首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Retinoic acid (RA) is an important mediator of cell differentiation. It stimulates hCG secretion by JEG-3 choriocarcinoma cells in vitro after a time lag. The first aim of this study was to characterize which types of retinoid receptors (RARs and RXRs) are present in JEG-3 cells. Using Western blot analysis and immunocytochemistry with specific antibodies as well as Northern blot analysis, we found that JEG-3 cells expressed RARα and RXRα, the latter being the predominant receptor. We then analyzed the action on cell proliferation and hCG secretion of the physiological retinoids all-trans RA (RA) and 9 cis RA as well as synthetic retinoids with specific affinity for RARα and RXRα. All these retinoids were potent inhibitors of cell growth, maximal inhibition (72 ± 2%) being observed after 4 days of treatment with Ro 25, a RXRα specific ligand. Within 24 h, 9 cis RA and Ro 25 stimulated hCG secretion, and maximal stimulation (1,472 ± 10%) occurred at 48 h with the RXRα-specific ligand. The RARα-specific ligand also stimulated hCG secretion but to a lower extend and after a delay of 48 h. These results suggest a predominant role of RXRα in mediating the biological effects of retinoids on JEG-3 cells and the possible induction by RA itself of the metabolic pathway leading to 9 cis RA. J. Cell. Physiol. 176:595–601, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
While some authors suggest that retinoids are potential anti-proliferative and antioxidant agents, evidence has suggested those present pro-oxidant properties, which might lead to malignant proliferation. These discordances stimulated one to investigate the proliferative/anti-proliferative properties of two major retinoids, retinol (ROH) and retinoic acid (RA). In Sertoli cells, ROH increased proliferation while RA was anti-proliferative. ROH increased DNA synthesis, decreased p21 levels and induced cell cycle progression. ROH increased reactive species (RS) production and stimulated p38, JNK1/2 and ERK1/2 MAPKs activation. Antioxidant treatment with Trolox blocked ROH-induced RS production, MAPKs activation and proliferation; MAPKs inhibition blocked proliferation. The potential sites of RS indicate that ROH-induced RS is promoted via mitochondria and xanthine oxidase. In contrast, RA induced neither RS production nor MAPKs activation. RA decreased DNA synthesis and increased p21 leading to cell arrest. Overall, data show that ROH, but not RA, is able to induce proliferation through non-classical and redox-dependent mechanisms.  相似文献   

4.
While some authors suggest that retinoids are potential anti-proliferative and antioxidant agents, evidence has suggested those present pro-oxidant properties, which might lead to malignant proliferation. These discordances stimulated one to investigate the proliferative/anti-proliferative properties of two major retinoids, retinol (ROH) and retinoic acid (RA). In Sertoli cells, ROH increased proliferation while RA was anti-proliferative. ROH increased DNA synthesis, decreased p21 levels and induced cell cycle progression. ROH increased reactive species (RS) production and stimulated p38, JNK1/2 and ERK1/2 MAPKs activation. Antioxidant treatment with Trolox blocked ROH-induced RS production, MAPKs activation and proliferation; MAPKs inhibition blocked proliferation. The potential sites of RS indicate that ROH-induced RS is promoted via mitochondria and xanthine oxidase. In contrast, RA induced neither RS production nor MAPKs activation. RA decreased DNA synthesis and increased p21 leading to cell arrest. Overall, data show that ROH, but not RA, is able to induce proliferation through non-classical and redox-dependent mechanisms.  相似文献   

5.
6.
Retinoic acid (RA), which reduces the rate of cell proliferation in S91 mouse melanoma clone C2 cells, was found to stimulate the expression of their melanotic phenotype. RA treatment also induced the extension of long cellular processes. The RA effects on melanogenesis included stimulation of tyrosinase activity and augmentation of cellular melanin content to levels 3- to 4-fold higher than in untreated cultures at similar cell densities. These effects became apparent after 48 hours of exposure to 10(-5) M RA and increased thereafter. Half-maximal stimulation in cells treated for 6 days occurred at 5 X 10(-7) M RA. Although the degrees of melanogenesis enhancement by RA (10(-5) M) and by alpha-melanocyte stimulatory hormone (2 X 10(-7) M) were similar, the former did not alter the intracellular cAMP level, whereas the latter induced a transient 4-fold increase. In high-passage (p28) cells, as well as in low-passage cells (less than p10) treated with tyrosinase inhibitor phenylthiocarbamate, melanin synthesis was suppressed in the absence and presence of RA, yet the ability of RA to inhibit cell proliferation was not compromised. In the presence of the tumor promotor phorbol myristate acetate (greater than 5 X 10(-9) M) melanin synthesis in control as well as in cells exposed to RA was dramatically inhibited. Phorbol which is not active in tumor promotion had no effect on melanogenesis. In addition to RA, other retinoids, such as 13-cis-retinoic acid, retinyl acetate, the TMMP analog of RA and the phenyl analog of RA, but not the pyridyl analog of RA or retinyl palmitate, also inhibited cell growth and enhanced melanin synthesis.  相似文献   

7.
Embryonal carcinoma cell lines (F9 EC and P19 EC) were stably transfected with 1.8 kb promoter sequence of RARbeta2 coupled to the lacZ gene as a system for measuring active retinoids. These stable transfectants, designated F9-1.8 and P19-1.8, were used as reporter cell lines to investigate different retinoids for their ability to activate the reporter gene. F9-1.8 cells showed similar EC(50) values for the acidic retinoids all-trans retinoic acid (RA), 4-oxo RA, 9-cis RA, and 13-cis RA, in the range of 1-7 nM, while P19-1.8 cells were less sensitive. Retinal showed decreased activity compared to the RA isomers in both lines. However, P19-1.8 cells hardly showed beta-gal activity after treatment with retinol, while the lacZ reporter in F9-1.8 cells was still inducible by this retinoid. In addition, the reporter system was used to investigate RA metabolism and its inhibition by P450 inhibitors. A combination of RA and liarozole showed a 10 times greater induction of the RARbeta2-lacZ reporter in P19-1.8 cells, but not in F9-1.8 cells. The EC(50) value for 4-oxo RA, however, was not altered, indicating that metabolic conversion of RA to 4-oxo RA is the target for inhibition by liarozole in P19-1.8 cells. HPLC analysis revealed nearly complete inhibition of RA metabolism after liarozole treatment in P19-1.8 cells, resulting in higher levels of RA. Finally, the F9-1.8 cells were used to detect active retinoids during different stages of chick limb bud development, demonstrating that it is the limb bud mesenchyme which generates RA and not the epidermis, with a twofold higher level of RA in the posterior half than in the anterior half.  相似文献   

8.
9.
Besides nuclear retinoid receptors and cellular retinoid binding proteins also retinoic acid (RA)-synthesizing enzymes (using all-trans-retinal as substrate) and RA-catabolizing enzymes (producing hydroxylated products) may explain the specific effects of retinoids. In the past we have established an active role for 4-hydroxy-RA and 4-oxo-RA, which originally were considered to be inactive retinoids, but in fact are highly active modulators of positional specification in Xenopus development. Here we present evidence for a specific role of hydroxylated RA metabolites in the onset of neuronal differentiation. 4-Hydroxy- and 18-hydroxy-RA are products of the hydroxylation of RA by a novel cytochrome P450 (CYP)-type of enzyme, CYP26, expression of which is rapidly induced by RA. P19 embryonal carcinoma (EC) cell lines stably expressing hCYP26 undergo extensive and rapid neuronal differentiation in monolayer at already low concentrations of RA, while normally P19 cells under these conditions differentiate only in endoderm-like cells. Our results indicate that the effects on growth inhibition and RARbeta transactivation of P19 EC cells are mediated directly by RA, while the onset of neuronal differentiation and the subsequent expression of neuronal markers is mediated by hCYP26 via the conversion of RA to its hydroxylated products.  相似文献   

10.
All-trans-retinoic acid (trans-RA) and other retinoids exert anticancer effects through two types of retinoid receptors, the RA receptors (RARs) and retinoid X receptors (RXRs). Previous studies demonstrated that the growth-inhibitory effects of trans-RA and related retinoids are impaired in certain estrogen-independent breast cancer cell lines due to their lower levels of RAR alpha and RARbeta. In this study, we evaluated several synthetic retinoids for their ability to induce growth inhibition and apoptosis in both trans-RA-sensitive and trans-RA-resistant breast cancer cell lines. Our results demonstrate that RXR-selective retinoids, particularly in combination with RAR-selective retinoids, could significantly induce RARbeta and inhibit the growth and induce the apoptosis of trans-RA-resistant, RAR alpha-deficient MDA-MB-231 cells but had low activity against trans-RA-sensitive ZR-75-1 cells that express high levels of RAR alpha. Using gel retardation and transient transfection assays, we found that the effects of RXR-selective retinoids on MDA-MB-231 cells were most likely mediated by RXR-nur77 heterodimers that bound to the RA response element in the RARbeta promoter and activated the RARbeta promoter in response to RXR-selective retinoids. In contrast, growth inhibition by RAR-selective retinoids in trans-RA-sensitive, RAR alpha-expressing cells most probably occurred through RXR-RAR alpha heterodimers that also bound to and activated the RARbeta promoter. In MDA-MB-231 clones stably expressing RAR alpha, both RARbeta induction and growth inhibition by RXR-selective retinoids were suppressed, while the effects of RAR-selective retinoids were enhanced. Together, our results demonstrate that activation of RXR can inhibit the growth of trans-RA-resistant MDA-MB-231 breast cancer cells and suggest that low cellular RAR alpha may regulate the signaling switch from RAR-mediated to RXR-mediated growth inhibition in breast cancer cells.  相似文献   

11.
Retinoids, such as all-TRANS-retinoic acid (RA), have found applications in several different types of (cancer) therapies. The synthetic retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437 or AHPN), an RA receptor (RAR)gamma agonist, not only induces RARgamma-dependent differentiation, but in contrast to RA, it also induces RARgamma-independent apoptosis in many tumor cells. This observation makes this and similar new retinoids very interesting from a clinical perspective. Several genes have been associated with CD437/AHPN-mediated apoptosis, but the multiple activities of this compound and the apparent cell-type-specific responses to treatment have made it difficult to discern a common biochemical basis for the mechanism of its apoptotic action. In this brief review, we present a model which links all CD437/AHPN-associated apoptotic effects. CD437/AHPN rapidly induces DNA adduct formation through an as-yet unknown reaction which is independent of cell type. This is followed by a cell-type-specific, largely p53-independent DNA damage response which can result in engagement of multiple cell death pathways and activation of caspases as a common endpoint. At the same time, the RARgamma-dependent pathway leads to regulation of differentiation-associated, cell-type-specific genes. CD437/AHPN, with its simultaneous differentiation and apoptosis-inducing activities, is a good prototype for new drugs which may be clinically more efficacious than those with a single activity.  相似文献   

12.
Embryonal carcinoma cell lines (F9 EC and P19 EC) were stably transfected with 1.8 kb promoter sequence of RARβ2 coupled to the lacZ gene as a system for measuring active retinoids. These stable transfectants, designated F9-1.8 and P19-1.8, were used as reporter cell lines to investigate different retinoids for their ability to activate the reporter gene. F9-1.8 cells showed similar EC50 values for the acidic retinoids all-trans retinoic acid (RA), 4-oxo RA, 9-cis RA, and 13-cis RA, in the range of 1–7 nM, while P19-1.8 cells were less sensitive. Retinal showed decreased activity compared to the RA isomers in both lines. However, P19-1.8 cells hardly showed β-gal activity after treatment with retinol, while the lacZ reporter in F9-1.8 cells was still inducible by this retinoid. In addition, the reporter system was used to investigate RA metabolism and its inhibition by P450 inhibitors. A combination of RA and liarozole showed a 10 times greater induction of the RARβ2-lacZ reporter in P19-1.8 cells, but not in F9-1.8 cells. The EC50 value for 4-oxo RA, however, was not altered, indicating that metabolic conversion of RA to 4-oxo RA is the target for inhibition by liarozole in P19-1.8 cells. HPLC analysis revealed nearly complete inhibition of RA metabolism after liarozole treatment in P19-1.8 cells, resulting in higher levels of RA. Finally, the F9-1.8 cells were used to detect active retinoids during different stages of chick limb bud development, demonstrating that it is the limb bud mesenchyme which generates RA and not the epidermis, with a twofold higher level of RA in the posterior half than in the anterior half.  相似文献   

13.
Both retinoids and the mannose 6-phosphate/insulin-like growth factor-II receptor (M6P/IGF2R) have been shown to play an important role in controlling cell growth during embryonic development and oncogenesis. Our recent work (Kang et al., Proc. Natl. Acad. Sci. USA, 94: 13671-13676, 1997; Kang et al., Proc. Natl. Acad. Sci. USA, 95: 13687-13691, 1998) revealed a direct biochemical interaction between retinoic acid (RA) and the M6P/IGF2R, thereby leading us to hypothesize that the M6P/IGF2R may mediate a growth-inhibiting effect of RA. To test this hypothesis, cell growth and apoptosis in response to RA and various receptor-selective retinoids were examined in cells that lack or overexpress the M6P/IGF2R. RA and those retinoids capable of binding to the M6P/IGF2R induced a remarkable morphological change with characteristics of round shape and reduced spreading, apoptosis, and growth inhibition in stably transfected mouse P388D1 cells overexpressing the M6P/IGF2R but not in the M6P/IGF2R-deficient P388D1 cells. These effects of RA were neither blocked by a potent RA nuclear receptor (RAR) antagonist (AGN193109), nor mimicked by a selective RAR agonist (TTNPB), suggesting that the observed effects of RA are independent of RARs. Similar effects of the retinoids were observed in cultured neonatal rat cardiac myocytes that have high levels of the M6P/IGF2R. Furthermore, overexpression of the M6P/IGF2R in a RA-resistant cancer cell line (HL-60R) that lacked functional RARs gave the cells a susceptibility to RA-induced apoptosis. These data suggest that the M6P/ IGF2R may play an important role in mediating retinoid-induced apoptosis/growth-inhibition and provide insight into the similar biological effects of RA and the M6P/IGF2R on fetal development and carcinogenesis.  相似文献   

14.
Abstract. Prior work has shown that all-trans retinoic acid (t-RA) treatment of the human teratocarcinoma (TC) cell line NTERA-2 clone D1 (abbreviated NT2/D1) induces a neuronal phenotype and other cell lineages. This study sought to explore the potential of 9-cis retinoic acid (9-cis RA) as a differentiation-inducing agent of this multipotent cell. Findings reported here show that 9-cis RA induced a phenotype similar to t-RA treatment of NT2/D1 cells. This similarity extended to their effects on the nuclear receptors retinoic acid receptor-β (RAR-β) and retinoid X receptor-α (RXR-α). Both retinoids prominently augmented RAR-β expression and transactivated a reporter plasmid containing putative RAR response elements (RAREs) with direct repeats separated by five nucleotides (DR5). Both retinoids had no appreciable effect on RXR-α expression and both minimally transactivated a reporter plasmid containing putative RXR response elements (RXREs) with direct repeats separated by one nucleotide (DR1). These studies suggest that 9-cis RA and t-RA activate common events during retinoid-mediated NT2/D1 differentiation. This hypothesis was supported by the finding that NT2/D1 cells rendered refractory to t-RA (NTZ/D1-R1) were also resistant to 9-cis RA. To discover alterations that could confer retinoid-refractoriness, retinoid receptor expression was examined in NT2/D1-R1 cells. In contrast to NT2/D1, the NT2/D1-R1 cell was found to have reduced RXR-α expression at the level of total cellular RNA. These studies establish the effectiveness of 9-cis RA as a differentiation agent of human TC cells and demonstrate that retinoids with different nuclear receptor affinities can induce similar phenotypes in NT2/D1 cells. In addition, the findings in the retinoid resistant NT2/Dl-R1 cell implicate a role for specific retinoid receptors in this human TC differentiation program.  相似文献   

15.
Retinoids are known to inhibit the growth of hormone-dependent but not that of hormone-independent breast cancer cells. We investigated the involvement of retinoic acid (RA) receptors (RARs) in the differential growth-inhibitory effects of retinoids and the underlying mechanism. Our data demonstrate that induction of RAR beta by RA correlates with the growth-inhibitory effect of retinoids. The hormone-independent cells acquired RA sensitivity when the RAR beta expression vector was introduced and expressed in the cells. In addition, RA sensitivity of hormone-dependent cells was inhibited by a RAR beta-selective antagonist and the expression of RAR beta antisense RNA. Introduction of RAR alpha also restored RA sensitivity in hormone-independent cells, but this restoration was accomplished by the induction of endogenous RAR beta expression. Furthermore, we show that induction of apoptosis contributes to the growth-inhibitory effect of RAR beta. Thus, RAR beta can mediate retinoid action in breast cancer cells by promoting apoptosis. Loss of RAR beta, therefore, may contribute to the tumorigenicity of human mammary epithelial cells.  相似文献   

16.
The inhibitory effects of 4 retinoids, namely, retinal (Ral), retinoic acid (RA), retinyl acetate (RAc), and retinyl palmitate (RP), and 3 carotenoid including beta-carotene (BCT), lycopene (LCP), and crocetin (CCT) on the growth and DNA synthesis of rat C-6 glioma cells were studied. All the retinoids and carotenoids caused reduction of plating efficiency and inhibition of the cellular growth. RA was the most potent inhibitor of plating efficiency, followed in decreasing order by RAc, Ral, LCP, RP, BCT, and CCT. The effects of various doses of retinoids and carotenoids on the inhibition of DNA synthesis were clearly demonstrated in the growing C-6 glioma cells, whereas negligible effects of these compounds on the RNA and protein synthesis were observed. These results suggested that retinoids or carotenoids are biologically active as anti-tumor agents against brain tumor cells in culture, while carotenoids appeared to be less active.  相似文献   

17.
Vitamin A derivatives (retinoids) are actively involved during vertebrate embryogenesis. However, exogenous retinoids have also long been known as potent teratogens. The defects caused by retinoid treatment are complex. Here, we provided evidence that RAR-mediated retinoid signaling can repress Xenopus blastula Wnt signaling and impair dorsal development. Exogenous retinoic acid (RA) could antagonize the dorsalizing effects of lithium chloride-mediated Wnt activation in blastula embryos. The Wnt-responsive reporter gene transgenesis and luciferase assay showed that excess RA can repress the Wnt signaling in blastula embryos. In addition, the downstream target genes of the Wnt signaling that direct embryonic dorsal development, were also down-regulated in the RA-treated embryos. Mechanically, RA did not interfere with the stability of beta-catenin, but promoted its nuclear accumulation. The inverse agonist of retinoic acid receptors (RAR) rescued the Wnt signaling repression by RA and relieved the RA-induced nuclear accumulation of beta-catenin. Our results explain one of the reasons for the complicated teratogenic effects of retinoids and shed light on the endogenous way of interactions between two developmentally important signaling pathways.  相似文献   

18.
J Kubilus  R Rand  H P Baden 《In vitro》1981,17(9):786-795
Using mitomycin C treated 3T3-Swiss fibroblasts as feeder cells, human keratinocytes derived from infant foreskins were subcultured in the presence of trans-retinoic acid (RA) and other retinoids. At 1 microgram/ml (3 x 10(-6) M) and higher RA concentrations plating efficiency was markedly reduced. Addition of retinoids to 1 microgram/ml after colonies were established produced no change in the rate of cell production, but caused differentiated cells to be sloughed earlier than in control cultures. Electron microscopy showed wider extra cellular spaces the contained numerous villi, increased numbers of microvilli at the surfaces of the outermost cells, and decreased number of cell layers all of which were consistent with the observed desquamatory effects of RA. Retinoic acid also extended the time during which cell population increased so that RA treated cultures produced more cells than control cultures over their respective lifetimes. Keratin polypeptides represented a smaller percentage of the total solubilizable protein and more keratin was present as acid soluble prekeratin in postconfluent RA treated cultures. This may be a consequence of early desquamation rather than a decrease in keratin synthesis. No unusual proteins were visible in RA treated cultures by simple sodium dodecylsulfate electrophoresis, nor was there increase in specific activities of three lysosomal enzymes.  相似文献   

19.
Retinoids inhibit the growth and enhance the differentiation of murine S91-C2 melanoma cells. Specific alterations in gene expression are a plausible mechanism for these effects. Since nuclear retinoic acid receptors (RAR) are likely mediators of retinoid-induced changes in gene expression, we used Northern blotting to analyze the expression of RAR alpha, RAR beta, and RAR gamma in S91-C2 cells. mRNA for both RAR alpha and RAR gamma was detected in these cells, but no RAR beta mRNA could be found. Treatment with 10(-7) and 10(-6) M beta-all-trans-retinoic acid (RA) for 24 h caused a 1.5- to 2-fold increase in RAR alpha and RAR gamma mRNA, whereas lower concentrations of RA were ineffective. RAR beta mRNA, which was undetectable in untreated cells, was detected after 24 h of treatment with a RA concentration as low as 10(-9) M, and its level increased with up to 10(-6) M RA. At the latter dose, RAR beta mRNA induction occurred by 4 h and increased progressively, reaching a plateau after 24 h of treatment. RAR beta mRNA induction at 4 h was not inhibited by cycloheximide at a concentration that suppressed protein synthesis by more than 90%. Several retinoids and related synthetic compounds, including 13-cis RA, TTNPB, Ch55, Am80, and the trifluoromethyl nonyloxyphenyl analog of RA, also induced RAR beta mRNA, whereas a 24-h treatment with 10(-6) M retinol, TTNP (a decarboxylated analog of TTNPB), or the phenyl analog of RA failed to induce RAR beta mRNA. With the exception of retinol and the trifluoromethyl nonyloxyphenyl analog of RA, the ability of the retinoids to induce RAR beta mRNA and their growth inhibitory effect were correlated. However, S91-C154, a RA-resistant mutant subclone derived from S91-C2 cells, showed mRNA levels of RAR alpha and RAR gamma and induction of RAR beta by RA similar to those detected in the sensitive S91-C2 cells. Like the S91 melanoma cells, two other mouse melanoma cell lines, K-1735P and B16-F1, constitutively expressed RAR alpha and RAR gamma mRNAs. The level of RAR beta mRNA was increased by RA only in B16-F1 cells, although the growth of both was inhibited by RA. These results demonstrate that RA can, directly and rapidly, induce the expression of mRNA for a high affinity nuclear receptor in some murine melanoma cells and that this induction is not sufficient to inhibit growth.  相似文献   

20.
Abstract. Prior work has shown that all-trans retinoic acid (t-RA) treatment of the human teratocarcinoma (TC) cell line NTERA-2 clone D1 (abbreviated NT2/D1) induces a neuronal phenotype and other cell lineages. This study sought to explore the potential of 9-cis retinoic acid (9-cis RA) as a differentiation-inducing agent of this multipotent cell. Findings reported here show that 9-cis RA induced a phenotype similar to t-RA treatment of NT2/D1 cells. This similarity extended to their effects on the nuclear receptors retinoic acid receptor-β (RAR-β) and retinoid X receptor-α (RXR-α). Both retinoids prominently augmented RAR-β expression and transactivated a reporter plasmid containing putative RAR response elements (RAREs) with direct repeats separated by five nucleotides (DR5). Both retinoids had no appreciable effect on RXR-α expression and both minimally transactivated a reporter plasmid containing putative RXR response elements (RXREs) with direct repeats separated by one nucleotide (DR1). These studies suggest that 9-cis RA and t-RA activate common events during retinoid-mediated NT2/D1 differentiation. This hypothesis was supported by the finding that NT2/D1 cells rendered refractory to t-RA (NT2/D1-R1) were also resistant to 9-cis RA. To discover alterations that could confer retinoid-refractoriness, retinoid receptor expression was examined in NT2/D1-R1 cells. In contrast to NT2/D1, the NT2/D1-R1 cell was found to have reduced RXR-α expression at the level of total cellular RNA. These studies establish the effectiveness of 9-cis RA as a differentiation agent of human TC cells and demonstrate that retinoids with different nuclear receptor affinities can induce similar phenotypes in NT2/D1 cells. In addition, the findings in the retinoid resistant NT2/D1-R1 cell implicate a role for specific retinoid receptors in this human TC differentiation program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号