detectable in SkEIIIK-expressing dysgenic myotubes. Collectively, these results indicate that the skeletal muscle L-type channel is a major contributor to the Ca2+ entry attributed to ECCE.  相似文献   

12.
Calcium can activate mitochondrial metabolism, and the possibility that mitochondrial Ca2+ uptake and extrusion modulate free cytosolic [Ca2+] (Cac) now has renewed interest. We use whole-cell and perforated patch clamp methods together with rapid local perfusion to introduce probes and inhibitors to rat chromaffin cells, to evoke Ca2+ entry, and to monitor Ca2+-activated currents that report near-surface [Ca2+]. We show that rapid recovery from elevations of Cac requires both the mitochondrial Ca2+ uniporter and the mitochondrial energization that drives Ca2+ uptake through it. Applying imaging and single-cell photometric methods, we find that the probe rhod-2 selectively localizes to mitochondria and uses its responses to quantify mitochondrial free [Ca2+] (Cam). The indicated resting Cam of 100–200 nM is similar to the resting Cac reported by the probes indo-1 and Calcium Green, or its dextran conjugate in the cytoplasm. Simultaneous monitoring of Cam and Cac at high temporal resolution shows that, although Cam increases less than Cac, mitochondrial sequestration of Ca2+ is fast and has high capacity. We find that mitochondrial Ca2+ uptake limits the rise and underlies the rapid decay of Cac excursions produced by Ca2+ entry or by mobilization of reticular stores. We also find that subsequent export of Ca2+ from mitochondria, seen as declining Cam, prolongs complete Cac recovery and that suppressing export of Ca2+, by inhibition of the mitochondrial Na+/ Ca2+ exchanger, reversibly hastens final recovery of Cac. We conclude that mitochondria are active participants in cellular Ca2+ signaling, whose unique role is determined by their ability to rapidly accumulate and then release large quantities of Ca2+.  相似文献   

13.
This study presents an investigation of pacemaker mechanisms underlying lymphatic vasomotion. We tested the hypothesis that active inositol 1,4,5-trisphosphate receptor (IP3R)-operated Ca2+ stores interact as coupled oscillators to produce near-synchronous Ca2+ release events and associated pacemaker potentials, this driving action potentials and constrictions of lymphatic smooth muscle. Application of endothelin 1 (ET-1), an agonist known to enhance synthesis of IP3, to quiescent lymphatic smooth muscle syncytia first enhanced spontaneous Ca2+ transients and/or intracellular Ca2+ waves. Larger near-synchronous Ca2+ transients then occurred leading to global synchronous Ca2+ transients associated with action potentials and resultant vasomotion. In contrast, blockade of L-type Ca2+ channels with nifedipine prevented ET-1 from inducing near-synchronous Ca2+ transients and resultant action potentials, leaving only asynchronous Ca2+ transients and local Ca2+ waves. These data were well simulated by a model of lymphatic smooth muscle with: 1), oscillatory Ca2+ release from IP3R-operated Ca2+ stores, which causes depolarization; 2), L-type Ca2+ channels; and 3), gap junctions between cells. Stimulation of the stores caused global pacemaker activity through coupled oscillator-based entrainment of the stores. Membrane potential changes and positive feedback by L-type Ca2+ channels to produce more store activity were fundamental to this process providing long-range electrochemical coupling between the Ca2+ store oscillators. We conclude that lymphatic pacemaking is mediated by coupled oscillator-based interactions between active Ca2+ stores. These are weakly coupled by inter- and intracellular diffusion of store activators and strongly coupled by membrane potential. Ca2+ store-based pacemaking is predicted for cellular systems where: 1), oscillatory Ca2+ release induces depolarization; 2), membrane depolarization provides positive feedback to induce further store Ca2+ release; and 3), cells are interconnected. These conditions are met in a surprisingly large number of cellular systems including gastrointestinal, lymphatic, urethral, and vascular tissues, and in heart pacemaker cells.  相似文献   

14.
Calcium handling in pancreatic β-cells is important for intracellular signaling, the control of electrical activity, and insulin secretion. The endoplasmic reticulum (ER) is a key organelle involved in the storage and release of intracellular Ca2+. Using mathematical modeling, we analyze the filtering properties of the ER and clarify the dual role that it plays as both a Ca2+ source and a Ca2+ sink. We demonstrate that recent time-dependent data on the free Ca2+ concentration in pancreatic islets and β-cell clusters can be explained with a model that uses a passive ER that takes up Ca2+ when the cell is depolarized and the cytosolic Ca2+ concentration is elevated, and releases Ca2+ when the cell is repolarized and the cytosolic Ca2+ is at a lower concentration. We find that Ca2+-induced Ca2+ release is not necessary to explain the data, and indeed the model is inconsistent with the data if Ca2+-induced Ca2+ release is a dominating factor. Finally, we show that a three-compartment model that includes a subspace compartment between the ER and the plasma membrane provides the best agreement with the experimental Ca2+ data.  相似文献   

15.
Fibrillin-rich microfibrils are the major structural components of the extracellular matrix that provide elasticity in a majority of connective tissues. The basis of elastic properties lies in the organization of fibrillin molecules, which, unfortunately, is still poorly understood. An X-ray diffraction study of hydrated fibrillin-rich microfibrils from zonular filaments has been conducted to give an insight into the molecular structure of microfibrils in intact tissue. A series of measurements was taken during controlled tissue extension to observe alterations in the lateral packing of microfibrils. Computer-generated simulated patterns were used to fit the experimental X-ray scattering data and to obtain the fibril diameter and lateral distance between the fibrils. The results suggest a nonlinear correlation between external strain and decrease in fibril diameter and lateral spacing. This was accompanied by a nonlinear increase in axial periodicity and a structure with a 160-nm periodicity, which is reported here for the first time using X-ray diffraction. These changes may reflect the unraveling of fibrillin from the complex folded arrangement into a linear structure. This finding supports a pleating model where fibrillin molecules are highly folded within the microfibrils; more importantly, the connection is made between the interaction of individual microfibrils and the change in their suprafibrillar coherent organization during extension. We suggest that the intermediate states observed in our study reflect sequential unfolding of fibrillin and can explain the process of its reversible unraveling.  相似文献   

16.
We investigated the mechanisms of excitation-contraction (EC) coupling in human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and fetal ventricular myocytes (hFVMs) using patch-clamp electrophysiology and confocal microscopy. We tested the hypothesis that Ca2+ influx via voltage-gated L-type Ca2+ channels activates Ca2+ release from the sarcoplasmic reticulum (SR) via a local control mechanism in hESC-CMs and hFVMs. Field-stimulated, whole-cell [Ca2+]i transients in hESC-CMs required Ca2+ entry through L-type Ca2+ channels, as evidenced by the elimination of such transients by either removal of extracellular Ca2+ or treatment with diltiazem, an L-type channel inhibitor. Ca2+ release from the SR also contributes to the [Ca2+]i transient in these cells, as evidenced by studies with drugs interfering with either SR Ca2+ release (i.e. ryanodine and caffeine) or reuptake (i.e. thapsigargin and cyclopiazonic acid). As in adult ventricular myocytes, membrane depolarization evoked large L-type Ca2+ currents (I Ca) and corresponding whole-cell [Ca2+]i transients in hESC-CMs and hFVMs, and the amplitude of both I Ca and the [Ca2+]i transients were finely graded by the magnitude of the depolarization. hESC-CMs exhibit a decreasing EC coupling gain with depolarization to more positive test potentials, “tail” [Ca2+]i transients upon repolarization from extremely positive test potentials, and co-localized ryanodine and sarcolemmal L-type Ca2+ channels, all findings that are consistent with the local control hypothesis. Finally, we recorded Ca2+ sparks in hESC-CMs and hFVMs. Collectively, these data support a model in which tight, local control of SR Ca2+ release by the I Ca during EC coupling develops early in human cardiomyocytes.  相似文献   

17.
In cardiac muscle, intracellular Ca2+ and Mg2+ are potent regulators of calcium release from the sarcoplasmic reticulum (SR). It is well known that the free [Ca2+] in the SR ([Ca2+]L) stimulates the Ca2+ release channels (ryanodine receptor [RYR]2). However, little is known about the action of luminal Mg2+, which has not been regarded as an important regulator of Ca2+ release.  相似文献   

18.
Ca2+ sparks are the elementary release events in many types of cells. Here we present a morphometric analysis of Ca2+ sparks (i.e., amplitude and kinetic parameters) using an approach that minimizes the confounding factor of the detection of out-of-focus events. By activation and visualization of Ca2+ sparks from Ca2+ release units under loose-seal patch-clamp conditions, we found that the amplitude and rising rate of in-focus sparks exhibited a broad modal distribution, whereas spark rise time and spatial width appeared to be stereotyped. Spark morphometrics were constant irrespective of the latency of spark production and the time-dependent L-type Ca2+ channel activation. Polymorphism of Ca2+ sparks in terms of variable amplitude and rising rate was evident for events from the same release units, and intra- and interrelease unit variability contributed equally to the overall variability. The rising rate, a reporter of the underlying Ca2+ release flux, displayed a strong positive correlation with spark amplitude, but a negative correlation with spark rise time, an index of Ca2+ release duration. On the basis of Ca2+ spark morphometrics measured here, we suggested a model in which cohorts of variable number of ryanodine receptors are activated in the genesis of Ca2+ sparks, and the ensuing negative feedback overrides the regenerative Ca2+-induced Ca2+ release to extinguish the ongoing Ca2+ spark.  相似文献   

19.
Increasing evidence suggests that changes in cytosolic Ca2+ levels and phosphorylation play important roles in the regulation of stomatal aperture and as ion transporters of guard cells. However, protein kinases responsible for Ca2+ signaling in guard cells remain to be identified. Using biochemical approaches, we have identified a Ca2+-dependent protein kinase with a calmodulin-like domain (CDPK) in guard cell protoplasts of Vicia faba. Both autophosphorylation and catalytic activity of CDPK are Ca2+ dependent. CDPK exhibits a Ca2+-induced electrophoretic mobility shift and its Ca2+-dependent catalytic activity can be inhibited by the calmodulin antagonists trifluoperazine and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide. Antibodies to soybean CDPKα cross-react with CDPK. Micromolar Ca2+ concentrations stimulate phosphorylation of several proteins from guard cells; cyclosporin A, a specific inhibitor of the Ca2+-dependent protein phosphatase calcineurin enhances the Ca2+-dependent phosphorylation of several soluble proteins. CDPK from guard cells phosphorylates the K+ channel KAT1 protein in a Ca2+-dependent manner. These results suggest that CDPK may be an important component of Ca2+ signaling in guard cells.  相似文献   

20.
Addition of membrane-permeable cyclic GMP (cGMP) and cyclic AMP (cAMP) were shown to cause elevation of cytosolic Ca2+ concentration ([Ca2+]cyt) in tobacco (Nicotiana plumbaginofolia) protoplasts. Under the same conditions these cyclic nucleotides were shown to provoke a physiological swelling response in the protoplasts. Nonmembrane-permeable cAMP and cGMP were unable to trigger a detectable [Ca2+]cyt response. Cyclic-nucleotide-mediated elevations in [Ca2+]cyt involved both internal and external Ca2+ stores. Both cAMP- and cGMP-mediated [Ca2+]cyt elevations could be inhibited by the Ca2+-channel blocker verapamil. Addition of inhibitors of phosphodiesterases (isobutylmethylxanthine and zaprinast) and the adenylate cyclase agonist forskolin to the protoplasts (predicted to elevate in vivo cyclic-nucleotide concentrations) caused elevations in [Ca2+]cyt. Addition of the adenylate cyclase inhibitor 2′,5′-dideoxyadenosine before forskolin significantly inhibited the forskolin-induced [Ca2+]cyt elevation. Taken together, these data suggest that a potential communication point for cross-talk between signal transduction pathways using cyclic nucleotides in plants is at the level of Ca2+ signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号