首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A deletion in vitro can be made in the aceEF-lpd operon encoding the pyruvate dehydrogenase multienzyme complex of Escherichia coli, which causes deletion of two of the three homologous lipoyl domains that comprise the N-terminal half of each dihydrolipoamide acetyltransferase (E2p) polypeptide chain. An active complex is still formed and 1H-n.m.r. spectroscopy of this modified complex revealed that many of the unusually sharp resonances previously attributed to conformationally mobile segments in the wild-type E2p polypeptide chains had correspondingly disappeared. A further deletion was engineered in the long (alanine + proline)-rich segment of polypeptide chain that linked the one remaining lipoyl domain to the C-terminal half of the E2p chain. 1H-n.m.r. spectroscopy of the resulting enzyme complex, which was also active, revealed a further corresponding loss in the unusually sharp resonances observed in the spectrum. These experiments strongly support the view that the sharp resonances derive, principally at least, from the three long (alanine + proline)-rich sequences which separate the three lipoyl domains and link them to the C-terminal half of the E2p chain. Closer examination of the 400 MHz 1H-n.m.r. spectra of the wild-type and restructured complexes, and of the products of limited proteolysis, revealed another sharp but smaller resonance. This was tentatively attributed to another, but smaller, (alanine + proline)-rich sequence that separates the dihydrolipoamide dehydrogenase-binding domain from the inner core domain in the C-terminal half of the E2p chain. If this sequence is also conformationally flexible, it may explain previous fluorescence data which suggest that dihydrolipoamide dehydrogenase bound to the enzyme complex is quite mobile. The acetyltransferase active site in the E2p chain was shown to reside in the inner core domain, between residues 370 and 629.  相似文献   

2.
A G Allen  R N Perham 《FEBS letters》1991,287(1-2):206-210
A fragment of DNA incorporating the gene, pdhC, that encodes the dihydrolipoamide acetyltransferase (E2) chain of the pyruvate dehydrogenase multienzyme complex of Streptococcus faecalis was cloned and a DNA sequence of 2360 bp was determined. The pdhC gene (1620 bp) corresponds to an E2 chain of 539 amino acid residues, Mr 56,466, comprising two lipoyl domains, a peripheral subunit-binding domain and an acetyltransferase domain, linked together by regions of polypeptide chain rich in alanine, proline and charged amino acids. The S. faecalis E2 chain differs in the number of its lipoyl domains from the E2 chains of all bacterial pyruvate dehydrogenase complexes hitherto described.  相似文献   

3.
The structures of the dihydrolipoamide acyltransferase (E2) components of the 2-oxo acid dehydrogenase complexes from Escherichia coli were investigated by limited proteolysis. Trypsin and Staphylococcus aureus V8 proteinase were used to excise the three lipoyl domains from the E2p component of the pyruvate dehydrogenase complex and the single lipoyl domain from the E2o component of the 2-oxoglutarate dehydrogenase complex. The principal sites of action of these enzymes on each E2 chain were determined by sequence analysis of the isolated lipoyl fragments and of the truncated E2p and E2o chains. Each of the numerous cleavage sites (12 in E2p, six in E2o) fell within similar segments of the E2 chains, namely stretches of polypeptide rich in alanine, proline and/or charged amino acids. These regions are clearly accessible to proteinases of Mr 24,000-28,000 and, on the basis of n.m.r. spectroscopy, some of them have previously been implicated in facilitating domain movements by virtue of their conformational flexibility. The limited proteolysis data suggest that E2p and E2o possess closer architectural similarities than would be predicted from inspection of their amino acid sequences. As a result of this work, an error was detected in the sequence of E2o inferred from the previously published sequence of the encoding gene, sucB. The relevant peptides from E2o were purified and sequenced by direct means; an amended sequence is presented.  相似文献   

4.
In vitro deletion and site-directed mutagenesis of the aceF gene of Escherichia coli was used to generate dihydrolipoamide acetyltransferase (E2p) polypeptide chains containing various permutations and combinations of functional and non-functional lipoyl domains. A lipoyl domain was rendered non-functional by converting the lipoylatable lysine residue to glutamine. Two- and three-lipoyl domain E2p chains, with lipoyl-lysine (Lys244) substituted by glutamine in the innermost lipoyl domains (designated +/- and +/+/-, respectively), and similar chains with lipoyl-lysine (Lys143) substituted by glutamine in the outer lipoyl domains (designated -/+ and -/-/+), were constructed. In all instances, pyruvate dehydrogenase complexes were assembled in vivo around E2p cores composed of the modified peptide chains. All the complexes were essentially fully active in catalysis, although the complex containing the -/-/+ version of the E2p polypeptide chain showed a 50% reduction in specific catalytic activity. Similarly, active-site coupling in the complexes containing the +/-, +/+/- and -/+ constructions of the E2p chains was not significantly different from that achieved by the wild-type complex. However, active-site coupling in the complex containing the -/-/+ version of the E2p chain was slightly impaired, consistent with the reduced overall complex activity. These results indicate that during oxidative decarboxylation there is no mandatory order of reductive acetylation of repeated lipoyl domains within E2p polypeptide chains, and strongly suggest that the three tandemly repeated lipoyl domains in the wild-type E2p chain function independently in the pyruvate dehydrogenase complex.  相似文献   

5.
The pyruvate dehydrogenase complex of Bacillus stearothermophilus was treated with Staphylococcus aureus V8 proteinase, causing cleavage of the dihydrolipoamide acetyltransferase polypeptide chain (apparent Mr 57 000), inhibition of the enzymic activity and disassembly of the complex. Fragments of the dihydrolipoamide acetyltransferase chains with apparent Mr 28 000, which contained the acetyltransferase activity, remained assembled as a particle ascribed the role of an inner core of the complex. The lipoic acid residue of each dihydrolipoamide acetyltransferase chain was found as part of a small but stable domain that, unlike free lipoamide, was able still to function as a substrate for reductive acetylation by pyruvate in the presence of intact enzyme complex or isolated pyruvate dehydrogenase (lipoamide) component. The lipoyl domain was acidic and had an apparent Mr of 6500 (by sedimentation equilibrium), 7800 (by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis) and 10 000 and 20 400 (by gel filtration in the presence and in the absence respectively of 6M-guanidinium chloride). 1H-n.m.r. spectroscopy of the dihydrolipoamide acetyltransferase inner core demonstrated that it did not contain the segments of highly mobile polypeptide chain found in the pyruvate dehydrogenase complex. 1H-n.m.r. spectroscopy of the lipoyl domain demonstrated that it had a stable and defined tertiary structure. From these and other experiments, a model of the dihydrolipoamide acetyltransferase chain is proposed in which the small, folded, lipoyl domain comprises the N-terminal region, and the large, folded, core-forming domain that contains the acetyltransferase active site comprises the C-terminal region. These two regions are separated by a third segment of the chain, which includes a substantial region of polypeptide chain that enjoys high conformational mobility and facilitates movement of the lipoyl domain between the various active sites in the enzyme complex.  相似文献   

6.
The dihydrolipoamide acetyltransferase component (E2p) of the pyruvate dehydrogenase complex of Escherichia coli contains three highly homologous sequences of about 100 residues that are tandemly repeated to form the N-terminal half of the polypeptide chain. All three sequences include a lysine residue that is a site for lipoylation and they appear to form independently folded functional domains. These lipoyl domains are in turn linked to a much larger (about 300 residues) subunit-binding domain of the E2p chain that aggregates to form the octahedral inner core of the complex and also contains the acetyltransferase active site. In order to investigate whether individual lipoyl domains play different parts in the enzymic mechanism, selective deletions were made in vitro in the dihydrolipoamide acetyltransferase gene (aceF) so as to excise one or two of the repeating sequences. This was facilitated by the high degree of homology in these sequences, which allowed the creation of hybrid lipoyl domains that closely resemble the originals. Pyruvate dehydrogenase complexes incorporating these genetically reconstructed E2p components were purified and their structures were confirmed. It was found that the overall catalytic activity, the system of active site coupling, and the ability to complement pyruvate dehydrogenase complex mutants, were not significantly affected by the loss of one or even two lipoyl domains per E2p chain. No special role can be attached thus far to individual lipoyl domains. On the other hand, certain genetic deletions affecting the acetyltransferase domain caused inactivation of the complex, highlighting particularly sensitive areas of that part of the E2p chain.  相似文献   

7.
The dihydrolipoamide acetyltransferase subunit (E2p) of the pyruvate dehydrogenase complex of Escherichia coli has three highly conserved and tandemly repeated lipoyl domains, each containing approx. 80 amino acid residues. These domains are covalently modified with lipoyl groups bound in amide linkage to the N6-amino groups of specific lysine residues, and the cofactors perform essential roles in the formation and transfer of acetyl groups by the dehydrogenase (E1p) and acetyltransferase (E2p) subunits. A subgene encoding a hybrid lipoyl domain was previously shown to generate two products when overexpressed, whereas a mutant subgene, in which the lipoyl-lysine codon is replaced by a glutamine codon, expresses only one product. A method has been devised for purifying the three types of independently folded domain from crude extracts of E. coli, based on their pH-(and heat-)stabilities. The domains were characterized by: amino acid and N-terminal sequence analysis, lipoic acid content, acetylation by E1p, tryptic peptide analysis and immunochemical activity. This has shown that the two forms of domain expressed from the parental subgene are lipoylated (L203) and unlipoylated (U203) derivatives of the hybrid lipoyl domain, whereas the mutant subgene produces a single unlipoylatable domain (204) containing the Lys-244----Gln substitution.  相似文献   

8.
9.
The E1 component (pyruvate decarboxylase) of the pyruvate dehydrogenase complex of Bacillus stearothermophilus is a heterotetramer (alpha2beta2) of E1alpha and E1beta polypeptide chains. The domain structure of the E1alpha and E1beta chains, and the protein-protein interactions involved in assembly, have been studied by means of limited proteolysis. It appears that there may be two conformers of E1alpha in the E1 heterotetramer, one being more susceptible to proteolysis than the other. A highly conserved region in E1alpha, part of a surface loop at the entrance to the active site, is the most susceptible to cleavage in E1 (alpha2beta2). As a result, the oxidative decarboxylation of pyruvate catalysed by E1 in the presence of dichlorophenol indophenol as an artificial electron acceptor is markedly enhanced, but the reductive acetylation of a free lipoyl domain is unchanged. The parameters of the interaction between cleaved E1 and the peripheral subunit-binding domain of the dihydrolipoyl acetyltransferase E2 component are identical to those of the wild-type E1. However, a pyruvate dehydrogenase complex assembled in vitro with cleaved E1p exhibits a markedly lower overall catalytic activity than that assembled with untreated E1. This implies that active site coupling between the E1 and E2 components has been impaired. This has important implications for the way in which a tethered lipoyl domain can interact with E1 in the assembled complex.  相似文献   

10.
Site-directed mutagenesis of the aceF gene of Escherichia coli was used to generate a nested set of deletions in the long (alanine + proline)-rich sequence that separates the lipoyl domain from the dihydrolipoamide dehydrogenase-binding domain in the "one-lipoyl domain" dihydrolipoamide acetyltransferase polypeptide chains of a pyruvate dehydrogenase multienzyme complex. The deletions reduced the number of residues in this sequence successively from 32 to 20, 13, 7 and just 1 residue. In all instances, pyruvate dehydrogenase complexes were still assembled in vivo around cores containing the deleted chains, and those with the two shortest deletions were essentially fully active. However, the two most severe deletions caused falls of 50% or more in specific catalytic activity. Similarly, although shortening the interdomain sequence to 20 residues left the system of active-site coupling unimpaired, cutting it to 13 residues or less caused substantial falls in the reductive acetylation of the lipoyl domains and corresponding losses of active-site coupling. The changes in specific catalytic activity and active-site coupling that accompanied the shortening of the (alanine + proline)-rich segment were reflected in the poorer growth rates of the relevant strains of E. coli on stringent substrates. All these results are consistent with this (alanine + proline)-rich sequence acting as a linker region that facilitates the movements of the lipoyl domains required for full catalytic activity and active-site coupling in the complex. The other two such sequences that separate the additional lipoyl domains in the N-terminal half of the wild-type "three-lipoyl domain" dihydrolipoamide acetyltransferase chain are presumed to function similarly. This role is consistent with the conformational flexibility assigned to these segments from previous studies based on 1H nuclear magnetic resonance spectroscopy and protein engineering.  相似文献   

11.
Limited proteolysis with trypsin has been used to study the domain structure of the dihydrolipoyltransacetylase (E2) component of the pyruvate dehydrogenase complex of Azotobacter vinelandii. Two stable end products were obtained and identified as the N-terminal lipoyl domain and the C-terminal catalytic domain. By performing proteolysis of E2, which was covalently attached via its lipoyl groups to an activated thiol-Sepharose matrix, a separation was obtained between the catalytic domain and the covalently attached lipoyl domain. The latter was removed from the column after reduction of the S-S bond and purified by ultrafiltration. The lipoyl domain is monomeric with a mass of 32.6 kDa. It is an elongated structure with f/fo = 1.62. Circulair dichroic studies indicates little secondary structure. The catalytic domain is polymeric with S20.w = 17 S and mass = 530 kDa. It is a compact structure with f/fo = 1.24 and shows 40% of the secondary structure of E2. The cubic structure of the native E2 is retained by this fragment as observed by electron microscopy. Ultracentrifugation in 6 M guanidine hydrochloride in the presence of 2 mM dithiothreitol yields a mass of 15.8 kDa. An N-terminal sequence of 36 amino acids is homologous with residues 370-406 of Escherichia coli E2. The catalytic domain possesses the catalytic site, but in contrast to the E. coli subunit binding domain the pyruvate dehydrogenase (E1) and lipoamide dehydrogenase (E3) binding sites are lost during proteolysis. From comparison with the E. coli E2 sequence a model is presented in which the several functions, such as lipoyl domain, the E3 binding site, the catalytic site, the E2/E2 interaction sites, and the E1 binding site, are indicated.  相似文献   

12.
Deletion of two of the three homologous lipoyl domains that form the N-terminal half of each dihydrolipoamide acetyltransferase (E2p) polypeptide chain of the Escherichia coli pyruvate dehydrogenase complex can be achieved by in vitro deletion in the structural gene aceF. A site-directed mutagenesis of this shortened aceF gene was carried out to replace the glutamine residue at position 291 (wild-type numbering) with a histidine residue. Residue 291 is near the middle of a long segment (about 30 amino acid residues) of polypeptide chain, rich in alanine, proline, and charged amino acids, that links the remaining lipoyl domain to the dihydrolipoamide dehydrogenase (E3) binding domain in the E2p chain. A fully active enzyme complex was still assembled, and despite the enormous size of the particle (Mr approximately 4 x 10(6)), sharp resonances attributable to the single new histidine residue per E2p chain could be detected in the 400-MHz 1H NMR spectrum of the complex. The sharpness of these resonances, their chemical shifts (7.94 and 7.05 ppm), and the apparent pKa (6.4) of the side chain were all consistent with this histidine residue being exposed to solvent in a conformationally flexible region of the E2p polypeptide chain. These experiments provide direct proof for the conformational flexibility of this region of polypeptide chain, which is thought to play an important part in the movement of the lipoyl domain required for active site coupling in the enzyme complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A 4175-bp EcoRI fragment of DNA that encodes the alpha and beta chains of the pyruvate dehydrogenase (lipoamide) component (E1) of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus has been cloned in Escherichia coli. Its nucleotide sequence was determined. Open reading frames (pdhA, pdhB) corresponding to the E1 alpha subunit (368 amino acids, Mr 41,312, without the initiating methionine residue) and E1 beta subunit (324 amino acids, Mr 35,306, without the initiating methionine residue) were identified and confirmed with the aid of amino acid sequences determined directly from the purified polypeptide chains. The E1 beta gene begins just 3 bp downstream from the E1 alpha stop codon. It is followed, after a longer gap of 73 bp, by the start of another but incomplete open reading frame that, on the basis of its known amino acid sequence, encodes the dihydrolipoyl acetyltransferase (E2) component of the complex. All three genes are preceded by potential ribosome-binding sites and the gene cluster is located immediately downstream from a region of DNA showing numerous possible promoter sequences. The E1 alpha and E1 beta subunits of the B. stearothermophilus pyruvate dehydrogenase complex exhibit substantial sequence similarity with the E1 alpha and E1 beta subunits of pyruvate and branched-chain 2-oxo-acid dehydrogenase complexes from mammalian mitochondria and Pseudomonas putida. In particular, the E1 alpha chain contains the highly conserved sequence motif that has been found in all enzymes utilizing thiamin diphosphate as cofactor.  相似文献   

14.
Plasmids were constructed for overexpression of the Escherichia coli dihydrolipoamide acetyltransferase (1-lip E2, with a single hybrid lipoyl domain per subunit) and dihydrolipoamide dehydrogenase (E3). A purification protocol is presented that yields homogeneous recombinant 1-lip E2 and E3 proteins. The hybrid lipoyl domain was also expressed independently. Masses of 45,953+/-73Da (1-lip E2), 50,528+/-5.5Da (apo-E3), 51,266+/-48Da (E3 including FAD), and 8982+/-4.0 (lipoyl domain) were determined by MALDI-TOF mass spectrometry. The purified 1-lip E2 and E3 proteins were functionally active according to the overall PDHc activity measurement. The lipoyl domain was fully acetylated after just 30 s of incubation with E1 and pyruvate. The mass of the acetylated lipoyl domain is 9019+/-2Da according to MALDI-TOF mass spectrometry. Treatment of the 1-lip E2 subunit with trypsin resulted in the appearance of the lipoyl domain with a mass of 10,112+/-3Da. When preincubated with E1 and pyruvate, this tryptic fragment was acetylated according to the mass increase. MALDI-TOF mass spectrometry was thus demonstrated to be a fast and precise method for studying the reductive acetylation of the recombinant 1-lip E2 subunit by E1 and pyruvate.  相似文献   

15.
Avidin can form intermolecular cross-links between particles of the pyruvate dehydrogenase multienzyme complex from various sources. Avidin does this by binding to lipoic acid-containing regions of the dihydrolipoamide acetyltransferase polypeptide chains that comprise the structural core of the complex. It is inferred that the lipoyl domains of the acetyltransferase chain extend outwards from the interior of the enzyme particle, interdigitating between the subunits of the other two enzymes bound peripherally in the assembled structure, with the lipoyl-lysine residues capable of reaching to within at least 1-2 nm of the outer surface of the enzyme complex (diameter ca. 37 nm). The distribution of enzymic activities between different domains of the dihydrolipoamide acetyltransferase chain implies that considerable movement of the lipoyl domains is a feature of the catalytic activity of the enzyme complex. There is evidence that the lipoyl domain of the 2-oxo acid dehydrogenase complexes is similar in structure to a domain that binds the cofactor biotin, also in amide linkage with a specific lysine residue, in the biotin-dependent class of carboxylases.  相似文献   

16.
Intramolecular coupling of active sites in the pyruvate dehydrogenase multienzyme complexes of Escherichia coli, ox heart and Bacillus stearothermophilus was measured at various temperatures. As the temperature was raised, the extent of active-site coupling was found to increase, approaching a maximum near the physiological growth temperature of the organism. Under these conditions, a single pyruvate dehydrogenase (lipoamide) dimer appeared able to cause a rapid (20s) reductive acetylation of probably all 24 polypeptide chains in the dihydrolipoamide acetyltransferase core of the enzyme complex from E. coli at 37 degrees C, and of most if not all of the 60 polypeptide chains in the dihydrolipoamide acetyltransferase cores of the enzymes from ox heart and B. stearothermophilus at 37 degrees C and 60 degrees C respectively. Experiments designed to measure the inter-core and intra-core migration of enzyme subunits suggested that, in the bacterial enzymes at least, this was not a major contributor to active-site coupling.  相似文献   

17.
The aceEF-lpd operon of Escherichia coli encodes the pyruvate dehydrogenase (E1p), dihydrolipoamide acetyltransferase (E2p) and dihydrolipoamide dehydrogenase (E3) components of the pyruvate dehydrogenase multienzyme complex (PDH complex). A thermoinducible expression system was developed to amplify a variety of genetically restructured PDH complexes, including those containing three, two, one and no lipoyl domains per E2p chain. Although large quantities of the corresponding complexes were produced, they had only 20-50% of the predicted specific activities. The activities of the E1p components were diminished to the same extent, and this could account for the shortfall in overall complex activity. Thermoinduction was used to express a mutant PDH complex in which the putative active-site histidine residue of the E2p component (His-602) was replaced by cysteine in the H602C E2p component. This substitution abolished dihydrolipoamide acetyltransferase activity of the complex without affecting other E2p functions. The results support the view that His-602 is an active-site residue. The inactivation could mean that the histidine residue performs an essential role in the acetyltransferase reaction mechanism, or that the reaction is blocked by an irreversible modification of the cysteine substituent. Complementation was observed between the H602C PDH complex and a complex that is totally deficient in lipoyl domains, both in vitro, by the restoration of overall complex activity in mixed extracts, and in vivo, from the nutritional independence of strains that co-express the two complexes from different plasmids.  相似文献   

18.
The nucleotide sequence of the sucB gene, which encodes the dihydrolipoamide succinyltransferase component (E2o) of the 2-oxoglutarate dehydrogenase complex of Escherichia coli K12, has been determined by the dideoxy chain-termination method. The results extend by 1440 base pairs the previously reported sequence of 3180 base pairs, containing the sucA gene. The sucB structural gene comprises 1209 base pairs (403 codons excluding the initiating AUG), and it is preceded by a 14-base-pair intercistronic region containing a good ribosomal binding site. The absence of a typical terminator sequence and the presence of an IS-like sequence downstream of sucB suggest that there may be further gene(s) in the suc operon. The IS-like sequence is homologous with other intercistronic sequences including that between the sdhB and sucA genes, the overall gene organisation being: sdhB-IS-sucAsucB-IS-. The patterns of codon usage indicate that sucB may be more strongly expressed than sucA, consistent with the disproportionate contents of their products in the oxoglutarate dehydrogenase complex. The predicted amino acid composition and Mr (43 607) of the succinyltransferase component agree with previous studies on the purified protein. Comparison with the corresponding acetyltransferase component of the pyruvate dehydrogenase complex (E2p, aceF gene product) indicates that each contains two analogous domains, an amino-terminal lipoyl domain linked to a carboxy-terminal catalytic and subunit binding domain. The lipoyl domain of the acetyltransferase (E2p) comprises three tandemly repeated approximately 100-residue lipoyl binding regions containing two short (approximately 19 residues) internal repeats, whereas the lipoyl domain of the succinyltransferase (E2o) contains just one approximately 100-residue lipoyl binding region, with approximately 27% homology to each of the three comparable regions in E2p, and no detectable internal repeats. The catalytic and subunit binding domains, each approximately 300 residues, have an overall homology of 34% and, consistent with their combination of analogous and specific functions, some regions are more homologous than others. Both sequences feature segments rich in proline and alanine. In E2p these occur at the carboxy-terminal ends of each of the three lipoyl binding regions, there being a particularly extended sequence at the end of the third repeat, whereas in E2o the main proline-alanine segment is found approximately 50 residues into the subunit binding domain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
L C Packman  G Hale    R N Perham 《The EMBO journal》1984,3(6):1315-1319
Each polypeptide chain in the lipoate acetyltransferase (E2) core of the pyruvate dehydrogenase complex from Escherichia coli contains three repeating sequences in the N-terminal half of the molecule. The repeats are highly homologous in primary structure and each includes a lysine residue that is a potential site for lipoylation. We have shown that all three sites are lipoylated, at least in part, and that the three lipoylated segments of the E2 chain can be isolated as distinct functional domains after limited proteolysis. Each domain becomes partly acetylated in the intact complex in the presence of substrate. In the primary structure, the domains are separated by regions of polypeptide chain oddly rich in alanine and proline residues. These regions are probably the conformationally mobile segments observed in the 1H-n.m.r. spectrum of the complex and which are removed by tryptic cleavage at Lys-316. The C-terminal half of the molecule contains the acetyltransferase active site and the binding sites for E1, E3 and other E2 subunits. The pyruvate dehydrogenase complex of E. coli, which has a heterogeneous quaternary structure, is thus far unique among the 2-oxo acid dehydrogenase complexes in possessing more than one lipoyl domain per E2 chain, but this may be a general feature of the enzyme from Gram-negative organisms.  相似文献   

20.
The lipoyl domain of the dihydrolipoyl succinyltransferase (E2o) component of the 2OGDH (2-oxoglutarate dehydrogenase) multienzyme complex houses the lipoic acid cofactor through covalent attachment to a specific lysine side chain residing at the tip of a beta-turn. Residues within the lipoyl-lysine beta-turn and a nearby prominent loop have been implicated as determinants of lipoyl domain structure and function. Protein engineering of the Escherichia coli E2o lipoyl domain (E2olip) revealed that removal of residues from the loop caused a major structural change in the protein, which rendered the domain incapable of reductive succinylation by 2-oxoglutarate decarboxylase (E1o) and reduced the lipoylation efficiency. Insertion of a new loop corresponding to that of the E. coli pyruvate dehydrogenase lipoyl domain (E2plip) restored lipoylation efficiency and the capacity to undergo reductive succinylation returned, albeit at a lower rate. Exchange of the E2olip loop sequence significantly improved the ability of the domain to be reductively acetylated by pyruvate decarboxylase (E1p), retaining approx. 10-fold more acetyl groups after 25 min than wild-type E2olip. Exchange of the beta-turn residue on the N-terminal side of the E2o lipoyl-lysine DK(A)/(V) motif to the equivalent residue in E2plip (T42G), both singly and in conjunction with the loop exchange, reduced the ability of the domain to be reductively succinylated, but led to an increased capacity to be reductively acetylated by the non-cognate E1p. The T42G mutation also slightly enhanced the lipoylation rate of the domain. The surface loop is important to the structural integrity of the protein and together with Thr42 plays an important role in specifying the interaction of the lipoyl domain with its partner E1o in the E. coli 2OGDH complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号