首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CCR5 chemokine receptor has recently been found to play a crucial role in the viral entry stage of HIV infection and has therefore become an attractive potential target for anti-HIV therapeutics. On the other hand, the lack of CCR5 crystal structure data has impeded the development of structure-based CCR5 antagonist design. In this paper, we compare two three-dimensional Quantitative Structure-Activity Relationship (3D-QSAR) methods: Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) on a series of piperidine-based CCR5 antagonists as an alternative approach to investigate the interaction between CCR5 antagonists and their receptor. Superimposition of antagonist structures was performed using two alignment rules: atomic/centroid rms fit and rigid body field fit techniques. The 3D QSAR models were derived from a training set of 72 compounds, and were found to have predictive capability for a set of 19 holdout test compounds. The resulting contour maps produced by the best CoMFA and CoMSIA models were used to identify the structural features relevant to biological activity in this series of compounds. Further analyses of these interaction-field contour maps also showed a high level of internal consistency.  相似文献   

2.
3D-QSAR models of Comparative of Molecular Field Analysis (CoMFA) and Comparative of Molecular Similarities Indices Analysis (CoMSIA) of 20 8-azabicyclo[3.2.1] octane (potent muscarinic receptor blocker) was performed. These benztropine analogs were optimized using ligand based alignment method. The conventional ligand-based 3D-QSAR studies were performed based on the low energy conformations employing database alignment rule. The ligand-based model gave q2 value 0.819 and 0.810 and r2 value 0.991 and 0.988 for CoMFA and CoMSIA, respectively, and the predictive ability of the model was validated. Results indicate that the CoMFA and CoMSIA models could be reliable model which may be used in the design of novel muscarinic antagonists as leads.  相似文献   

3.
A 3D-QSAR analysis of a new class of ring-substituted quinolines with anti-tuberculosis activity has been carried out by three methods-Comparative Molecular Field Analysis (CoMFA), CoMFA with inclusion of a hydropathy field (HINT), and Comparative Molecular Similarity Indices Analysis (CoMSIA). The conformation of the molecules was generated using a simulated annealing protocol and they were superimposed using features common to the set with database alignment (SYBYL) and field fit methods. Several statistically significant CoMFA, CoMFA with HINT, and CoMSIA models were generated. Prediction of the activity of a set of test molecules was the best for the CoMFA model generated with database alignment. Based upon the information contained in the CoMFA model, we have identified some novel features that can be incorporated into the quinoline framework to improve the activity.  相似文献   

4.
Three-dimensional quantitative structure activity relationship (3D-QSAR) analyses were carried out on 91 substituted ureas in order to understand their Raf-1 kinase inhibitory activities. The studies include Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA). Models with good predictive abilities were generated with the cross validated r2 (r2cv) values for CoMFA and CoMSIA being 0.53 and 0.44, respectively. The conventional r2 values are 0.93 and 0.87 for CoMFA and CoMSIA, respectively. In addition, a homology model of Raf-1 was also constructed using the crystal structure of the kinase domain of B-Raf isoform with one of the most active Raf-1 inhibitors (48) inside the active site. The ATP binding pocket of Raf-1 is virtually similar to that of B-Raf. Selected ligands were docked in the active site of Raf-1. Molecule 48 adopts an orientation similar to that inside the B-Raf active site. The 4-pyridyl group bearing amide substituent is located in the adenosine binding pocket, and anchored to the protein through a pair of hydrogen bonds with Cys424 involving ring N-atom and amide NH group. The results of best 3D-QSAR model were compared with structure-based studies using the Raf-1 homology model. The results of 3D-QSAR and docking studies validate each other and provided insight into the structural requirements for activity of this class of molecules as Raf-1 inhibitors. Based on these results, novel molecules with improved activity can be designed.  相似文献   

5.
Three-dimensional quantitative structure-activity relationship (QSAR) studies were conducted on two classes of recently explored compounds with known YopH inhibitory activities. Docking studies were employed to position the inhibitors into the YopH active site to determine the probable binding conformation. Good correlations between the predicated binding free energies and the inhibitory activities were found for two subsets of phosphate mimetics: alpha-ketocarboxylic acid and squaric acid (R2=0.70 and 0.68, respectively). The docking results also provided a reliable conformational alignment scheme for 3D-QSAR modeling. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed based on the docking conformations, giving q2 of 0.734 and 0.754 for CoMFA and CoMSIA models, respectively. The 3D-QSAR models were significantly improved after removal of an outlier (q2=0.829 for CoMFA and q2=0.837 for CoMSIA). The predictive ability of the models was validated using a set of compounds that were not included in the training set. Mapping the 3D-QSAR models to the active site of YopH provides new insight into the protein-inhibitor interactions for this enzyme. These results should be applicable to the prediction of the activities of new YopH inhibitors, as well as providing structural implications for designing potent and selective YopH inhibitors as antiplague agents.  相似文献   

6.
Poly (ADP-ribose) polymerase-1 (PARP-1) operates in a DNA damage signaling network. Molecular docking and three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on human PARP-1 inhibitors. Docked conformation obtained for each molecule was used as such for 3D-QSAR analysis. Molecules were divided into a training set and a test set randomly in four different ways, partial least square analysis was performed to obtain QSAR models using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Derived models showed good statistical reliability that is evident from their r2, q2(loo) and r2(pred) values. To obtain a consensus for predictive ability from all the models, average regression coefficient r2(avg) was calculated. CoMFA and CoMSIA models showed a value of 0.930 and 0.936, respectively. Information obtained from the best 3D-QSAR model was applied for optimization of lead molecule and design of novel potential inhibitors.  相似文献   

7.
To study the pharmacophore properties of quinazolinone derivatives as 5HT(7) inhibitors, 3D QSAR methodologies, namely Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) were applied, partial least square (PLS) analysis was performed and QSAR models were generated. The derived model showed good statistical reliability in terms of predicting the 5HT(7) inhibitory activity of the quinazolione derivative, based on molecular property fields like steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields. This is evident from statistical parameters like q(2) (cross validated correlation coefficient) of 0.642, 0.602 and r(2) (conventional correlation coefficient) of 0.937, 0.908 for CoMFA and CoMSIA respectively. The predictive ability of the models to determine 5HT(7) antagonistic activity is validated using a test set of 26 molecules that were not included in the training set and the predictive r(2) obtained for the test set was 0.512 & 0.541. Further, the results of the derived model are illustrated by means of contour maps, which give an insight into the interaction of the drug with the receptor. The molecular fields so obtained served as the basis for the design of twenty new ligands. In addition, ADME (Adsorption, Distribution, Metabolism and Elimination) have been calculated in order to predict the relevant pharmaceutical properties, and the results are in conformity with required drug like properties.  相似文献   

8.
The abnormal proliferation and migration of vascular smooth muscle cells (SMCs) play an important role in the pathology of coronary artery atherosclerosis and restenosis following angioplasty. It was reported that some heterocyclic quinone derivatives such as 6-arylamino-quinoxaline-5,8-diones and 6-arylamino-1H-benzo[d]imidazole-4,7-diones have inhibitory activity on rat aortic smooth muscle cell (RAoSMC) proliferation. To understand the structural basis for antiproliferative activity to design more potent agents, we generated pharmacophore models of representative molecules with high activity using Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Database (GALAHAD) and aligned a series of compounds to the selected pharmacophore model, then performed three-dimensional quantitative structure-activity relationship (3D-QSAR) studies using Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA). Good cross-validated correlations were obtained with CoMFA (resulting in q(2) of 0.734 and r(2) of 0.947) and CoMSIA (resulting in q(2) of 0.736 and r(2) of 0.913). The IC(50) values of the heterocyclic quinone derivatives on RAoSMC exhibited a strong correlation with steric and hydrophobic fields of the 3D structure of the molecules, resulting in the reliable prediction of inhibitory activity of the series of compounds.  相似文献   

9.
The 3-D QSAR analysis with new imidazo- and pyrrolo-quinolinedione derivatives was conducted by Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA). When crossvalidation value (q(2)) is 0.844 at four components, the Pearson correlation coefficient (r(2)) of the CoMFA is 0.964. In the CoMSIA, q(2) is 0.709 at six components and r(2) is 0.969. Unknown samples were analyzed, using QSAR analyzed results from the CoMFA and CoMSIA methods. Excellent agreement was obtained between, with an error range of 0.01-0.15 the calculated values and measured in vitro cytotoxic activities against human lung A-549 cancer cell lines.  相似文献   

10.
The three dimensional-quantitative structure activity relationship (3D-QSAR) studies were performed on a series of falcipain-3 inhibitors using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. A training set containing 42 molecules served to establish the QSAR models. The optimum CoMFA and CoMSIA models obtained for the training set were statistically significant with cross-validated correlation coefficients r(cv)(2) (q(2)) of 0.549 and 0.608, and conventional correlation coefficients (r(2)) of 0.976 and 0.932, respectively. An independent test set of 12 molecules validated the external predictive power of both models with predicted correlation coefficients (r(pred)(2)) for CoMFA and CoMSIA as 0.697 and 0.509, respectively. The docking of inhibitors into falcipain-3 active site using GOLD software revealed the vital interactions and binding conformation of the inhibitors. The CoMFA and CoMSIA field contour maps agree well with the structural characteristics of the binding pocket of falcipain-3 active site, which suggests that the information rendered by 3D-QSAR models and the docking interactions can provide guidelines for the development of improved falcipain-3 inhibitors.  相似文献   

11.
Phosphodiesterase superfamily is the key regulator of 3',5'-cyclic guanosine monophosphate (cGMP) decomposition in human body. Phosphodiesterase-5 (PDE-5) inhibitors, sildenafil, vardenafil and tadalafil, are well known oral treatment for males with erectile dysfunction. To investigate the inhibitory effects of traditional Chinese medicine (TCM) compounds to PDE-5, we performed both ligand-based and structure-based studies on this topic. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) studies were conducted to construct three dimensional quantitative structure-activity relationship (3D-QSAR) models of series of known PDE-5 inhibitors. The predictive models had cross-validated, q(2), and non cross-validated coefficient, r(2), values of 0.791 and 0.948 for CoMFA and 0.724 and 0.908 for CoMSIA. These two 3D-QSAR models were used to predict activity of TCM compounds. Docking simulations were performed to further analyze the binding mode of training set and TCM compounds. A putative binding model was proposed based on CoMFA and CoMSIA contour maps and docking simulations; formation of pi-stacking, water bridge and specific hydrogen bonding were deemed important interactions between ligands and PDE-5. Of our TCM compounds, engeletin, satisfied our binding model, and hence, emerged as PDE-5 inhibitor candidate. Using this study as an example, we demonstrated that docking should be conducted for qualitative purposes, such as identifying protein characteristics, rather than for quantitative analyses that rank compound efficacy based on results of scoring functions. Prediction of compound activity should be reserved for QSAR analyses, and scoring functions and docking scores should be used for preliminary screening of TCM database (http://tcm.cmu.edu.tw/index.php).  相似文献   

12.
To study the pharmacophore properties of quinazolinone derivatives as 5HT7 inhibitors, 3D QSAR methodologies, namely Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) were applied, partial least square (PLS) analysis was performed and QSAR models were generated. The derived model showed good statistical reliability in terms of predicting the 5HT7 inhibitory activity of the quinazolione derivative, based on molecular property fields like steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields. This is evident from statistical parameters like q2 (cross validated correlation coefficient) of 0.642, 0.602 and r2 (conventional correlation coefficient) of 0.937, 0.908 for CoMFA and CoMSIA respectively. The predictive ability of the models to determine 5HT7 antagonistic activity is validated using a test set of 26 molecules that were not included in the training set and the predictive r2 obtained for the test set was 0.512 & 0.541. Further, the results of the derived model are illustrated by means of contour maps, which give an insight into the interaction of the drug with the receptor. The molecular fields so obtained served as the basis for the design of twenty new ligands. In addition, ADME (Adsorption, Distribution, Metabolism and Elimination) have been calculated in order to predict the relevant pharmaceutical properties, and the results are in conformity with required drug like properties.  相似文献   

13.
In the current study, the applicability and scope of 3D-QSAR models (CoMFA and CoMSIA) to complement virtual screening using 3D pharmacophore and molecular docking is examined and applied to identify potential hits against Mycobacterium tuberculosis Enoyl acyl carrier protein reductase (MtENR). Initially CoMFA and CoMSIA models were developed using series of structurally related arylamides as MtENR inhibitors. Docking studies were employed to position the inhibitors into MtENR active site to derive receptor based 3D-QSAR models. Both CoMFA and CoMSIA yielded significant cross validated q2 values of 0.663 and 0.639 and r2 values of 0.989 and 0.963, respectively. The statistically significant models were validated by a test set of eight compounds with predictive r2 value of 0.882 and 0.875 for CoMFA and CoMSIA. The contour maps from 3D-QSAR models in combination with docked binding structures help to better interpret the structure activity relationship. Integrated with CoMFA and CoMSIA predictive models structure based (3D-pharmacophore and molecular docking) virtual screening have been employed to explore potential hits against MtENR. A representative set of 20 compounds with high predicted IC50 values were sorted out in the present study.  相似文献   

14.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) using CoMFA and CoMSIA techniques was applied to evaluate 56 pyrimidine nucleosides as substrates of human thymidine kinase 1 (hTK1), 27 of them containing a carborane substituent either at the 3-, 5-, or 3'-position of the 2'-deoxyuridine scaffold. This is the first report describing 3D-QSAR studies of compounds containing boron atoms. Both CoMFA and CoMSIA models were derived from a training set of 47 molecules and the predictive capacity of the CoMSIA model was successfully validated by accurately calculating known phosphorylation rates of both boronated and non-boron hTK1 substrates that were not included in the training set. The optimal CoMSIA model provided the following values: q(2) 0.622, r(2) 0.983, s 0.165, and F 187.5. Contour maps obtained from the CoMSIA model were in agreement with the experimentally determined biological data.  相似文献   

15.
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted on a series of N(1)-arylsulfonylindole compounds as 5-HT(6) antagonists. Evaluation of 20 compounds served to establish the models. The lowest energy conformer of compound 1 obtained from random search was used as template for alignment. The best predictions were obtained with CoMFA standard model (q2 = 0.643, r2 = 0.939 ) and with CoMSIA combined steric, electrostatic, hydrophobic, and hydrogen bond acceptor fields (q2 = 0.584, r2 = 0.902 ). Both the models were validated by an external test set of eight compounds giving satisfactory predictive r2 values of 0.604 and 0.654, respectively. The information obtained from CoMFA and CoMSIA 3D contour maps can be used for further design of specific 5-HT(6) antagonists.  相似文献   

16.
Abstract

Phosphodiesterase superfamily is the key regulator of 3′,5′-cyclic guanosine monophosphate (cGMP) decomposition in human body. Phosphodiesterase-5 (PDE-5) inhibitors, sildenafil, vardenafil and tadalafil, are well known oral treatment for males with erectile dysfunction. To investigate the inhibitory effects of traditional Chinese medicine (TCM) compounds to PDE-5, we performed both ligand-based and structure-based studies on this topic. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) studies were conducted to construct three dimensional quantitative structure-activity relationship (3D-QSAR) models of series of known PDE-5 inhibitors. The predictive models had cross-validated, q2, and non cross-validated coefficient, r2, values of 0.791 and 0.948 for CoMFA and 0.724 and 0.908 for CoMSIA. These two 3D-QSAR models were used to predict activity of TCM compounds. Docking simulations were performed to further analyze the binding mode of training set and TCM compounds. A putative binding model was proposed based on CoMFA and CoMSIA contour maps and docking simulations; formation of pi-stacking, water bridge and specific hydrogen bonding were deemed important interactions between ligands and PDE-5. Of our TCM compounds, engeletin, satisfied our binding model, and hence, emerged as PDE-5 inhibitor candidate.

Using this study as an example, we demonstrated that docking should be conducted for qualitative purposes, such as identifying protein characteristics, rather than for quantitative analyses that rank compound efficacy based on results of scoring functions. Prediction of compound activity should be reserved for QSAR analyses, and scoring functions and docking scores should be used for preliminary screening of TCM database (http://tcm.cmu.edu.tw/index.php).  相似文献   

17.
Urease (EC 3.5.1.5) serves as a virulence factor in pathogens that are responsible for the development of many diseases in humans and animals. Urease allows soil microorganisms to use urea as a source of nitrogen and aid in the rapid break down of urea-based fertilizers resulting in phytopathicity. It has been well established that hydroxamic acids are the potent inhibitors of urease activity. The 3D-QSAR studies on thirty five hydroxamic acid derivatives as known urease inhibitors were performed by Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods to determine the factors required for the activity of these compounds. The CoMFA model produced statistically significant results with cross-validated (q(2)) 0.532 and conventional (r(2)) correlation coefficients 0.969.The model indicated that the steric field (70.0%) has greater influence on hydroxamic acid inhibitors than the electrostatic field (30.0%). Furthermore, five different fields: steric, electrostatic, hydrophobic, H-bond donor and H-bond acceptor assumed to generate the CoMSIA model, which gave q(2) 0.665 and r(2) 0.976.This model showed that steric (43.0%), electrostatic (26.4%) and hydrophobic (20.3%) properties played a major role in urease inhibition. The analysis of CoMFA and CoMSIA contour maps provided insight into the possible modification of the hydroxamic acid derivatives for improved activity.  相似文献   

18.
For the first time, a set of experimentally reported [60] fullerene derivatives were subjected to the 3D-QSAR/CoMFA and CoMSIA studies. The aim of this study is to propose a series of novel [60] fullerene-based inhibitors with optimal binding affinity for the HIV-1 PR enzyme. The position of the template molecule at the cavity of HIV-1 PR was optimized and 3D QSAR models were developed. Relative contributions of steric/electrostatic fields of the 3D-QSAR/CoMFA and CoMSIA models have shown that steric effects govern the bioactivity of the compounds, but electrostatic interactions play also an important role.The de novo drug design Leapfrog simulations provided a series of novel compounds with predicted improved inhibition effect.  相似文献   

19.
3D-QSAR studies were conducted on a series of paullones as CDK inhibitors using three-dimensional quantitative structure-activity relationship (3D-QSAR) methods. Two methods were compared: the widely used comparative molecular field analysis (CoMFA) and the recently reported comparative molecular similarity indices analysis (CoMSIA). Systematic variations of some parameters in CoMSIA and CoMFA were performed to search for the best 3D-QSAR model. The computed results showed that the 3D-QSAR models from CoMSIA were clearly superior to those from CoMFA. Using the best model from CoMSIA analysis, a significant cross-validated q2 was obtained and the predicted biological activities of the five compounds in the test set were in good agreement with the experimental values. The correlation results obtained from CoMSIA were graphically interpreted in terms of field contribution maps allowing physicochemical properties relevant for binding to be easily mapped back onto molecular structures. The features in the CoMSIA contour maps intuitively suggested where to modify a molecular structure in terms of physicochemical properties and functional groups in order to improve its binding affinity, which is very important for improving our understanding of the ligand-receptor interactions and in helping to design compounds with improved activity.  相似文献   

20.
Three-dimensional quantitative structure-activity relationship (3D-QSAR) and molecular docking studies were carried out to explore the binding of 73 inhibitors to dipeptidyl peptidase IV (DPP-IV), and to construct highly predictive 3D-QSAR models using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The negative logarithm of IC50 (pIC50) was used as the biological activity in the 3D-QSAR study. The CoMFA model was developed by steric and electrostatic field methods, and leave-one-out cross-validated partial least squares analysis yielded a cross-validated value (rcv2 {\hbox{r}}_{{\rm{cv}}}^{\rm{2}} ) of 0.759. Three CoMSIA models developed by different combinations of steric, electrostatic, hydrophobic and hydrogen-bond fields yielded significant rcv2 {\hbox{r}}_{{\rm{cv}}}^{\rm{2}} values of 0.750, 0.708 and 0.694, respectively. The CoMFA and CoMSIA models were validated by a structurally diversified test set of 18 compounds. All of the test compounds were predicted accurately using these models. The mean and standard deviation of prediction errors were within 0.33 and 0.26 for all models. Analysis of CoMFA and CoMSIA contour maps helped identify the structural requirements of inhibitors, with implications for the design of the next generation of DPP-IV inhibitors for the treatment of type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号