首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of naphthylphosphoramidate derivatives of stavudine was achieved using a four-step procedure. The derivatives were subjected to several different enzymes including lipase, esterase, Subtilisin Carlsberg, and Carica papaya, and their hydrolysis rates were determined. Based on the rates of hydrolysis, we were able to differentiate between the chiralities at the phosphorus center of the phosphoramidate compounds. In addition, lipase was found to distinguish between both alpha and beta forms of the compounds. The superior chiral selectivity shown by lipase toward the naphthyl substituted phosphoramidate derivatives is attributed to the restrictive binding pocket of the lipase.  相似文献   

2.
1,4-Dicyanodibenzodioxins bearing carboxy methyl ester groups were synthesized using our established one-step SNAr coupling reaction between ortho- and meta-ester substituted catechols and perfluorinated terephthalonitrile. These are the first examples of 1,4-dicyanodibenzodioxins substituted at both the benzene moieties. Optical spectra were similar to the earlier examples reported, with a marginal blue shift for the ester dibenzodioxins. Theoretical analysis of the molecular orbitals reveals modest destabilization of the frontier molecular orbitals of one carboxy methyl ester isomer over the other and overall higher HOMO-LUMO gap for both isomers when compared to the earlier published 1,4-dicyanodibenzodioxins. In vitro cytotoxicity against human cervical cancer HeLa cell line was evaluated for these two compounds and all other previously published dibenzodioxins from our laboratory (1,4-dicyano, 1,2-dicyano and 2,3-dicyano variants). A number of derivatives showed anti-tumor activity in μM ranges and also exhibited no cytotoxicity against normal HEK 293 cell line. Mechanistic investigation of cell death pathways indicated high levels of reactive oxygen species (ROS) in the dibenzodioxin treated tumor cell lines along with cellular nuclear fragmentation, both of which are markers of the apoptotic cell death pathway.  相似文献   

3.
Synthesis and antitumour activity of glycyrrhetinic acid derivatives   总被引:2,自引:0,他引:2  
Glycyrrhetinic acid (GA) is one of many interesting triterpenoic acids showing anticancerogenic potential. GA is known to trigger apoptosis in tumour cell lines, although GA has a low cytotoxicity. In our study we were able to prepare derivatives of GA that show lowered the IC(50) values as determined by a sulforhodamine B (SRB) assay using 15 different human tumour cell lines. Thus, combining an ester group combined with the presence of an amino acid moiety led to a ca. 60-fold improved antitumor activity. Experiments on mouse embryonic fibroblasts (NiH3T3) revealed that these compounds showed a better selectivity for tumour cells compared to the parent compound GA. An apoptotic effect of some of these compounds was determined using an acridine orange/ethidium bromide (AO/EB) test and DNA laddering experiments.  相似文献   

4.
Cytokinin activity of forty-eight 6-benzyladenosine derivatives at both the receptor and cellular levels as well as their anticancer properties were compared in various in vitro assays. The compounds were prepared by the condensation of 6-chloropurine riboside with corresponding substituted benzylamines and characterized by standard collection of physico-chemical methods. The majority of synthesized derivatives exhibited high activity in all three of the cytokinin bioassays used (tobacco callus, wheat leaf senescence and Amaranthus bioassay). The highest activities were observed in the senescence bioassay. For several of the compounds tested, significant differences in activity were found between the bioassays used, indicating that diverse recognition systems may operate. This suggests that it may be possible to modulate particular cytokinin-dependent processes with specific compounds. In contrast to their high activity in bioassays, the tested compounds were recognized with only very low sensitivity in both Arabidopsis thaliana AHK3 and AHK4 receptor assays. The prepared derivatives were also investigated for their antiproliferative properties on cancer and normal cell lines. Several of them showed very strong cytotoxic activity against various cancer cell lines. On the other hand, they were not cytotoxic for normal murine fibroblast (NIH/3T3) cell line. This anticancer activity of cytokinin ribosides may be important, given that several of them occur as endogenous compounds in different organisms.  相似文献   

5.
Enzymatic hydrolysis of stampidine and other aryl phosphate derivatives of stavudine were investigated using the Candida Antarctica Type B lipase. Modeling studies and comparison of the hydrolysis rate constants revealed a chiral preference of the lipase active site for the putative S-stereoisomer. The in vitro anti-HIV activity of these compounds correlated with their susceptibility to lipase- (but not esterase-) mediated hydrolysis. We propose that stampidine undergoes rapid enzymatic hydrolysis in the presence of lipase according to the following biochemical pathway: During the first step, hydrolysis of the ester group results in the formation of carboxylic acid. Subsequent step involves an intramolecular cyclization at the phosphorous center with simultaneous elimination of the phenoxy group to form a cyclic intermediate. In the presence of water, this intermediate is converted into the active metabolite Ala-d4T-MP. We postulate that the lipase hydrolyzes the methyl ester group of the l-alanine side chain to form the cyclic intermediate in a stereoselective fashion. This hypothesis was supported by experimental data showing that chloroethyl substituted derivatives of stampidine, which possess a chloroethyl linker unit instead of a methyl ester side chain, were resistant to lipase-mediated hydrolysis, which excludes the possibility of a direct hydrolysis of stampidine at the phosphorous center. Thus, our model implies that the lipase-mediated formation of the cyclic intermediate is a key step in metabolism of stampidine and relies on the initial configuration of the stereoisomers.  相似文献   

6.
Recent evidences suggest that cancer treatment based on combination of cytostatic and conventional chemostatic therapeutics, which are usually cytotoxic, can provide an improved curative option. On the sequence of our previous work on methotrexate (MTX) derivatives, we have developed and evaluated novel MTX analogues, containing a pteridine moiety conjugated with benzenesulfonamide derivatives, thus endowed with the potential capacity for dual inhibition of dihydrofolate reductase (DHFR) and carbonic anhydrases (CA). These enzymes are often overexpressed in tumors and are involved in two unrelated cellular pathways, important for tumor survival and progression. Their simultaneous inhibition may turn beneficial in terms of enhanced antitumor activity.Herein we report the design and synthesis of several diaminopteridine–benzenesulfonamide and -benzenesulfonate conjugates, differing in the nature and size of the spacer group between the two key moieties. The inhibition studies performed on a set of CAs and DHFR, revealed the activities in the low nanomolar and low micromolar ranges of concentration, respectively. Some inhibitors showed selectivity for the tumor-related CA (isozyme IX). Cell proliferation assays using two tumor cell lines (the non-small cell lung carcinoma, A549, and prostate carcinoma, PC-3) showed activities only in the millimolar range. Nevertheless, this fact points out the need of improving the cell intake properties of these new compounds, since the general inhibitory profiles revealed their potential as anticancer agents.  相似文献   

7.
This research is based on intention to prepare and test 3beta-hydroxy and 3beta,28-dihydroxy analogues of new pro-apoptotic derivatives (betulinines) using selective hydrolysis procedure and strategic protective groups. The evaluation of cytotoxicity of prepared compounds on several tumor cell lines using an MTT test was our interest. It was found that hydrolysis of acetates in betulinines afforded compounds with higher cytotoxicity in case of 18-lupene-21-ones (e.g., ethyl 3beta-hydroxy-21-oxolup-18-en-28-oate), whereas hydrolysis of the 18-lupene-21,22-diones gave less active derivatives.  相似文献   

8.
Changing the nucleoside group of a series of phosphoramidate derivatives affects the enzyme mediated hydrolysis rate of the compounds. d4T and AZT-substituted analogs were activated by enzymes such as lipases, esterases, and proteases. On the other hand, 3dT-substituted derivatives were comparatively less prone to hydrolysis under similar experimental conditions. From the experimental results, we propose that the most preferable nucleoside group for enzyme activation is d4T rather than AZT or 3dT. Additionally, we also observed that depending on the enzymes used the chiral selectivity of the enzymes for the phosphorus center of these phosphoramidate derivatives differed, demonstrating the importance of the nucleoside structure for this class of compounds.  相似文献   

9.
A series of novel polyacetylene substituted 2-hydroxy acids and derivatives were prepared and characterized. Alkylation of butane-2,3-diacetal (BDA) protected glycolic acid with iodoalkyl substituted polyacetylene compounds gave the corresponding diacetal protected polyacetylene substituted 2-hydroxy acids. Diacetal deprotection through acid mediated hydrolysis, transesterification or aminolysis afforded the 2-hydroxy-polyacetylenic acid, ester or amide derivatives. Twenty one of these novel compounds were tested against 10 microbes of clinical importance and several of them showed good antimicrobial activity, in particular against Pseudomonas aeruginosa.  相似文献   

10.
Novel N-triazolyl maleimide derivatives were synthesized by azide–alkyne Huisgen cycloaddition (1,3-dipolar cycloaddition) and tested for cytotoxicity against a cell line derived from human melanomas SK-Mel-28 and SK-Mel-103, and human umbilical vein endothelial cell lines (HUVEC). The 4l was chose to be biologically tested due to incorporation of benzyl triazolic to the nitrogen of maleimide has not been tested before, and due the satisfactory yield. The analysis of cell metabolism, using the MTT method, showed that the compound 4l impaired cell metabolism in HUVEC only in high concentration (100 µM). A lower concentration of compound 4l, whether in association or not with paclitaxel, was required to cause toxicity in both SK-Mel-28 and SK-Mel-103 cells in comparison with HUVEC cells. Moreover, the ability of 4l to cause cell death was evaluated by flow cytometry, and the data obtained highlighted the apoptotic action of 4l and paclitaxel co-treatment on Sk-Mel-28 cells only, which corroborated the greater efficacy of maleimide compounds against cancer cells. Together, our data provide promising data on the selectivity of maleimide compounds to cancer cells, and suggest that novel maleimide-substituted compounds may be synthesized and tested on different cancer cell lines, as primary or co-adjuvant agents of cancer cell toxicity.  相似文献   

11.
To study the structure-activity relationships of aromatic cytokinins, the cytokinin activity at both the receptor and cellular levels, as well as CDK inhibitory and anticancer properties of 38 6-benzylaminopurine (BAP) derivatives were compared in various in vitro assays. The compounds were prepared by the condensation of 6-chloropurine with corresponding substituted benzylamines. The majority of synthesised derivatives exhibited high activity in all three of the cytokinin bioassays employed (tobacco callus, wheat senescence and Amaranthus bioassay). The highest activities were obtained in the senescence bioassay. For some compounds tested, significant differences of activity were found in the bioassays used, indicating that diverse recognition systems may operate and suggesting that it may be possible to modulate particular cytokinin-dependent processes with specific compounds. Position-specific steric and hydrophobic effects of different phenyl ring substituents on the variation of biological activity were confirmed. In contrast to their high activity in bioassays, the BAP derivatives were recognised with much lower sensitivity than trans-zeatin in both Arabidopsis thaliana AHK3 and AHK4 receptor assays. The compounds were also investigated for their effects on cyclin-dependent kinase 2 (CDK2) and for antiproliferative properties on cancer and normal cell lines. Several of the tested compounds showed stronger inhibitory activity and cytotoxicity than BAP. There was also a significant positive correlation of the inhibitory effects on human and plant CDKs with cell proliferation of cancer and cytokinin-dependent tobacco cells, respectively. This suggests that at least a part of the antiproliferative effect of the new cytokinins was due to the inhibition of CDK activity.  相似文献   

12.
人羧酯酶的研究进展   总被引:2,自引:0,他引:2  
羧酯酶是一类可与有机磷化合物结合且活性受抑制的B-酯酶,分布很广,能水解许多羧酯类、酰胺类、硫酯类物质,其天然底物尚未清楚,故其生理功能仍在研究中,可能与脂质代谢,药物或毒物的生物转化有关.对羧酯酶的一级结构及基因序列的研究表明,羧酯酶是由许多生化特性不同的同工酶组成.  相似文献   

13.
Substrate specificity of the bacterial penicillinamidohydrolase (penicillinacylase, EC 3.5.1.11) fromEscherichia coli was determined by measuring initial rates of enzyme hydrolysis of different substrates within zero order kinetics. SomeN-phenylacetyl derivatives of amino acids and amides of phenylacetic acid and phenoxyacetic acid of different substituted amides of these acids or amides, structurally and chemically similar to these compounds, served as substrates. Significant differences in ratios of initial Tates of the enzyme hydrolysis of different substrates were found when using a toluenized suspension of bacterial cells or a crude enzyme preparation, in spite of the fact that the enzyme is localized between the cell wall and cytoplasmic membrane, in the so-called periplasmic space.N-phenylacetyl derivatives are the most rapidly hydrolyzed substrates. Beta-phenylpropionamide and 4-phenylbutyramide were not utilized as substrates. The substrate specificity of the enzyme is discussed with respect to a possible use of certain colourless compounds as substrates, hydrolysis of which yields chromophor products suitable for a simple and rapid assay of the enzyme activity.  相似文献   

14.
15.
The acyl-CoA ligases convert free fatty acids to acyl-CoA derivatives, and these enzymes have been shown to be present in mitochondria, peroxisomes, and endoplasmic reticulum. Because their activity is obligatory for fatty acid metabolism, it is important to identify their substrate specificities and subcellular distributions to further understand the cellular regulation of these pathways. To define the role of the enzymes and organelles involved in the metabolism of very long chain (VLC) fatty acids, we studied human genetic cell mutants impaired for the metabolism of these molecules. Fibroblast cell lines were derived from patients with X-linked adrenoleukodystrophy (X-ALD) and Zellweger's cerebro-hepato-renal syndrome (CHRS). While peroxisomes are present and morphologically normal in X-ALD, they are either greatly reduced in number or absent in CHRS. Palmitoyl-CoA ligase is known to be present in mitochondria, peroxisomes, and endoplasmic reticulum (microsomes). We found enzyme-dependent formation of lignoceroyl-CoA in these same organelles (specific activities were 0.32 +/- 0.12, 0.86 +/- 0.12, and 0.78 +/- 0.07 nmol/h per mg protein, respectively). However, lignoceroyl-CoA synthesis was inhibited by an antibody to palmitoyl-CoA ligase in isolated mitochondria while it was not inhibited in peroxisomes or endoplasmic reticulum (ER). This suggests that palmitoyl-CoA ligase and lignoceroyl-CoA are different enzymes and that mitochondria lack lignoceroyl-CoA ligase. This conclusion is further supported by data showing that oxidation of lignoceric acid was found almost exclusively in peroxisomes (0.17 nmol/h per mg protein) but was largely absent from mitochondria and the finding that monolayers of CHRS fibroblasts lacking peroxisomes showed a pronounced deficiency in lignoceric acid oxidation in situ (1.8% of control). In spite of the observation that lignoceroyl-CoA ligase activity is present on the cytoplasmic surface of ER, our data indicate that lignoceroyl-CoA synthesized by ER is not available for oxidation in mitochondria. This organelle plays no physiological role in the beta-oxidation of VLC fatty acids. Furthermore, the normal peroxisomal oxidation of lignoceroyl-CoA but deficient oxidation of lignoceric acid in X-ALD cells indicates that cellular VLC fatty acid oxidation is dependent on peroxisomal lignoceroyl-CoA ligase. These studies allow us to propose a model for the subcellular localization of various acyl-CoA ligases and to describe how these enzymes control cellular fatty acid metabolism.  相似文献   

16.
The predominance of the adenosine triphosphate/adenosine diphosphate (ATP/ADP) couple in cellular phosphorylation reactions, including those that form the basis for cellular energy metabolism, cannot be explained on thermodynamic grounds since a variety of "high energy phosphate" compounds (including ADP itself) found in the cell would, based on thermodynamic considerations, be at least as effective as ATP in serving as a phosphoryl donor. How then did present-day organisms come to rely on the ATP/ADP couple as the principal mediator of phosphorylation reactions? The early appearance of adenine compounds in the prebiotic environment is suggested by experiments indicating that, relative to other purine or pyridimine compounds, adenine derivatives are preferentially synthesized under simulated prebiotic conditions (Ponnamperuma et al., 1963). In addition to the roles of adenine nucleotides in phosphorylation reactions, other adenine derivatives (e.g. Coenzyme A, flavin adenine dinucleotide, puridine nucleotides) are employed in a variety of metabolic roles. The principal function of the adenine moiety in these latter cases is in the binding of these derivatives to the relevant enzyme. The capability for binding of the adenine moiety appears to have arisen early in evolution and been exploited in a multitude of contexts, a suggestion consistent with observed similarities between the binding sites of several enzymes employing adenine derivatives as substrate. The early availability of suitable adenine compounds in the biosphere and development of complementary binding sites on cellular proteins, coupled with the expected advantages in having a limited number of metabolites as central mediators of endergonic and exergonic metabolism could readily have led to the observed pre-eminence of adenine nucleotides in cellular energy metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A new series of substituted 2-sulfonyphenyl-3-phenyl-indole derivatives were synthesized and evaluated for their ability to inhibit COX-2 and COX-1enzymes. Most of the compounds synthesized were found to be highly potent and selective inhibitors of COX-2. This work led to the discovery of 2-aminosulfonylphenyl-3-phenyl-indole 5a which possesses higher activity and selectivity for COX-2 than Celecoxib both in vitro and in vivo.  相似文献   

18.
The participation of a nucleoside triphosphate diphosphohydrolase in the nucleotide hydrolysis by rat blood serum was evaluated. Nucleoside triphosphate diphosphohydrolase and phosphodiesterase are enzymes possibly involved in ATP and ADP hydrolysis. The specific activity of the phosphodiesterase activity (using thymidine 5'-monophosphate p-nitrophenyl ester as substrate) was 4.92 +/- 0.73 (mean +/- SD, n = 10) nmol p-nitrophenol.min(-1).mg(-1) protein and the specific activities for ATP and ADP were 1.31 +/- 0.37 (mean +/- SD, n = 7) and 1.36 +/- 0.25 (mean +/- SD, n = 5) nmol Pi.min(-1).mg(-1) protein, respectively. A competition plot demonstrated that ATP and ADP hydrolysis occurs at the same active site. The effect of suramin and phenylalanine on ATP, ADP and thymidine 5'-monophosphate p-nitrophenyl ester hydrolysis was investigated. The results were opposite considering the hydrolysis of ATP and ADP and that of the substrate marker for the enzyme phosphodiesterase. These results are indicative of the presence of, at least, two enzymes participating in the serum nucleotide hydrolysis. The presence of cAMP did not affect the hydrolysis velocity of ATP and ADP, while thymidine 5'-monophosphate p-nitrophenyl ester hydrolysis was inhibited by cAMP by approximately 47%, suggesting that the hydrolysis of the ATP and ADP, under our assay conditions, occurs at a different site from the phosphodiesterase site. Both enzyme activities, in the rat blood serum, may be involved in the modulation of the nucleotide/nucleoside ratio in the circulation, serving an in vivo homeostatic and antithrombotic function. In addition, the phosphodiesterase may act on DNA or RNA liberated upon tissue injury and/or cell death.  相似文献   

19.
Several N-acyl and ester derivatives of 2-amino-2-deoxy-D-glucitol-6-phosphate (ADGP) have been synthesised and tested as inhibitors of fungal enzymes involved in early steps of chitin biosynthesis and for antifungal activity. All the tested derivatives were found to be much poorer inhibitors of the enzyme, D-glucosamine-6-phosphate (GlcN-6-P) synthase, than the parent compound but some of them exhibited much better antifungal activity. MIC values for the investigated compounds ranged between 10 mg mL(-1), found for ADGP and 0.3 mg mL(-1) for the most active derivative, namely ADGP dimethyl ester. Increased affinity of ADGP derivatives to the artificial immobilised cell membrane was correlated with their enhanced ability to be taken up by fungal cells by free diffusion. It was found that some of the examined derivatives behaved as 'pro-drugs' and after internalisation were converted into ADGP in the cell-free extract. This conversion was relatively rapid for ADGP esters but very slow for N-acyl derivatives. Results of our studies demonstrate a possibility of design and preparation of GlcN-6-P synthase inhibitors exhibiting antifungal activity.  相似文献   

20.
Cytosolic 5′-nucleotidase II (cN-II) has been reported to be involved in cell survival, nucleotide metabolism and in the cellular response to anticancer drugs. With the aim to further evaluate the role of this enzyme in cell biology, we stably modulated its expression the human glioblastoma cell ADF in which the transient inhibition of cN-II has been shown to induce cell death. Stable cell lines were obtained both with inhibition, obtained with plasmids coding cN-II-targeting short hairpin RNA, and stimulation, obtained with plasmids coding Green Fluorescence Protein (GFP)-fused wild type cN-II or a GFP-fused hyperactive mutant (GFP-cN-II-R367Q), of cN-II expression. Silenced cells displayed a decreased proliferation rate while the over expressing cell lines displayed an increased proliferation rate as evidenced by impedance measurement using the xCELLigence device. The expression of nucleotide metabolism relevant genes was only slightly different between cell lines, suggesting a compensatory mechanism in transfected cells. Cells with decreased cN-II expression were resistant to the nucleoside analog fludarabine confirming the involvement of cN-II in the metabolism of this drug. Finally, we observed sensitivity to cisplatin in cN-II silenced cells and resistance to this same drug in cN-II over-expressing cells indicating an involvement of cN-II in the mechanism of action of platinum derivatives, and most probably in DNA repair. In summary, our findings confirm some previous data on the role of cN-II in the sensitivity of cancer cells to cancer drugs, and suggest its involvement in other cellular phenomenon such as cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号