首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results reported here show that the activation of the NADPH oxidase in neutrophils by formyl-methionyl-leucyl-phenylalanine (FMLP) and concanavalin A (Con A) may occur with a stimulus response coupling sequence that bypasses the activation of phosphoinositide hydrolysis, monitored as accumulation of inositol phosphates and glycerophosphoinositol, and the increase in [Ca2+]i. In fact: in Ca2+-depleted neutrophils FMLP and Con A do not induce the respiratory burst and the activation of phosphoinositide hydrolysis. The addition of Ca2+ restores both the respiratory and the phosphoinositide responses; the double treatment of Ca2+-depleted neutrophils with FMLP and Con A in sequence, before FMLP and then Con A and vice versa, or simultaneously, restores the capacity to respond to the second stimulus with the respiratory burst but not with the activation of phosphoinositide hydrolysis. These findings suggest that, for the activation of the NADPH oxidase by FMLP and by Con A: the transduction pathway including the stimulation of phosphoinositide turnover, the Ca2+ changes and the activity of the protein kinase C is not required, or is not the unique, and one stimulus may trigger more than one transduction pathway. Possible transduction pathways are discussed.  相似文献   

2.
Evidences have been provided in our laboratory that in neutrophils different signal transduction sequences for the activation of O2(-)-forming NADPH oxidase can be triggered by the same stimulus (Biochem. Biophys. Res. Commun. 1986, 135, 556-565; 1986, 135, 785-794; 1986, 140, 1-11). The results presented here show that the transduction sequence triggered by fluoride via dissociation of G-proteins and involving messengers produced by stimulation of phosphoinositide turnover, Ca2+ changes and translocation of protein kinase C from the cytosol to the plasmamembrane, can be bypassed when a primed state of neutrophils is previously induced. In fact: i) fluoride causes a pertussis toxin insensitive and H-7 sensitive respiratory burst in human neutrophils, which is linked to the activation of hydrolysis of PIP2, rise in [Ca2+]1 and translocation of PKC. In Ca2+-depleted neutrophils these responses to fluoride do not occur and are restored by addition of CaCl2. ii) The pretreatment of Ca2+-depleted unresponsive neutrophils with non stimulatory doses of PMA restores the activation of the NADPH oxidase by fluoride but not the turnover of phosphoinositides and PKC translocation. The nature of the alternative transduction sequence, the reactions different from phospholipase C activated by G-protein for the alternative sequence and the role of these discrete pathways for NADPH oxidase activation are discussed.  相似文献   

3.
It is widely believed that the transduction pathway in the activation of the NADPH oxidase by formyl-methionyl-leucyl-phenylalanine (FMLP) in neutrophils involves the stimulation of phosphoinositide hydrolysis, the increase in [Ca2+]i and the activity of the Ca2+ and phospholipid dependent protein kinase C. The results presented here show that the activation of the respiratory burst by FMLP can be dissociated by the stimulation of the hydrolysis of phosphatidylinositol 4,5-bisphosphate and Ca2+ changes. In fact, in neutrophils pretreated (primed) with non stimulatory doses of phorbol myristate acetate the respiratory burst by chemotactic peptide is greatly potentiated while the increase in [3H] inositol phosphates formation and in [Ca2+]i are depressed due to the inhibition of phospholipase C. This finding indicates that FMLP can trigger also a sequence of transduction reactions for the activation of the NADPH oxidase different from that involving the formation of the second messengers diacylglycerol and inositol phosphates and the increase in free Ca2+ concentration.  相似文献   

4.
The role of the activation of phosphoinositide turnover and of the increase in cytosolic free calcium, [Ca2+]i, in the phagocytosis and associated activation of the respiratory burst was investigated. We report the results obtained on the phagocytosis of yeast cells mediated by Con A in normal and in Ca2+-depleted human neutrophils. In normal neutrophils the phagocytosis was associated with a respiratory burst, a stimulation in the formation of [3H] inositol phosphates and [32P]phosphatidic acid, the release of [3H]arachidonic acid, and a rise in [Ca2+]i. Ca2+-depleted neutrophils are able to perform the phagocytosis of yeast cells mediated by Con A and to activate the respiratory burst without stimulation of [3H]inositol phosphates and [32P]phosphatidic acid formation, [3H]arachidonic acid release, and rise in [Ca2+]i. In both normal and Ca2+-depleted neutrophils the phagocytosis and the associated respiratory burst, 1) were inhibited by cytochalasin B; 2) were insensitive to H-7, an inhibitor of protein kinase C; and 3) did not involve GTP-binding protein sensitive to pertussis toxin. These findings indicate that the activation of phosphoinositide turnover, the liberation of arachidonic acid, the rise in [Ca2+]i, and the activity of protein kinase C are not necessarily required for ingestion of Con A-opsonized particles and for associated activation of the NADPH oxidase, the enzyme responsible for the respiratory burst. The molecular mechanisms of these phosphoinositide and Ca2+-independent responses are discussed.  相似文献   

5.
The effects of carbobenzyloxy-leucine-tyrosine-chloromethylketone (zLYCK), an inhibitor of chymotrypsin, were investigated on the activation pathways of the human neutrophil respiratory burst. At 10 microM zLYCK, a parallel inhibition was observed of superoxide production stimulated with the chemo-attractant FMLP and of chymotrypsin-like activity of human neutrophils. By contrast, superoxide production induced by PMA was minimally affected by zLYCK. The known transduction pathways triggered by FMLP were analyzed. zLYCK did not affect either the FMLP-induced cytosolic free calcium transient, inositol 1,4,5 trisphosphate formation, nor the PMA-induced phosphorylation of the 47-kDa substrate of protein kinase C. zLYCK did not affect the activity of protein kinase C extracted from neutrophils. In Ca(2+)-depleted cells, in which phosphatidylinositol 4,5-biphosphate breakdown does not occur, zLYCK inhibited the FMLP-induced respiratory burst in cells primed by low doses of PMA. The activity of the NADPH oxidase tested with active membranes from stimulated neutrophils or in a cell-free system was not inhibited by zLYCK. We conclude that: 1) zLYCK inhibits superoxide production through the inhibition of a chymotrypsin-like protease of the neutrophil, 2) zLYCK inhibits FMLP-induced activation of NADPH oxidase through a pathway independent of PtdInsP2 breakdown and cytosolic free calcium, and 3) zLYCK may prove a useful probe for the characterization of its target protease in neutrophil activation.  相似文献   

6.
The neuropeptide substance P (SP), which has been suggested to mediate neurogenic inflammation, induces in human neutrophils the activation of the respiratory burst measured as O2 consumption and H2O2 production, and a cytochalasin B-dependent secretion of specific and azurophilic granules. The SP(4-11) fragment is much more stimulant than the entire molecule, whereas the SP(1-4) fragment is inactive. The respiratory and secretory response to SP are associated with an activation of phosphoinositide turnover, of Ca2+ influx and release from intracellular stores. Pertussis toxin inhibits 70% of the respiratory response and the residual 30% activity remains, even increasing 10-fold the concentration of the toxin. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine, a putative inhibitor of protein kinase C, does not modify the respiratory response to SP. Cytochalasin B significantly depresses the activation of the respiration by SP, whereas it moderately enhances the activation of phosphoinositide turnover and potentiates the increase of intracellular Ca2+ concentration. The results are discussed in relation to the receptor apparatus involved in SP activity, the signal transduction sequence activated by SP for the stimulation of NADPH oxidase, and the role of cell response to SP in the inflammatory process.  相似文献   

7.
The principal sulfatide of a group of acidic lipids from virulent Mycobacterium tuberculosis, sulfolipid-1 (SL-1), stimulates neutrophil superoxide (O2-) generation and, at lower concentrations, primes neutrophil response to several other metabolic agonists including FMLP, and PMA. These responses to SL-1 were examined in relation to diacylglycerol (DAG) generation, Ca2+ availability and activation of guanine nucleotide binding proteins to clarify the signal transduction pathways involved. Pertussis toxin inhibited the ability of SL-1 to both stimulate neutrophils directly and to prime neutrophils for subsequent responses induced by PMA, suggesting a role for one or more guanine nucleotide regulating proteins in both responses. SL-1 induced a rise in neutrophil DAG levels. DAG generation was inhibited by pretreatment of cells with pertussis toxin. Depletion of extracellular Ca2+ ablated O2- release induced by stimulatory levels of SL-1 but did not inhibit the priming effect induced by substimulatory concentrations of the lipid. Investigation of the activation of the neutrophil NADPH oxidase in a cell-free system revealed that the SL-1-priming effect was associated with translocation of the soluble cytosolic factors required for activation of the enzyme. Cytosolic factor translocation was not observed in pertussis toxin pretreated cells. Our results provide evidence for the role of a guanine nucleotide binding protein in both priming and direct activation of neutrophils by SL-1. This G protein regulates both SL-1-induced DAG generation and cytosolic cofactor translocation involved in neutrophil activation and priming. The multiplicity of effects of SL-1 on signal transduction pathways leading to phagocyte activation and priming may exert a profound influence on the pathogenicity of M. tuberculosis.  相似文献   

8.
Production of superoxide (O(2)(·-)) by NADPH oxidases contributes to the development of hypertension and atherosclerosis. Factors responsible for activation of NADPH oxidases are not well understood; interestingly, cardiovascular disease is associated with both altered NADPH oxidase activity and age-associated mitochondrial dysfunction. We hypothesized that mitochondrial dysfunction may contribute to activation of NADPH oxidase. The effect of mitochondrial inhibitors on phagocytic NADPH oxidase in human lymphoblasts and whole blood was measured at the basal state and upon PKC-dependent stimulation with PMA using extracellular 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl-trimethylammonium or mitochondria-targeted 1-hydroxy-4-[2-triphenylphosphonio)-acetamido]-2,2,6,6-tetramethylpiperidine spin probes and electron spin resonance (ESR). Intracellular cytosolic calcium [Ca(2+)](i) was measured spectrofluorometrically using fura-2 AM. Incubation of lymphoblasts with the mitochondrial inhibitors rotenone, antimycin A, CCCP, or ruthenium red (an inhibitor of mitochondrial Ca(2+) uniporter) did not significantly change basal activity of NADPH oxidase. In contrast, preincubation with the mitochondrial inhibitors prior to PMA stimulation of lymphoblasts resulted in two- to three-fold increase of NADPH oxidase activity compared with stimulation with PMA alone. Most notably, the intracellular Ca(2+)-chelating agent BAPTA-AM abolished the effect of mitochondrial inhibitors on NADPH oxidase activity. Cytosolic Ca(2+) measurements with fura-2 AM showed that the mitochondrial inhibitors increased [Ca(2+)](i), while BAPTA-AM abolished the increase in [Ca(2+)](i). Furthermore, depletion of cellular Ca(2+) with thapsigargin attenuated CCCP- and antimycin A-mediated activation of NADPH oxidase in the presence of PMA by 42% and 31%, correspondingly. Our data suggest that mitochondria regulate PKC-dependent activation of phagocytic NADPH oxidase. In summary, increased mitochondrial O(2)(·-) and impaired buffering of cytosolic Ca(2+) by dysfunctional mitochondria result in enhanced NADPH oxidase activity, which may contribute to the development of cardiovascular diseases.  相似文献   

9.
Stimulated adherence of human neutrophils to plastic and changes in cytosolic free Ca2+ concn. [( Ca2+]i) were measured in the same cell preparations. [Ca2+]i-activation curves were constructed to compare the relation between [Ca2+]i and adhesion in response to ionomycin and formylmethionyl-leucyl-phenylalanine (FMLP). This showed that FMLP-stimulated adhesion required less increase in [Ca2+]i than did ionomycin's effect, a result suggesting that an additional stimulatory component might be involved in the response to FMLP. Protein kinase C activation was a possibility, and activation of protein kinase C with a phorbol ester (PMA) was found to stimulate adhesion with no change in [Ca2+]i. A low concentration of PMA was found to synergize with ionomycin to stimulate a greater adhesion response than with each alone, and the [Ca2+]i-activation curve for ionomycin in the presence of PMA was shifted towards that for FMLP. Thus, synergy between [Ca2+]i and protein kinase C (each of which is sufficient alone) probably explains the stimulatory effects of FMLP on adhesion of neutrophils.  相似文献   

10.
The role of messengers derived from hydrolysis of phosphoinositides and other phospholipids, of the basal level of [Ca2+]i and of the increase in [Ca2+]i in phagocytosis and respiratory burst was investigated, using normal neutrophils and neutrophils Ca2(+)-depleted by pretreatment with Quin2/AM and EGTA. 1) Phagocytosis and respiratory burst in control neutrophils challenged with yeast opsonized with IgG or C3b/bi were associated with a stimulation of the production of inositol phosphates, diacylglycerol, phosphatidic acid, arachidonic acid, and rise in [Ca2+]i. 2) In Ca2(+)-depleted neutrophils (basal [Ca2+]i 10 to 20 nM) the phagocytosis of yeast-IgG was similar to that in control neutrophils, the respiratory burst was slightly depressed (-30%), while the increase in [Ca2+]i and production of inositol phosphates, diacylglycerol, and phosphatidic and arachidonic acid did not occur. 3) In Ca2(+)-depleted neutrophils the phagocytosis of yeast-C3b/bi was slightly lower than that in control neutrophils, and the respiratory burst, related to the same number of particles ingested, was depressed by about 60%, whereas the increase in [Ca2+]i and production of inositol phosphates, diacylglycerol, phosphatidic acid, and arachidonic acid release did not occur. These findings demonstrate that transmembrane signaling pathways involving the hydrolysis of phosphoinositides by phospholipase C and D and of other phospholipids by phospholipase C and Az, and the rise in [Ca2+]i are not essential processes for triggering the ingestion of yeast particles opsonized with IgG and C3b/bi and the activation of the NADPH oxidase.  相似文献   

11.
 为澄清中性粒细胞胞浆 Ca2 +和某些 O-·2 产生相关激酶对 NADPH氧化酶激活和肌动蛋白聚合的作用 ,利用分化为中性粒细胞样的 HL- 60细胞研究了胞浆 Ca2 +螯合剂 BAPTA- AM和激酶抑制剂对这些激酶激活、NADPH氧化酶激活和肌动蛋白聚合的影响 .使用 1 0 μmol/L的 Ca2 +螯合剂 BAPTA- AM去除胞浆 Ca2 +后 ,趋化肽 f MLP诱导的 O-·2 产生明显减少 ,但不影响 f MLP诱导的肌动蛋白聚合 ;8μmol/L的 PKC激酶抑制物 GF1 0 92 0 3x几乎完全抑制 O-·2 产生 ;50 μmol/L的p38激酶抑制物 SB2 0 3580、50 μmol/L的 ERK激酶抑制物 PD0 980 59和 0 .1 μmol/L的 PI3激酶抑制物渥曼青霉素 (Wortmannin)使 f MLP诱导的 O-·2 产生大约减少一半 ;其中 Wortmannin还抑制 f MLP诱导的肌动蛋白聚合 ;f MLP刺激细胞后 ,PI3- K、p38和 ERK激酶迅速激活 ,但这些激酶的激活对 Ca2 +是非必需的 .这些结果说明 Ca2 +依赖途径 (PKC)和 Ca2 +非依赖途径 (PI3- K、p38和ERK)对 NADPH氧化酶激活都起着重要作用 ,而 Ca2 +非依赖途径中的 PI3- K激酶还参与中性粒细胞样 HL- 60细胞的肌动蛋白聚合 .  相似文献   

12.
For superoxide (O2-) responses of human neutrophils stimulated by FMLP, experiments were designed to assess the requirement of extracellular calcium [( Ca2+]o) for priming of O2- responses by platelet-activating factor (PAF), PMA, or ionomycin. Although priming by PMA did not require [Ca2+]o, there was, as expected, a requirement for [Ca2+]o for the optimal priming effects of PAF and ionomycin. The ED50 value for [Ca2+]o in the priming function of PAF was 105 microM. The [Ca2+]o-dependent priming with ionomycin was bimodal with two ED50 values for [Ca2+]o of 90 microM and 3.2 mM. Optimal priming by PAF required at least 4-min exposure of cells to [Ca2+]o. Cells primed by PAF exhibited faster initial rates of O2-production after addition of FMLP, but the duration of O2- production was not prolonged. Whereas PAF-primed responses to FMLP are usually associated with increases in intracellular calcium [( Ca2+]i) after addition of FMLP, two conditions were found in which O2- responses to FMLP in PAF-primed cells occurred in the absence of any detectable increase in [Ca2+]i. When cells were loaded with the calcium chelator, bis-(O-aminophenoxy)-ethane-H,N,N',N'-tetraacetic acid, and then primed with PAF, normal amounts of inositol 1,4,5-trisphosphate were formed, but no increase in [Ca2+]i occurred after addition of FMLP even though the cells exhibited a fully primed O2- response; in Ca2(+)-depleted and ionomycin-permeabilized cells that were primed with PAF and then stimulated with FMLP, O2- was generated in amounts comparable to reference control (primed) cells, but there was suppressed production of inositol 1,4,5-trisphosphate and no increase in [Ca2+]i after addition of FMLP to PAF-primed cells. These data confirm the requirement of [Ca2+]o for optimal priming of neutrophils by PAF and ionomycin (but not cells primed by PMA) and indicate that, under certain conditions, generation of O2- in response to FMLP in PAF-primed neutrophils can occur independent of any increase in [Ca2+]i.  相似文献   

13.
The phorbol myristate acetate (PMA) stimulation of the human neutrophil NADPH-oxidase has been demonstrated through the activation of protein kinase C (PK-C), using light membrane fractions from nitrogen-cavitated cells. Both arachidonic acid (AA) and sodium dodecyl sulfate (SDS) can also generate an active oxidase in cellfree systems. That the source of O2- with AA and SDS activation is the same NADPH-oxidase as previously studied was confirmed by the similar pH optima and Km values for NADPH as those previously described for the O2- -generating activity harvested from pre-stimulated human neutrophils. In contrast to the stimulation by PMA, however, the stimulation of the NADPH-oxidase by AA and SDS does not appear to require protein kinase C activation: the action of AA and SDS is independent of the addition of PK-C cofactors to the system, and the inhibitor of PK-C activity, H-7, had no effect on the stimulation by AA or SDS. AA and SDS activation are comparable, but the level of NADPH-oxidase expression is sixfold greater with each of these agents than that obtained with a reconstituted PK-C system. The basis of this difference in oxidase expression is unclear, but these findings suggest strongly that although activated PK-C is capable of stimulating a dormant NADPH-oxidase in a cellfree system, this is not the sole pathway for oxidase activation.  相似文献   

14.
S Umeki 《Life sciences》1990,46(16):1111-1118
Kinetics of activation of the NADPH oxidase in a fully soluble cell-free system from phorbol myristate acetate (PMA)-stimulated human neutrophils were investigated. In a cell-free system in which Mg2+ and sodium dodecyl sulfate, an anionic detergent required for the activation of NADPH oxidase are contained, cytosol prepared from PMA-stimulated neutrophils failed to activate PMA-stimulated neutrophil oxidase. However, cytosol prepared from resting (control) neutrophils was capable of activating PMA-stimulated neutrophil oxidase in a cell-free system in which its Km for NADPH was almost similar to that of control neutrophil oxidase. Cytosol from PMA-stimulated neutrophils could not activate control neutrophil oxidase, although it did not contain any inhibitors of NADPH oxidase activation. These results suggest that, in PMA-stimulated neutrophils, cytosolic activation factors may be consumed or exhausted, and that the affinity for NADPH of PMA-stimulated neutrophil oxidase may be the same as that of control neutrophil oxidase.  相似文献   

15.
In the present study, we first investigated which of the factors, protein kinase C (PKC) or Ca2+, plays an important role in activation of phospholipase D (PLD) of rabbit peritoneal neutrophils stimulated by the chemoattractant FMLP. PLD activity was assessed by measuring [3H]phosphatidylethanol ([3H]PEt), the unambiguous marker of PLD, generated by [3H]lyso platelet-activating factor-prelabeled neutrophils in the presence of ethanol. PKC inhibitors, staurosporine and 1-(5-isoquinolinesulfonyl-2-methylpiperazine dihydrochloride, augmented the plateau level of [3H]PEt produced in FMLP-stimulated cells, although they had no effect on the initial rate of the formation. Furthermore, it was found that the FMLP-stimulated [3H]PEt formation was inhibited by pretreatment of cells with PMA, a PKC activator, and exposure of cells to staurosporine before PMA pretreatment moderately blocked the PMA inhibition. Ca2+ ionophore ionomycin, as well as FMLP, stimulated [3H]PEt formation, accompanied by a decrease in [3H]phosphatidylcholine, in a time- and concentration-dependent manner. Both FMLP and ionomycin absolutely required extracellular Ca2+ to increase [3H]PEt formation. These results imply that elevated intercellular Ca2+ by FMLP stimulation is the major factor for PLD activation and that PKC rather negatively regulates the enzyme activity. Interestingly, a calmodulin inhibitor, N-(6-aminohexyl)-5-chloro-1- naphthalenesulfonamide, and a myosin L chain kinase inhibitor, 1-(5-iodonaphthalene-1-sulfonyl)-1H-h exahydro-1,4-diazepine hydrochloride, both inhibited the ionomycin- and FMLP-stimulated [3H]PEt formation in a concentration-dependent manner. Results obtained in this study suggest that, in FMLP-stimulated rabbit peritoneal neutrophils, increased intracellular Ca2+ activates PLD through calmodulin/myosin L chain kinase pathway and, thereafter, the enzyme activation is turned off by simultaneously activated PKC.  相似文献   

16.
为了解p38促分裂原活化蛋白激酶 (MAPK)参与NADPH氧化酶激活的机理 ,利用p38MAPK抑制剂SB2 0 35 80 ,在甲酰甲硫氨酰 亮氨酰 苯丙氨酸 (FMLP)刺激的分化为中性粒细胞样的HL 6 0细胞中研究p38MAPK对O·2 产生和NADPH氧化酶胞浆成分p4 7phox 的磷酸化作用 .实验发现 ,p38MAPK的激活过程与NADPH氧化酶的激活过程一致 .5 0 μmol LSB2 0 35 80抑制 5 0 % O·2 产生 ,完全抑制p38MAPK激活和部分抑制p4 7phox 体外磷酸化 .结果表明 ,在FMLP刺激的HL 6 0细胞中 ,p38MAPK可以通过磷酸化p4 7phox而参与NADPH氧化酶激活 .  相似文献   

17.
Chemotaxis of human neutrophils in response to a gradient of the chemotactic peptide, fmet-leu-phe (FMLP), was measured by the under-agarose technique. The dose-response curve for FMLP was biphasic; low concentrations were stimulatory, and the response was reduced at higher concentrations. The response to FMLP was partially inhibited (about 50%) in the absence of extracellular Ca2 (EGTA added). NiCl2 dose-dependently inhibited FMLP-stimulated chemotaxis in the presence of extracellular Ca2+; the maximum inhibition obtainable with NiCl2 was similar to that with the absence of extracellular Ca2+. These results suggest that FMLP-stimulated chemotaxis is, at least partially, dependent on stimulation of Ca2+ influx. The phorbol ester, PMA, dose-dependently inhibited chemotaxis; the response was almost completely inhibited by 10 nM PMA. This result indicates that activation of protein kinase C inhibits chemotaxis. These results are discussed in relation to the physiological responses of neutrophils.  相似文献   

18.
N-Formyl-Met-Leu-Phe (FMLP) and phorbol 12-myristate 13-acetate (PMA) caused a synergistic augmentation of superoxide anion (O2-) production in neutrophil-like HL-60 cells differentiated with dibutyryl cAMP. The present study was undertaken to investigate the mechanism of the synergistic augmentation of O2- production. FMLP increased intracellular free Ca2+ concentration ([Ca2+]i), which was slightly suppressed by PMA and completely inhibited by an intracellular Ca2+ chelating agent, O,O'-bis(2-aminophenyl)ethyleneglycol-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester (BAPTA-AM). Although FMLP-induced O2- production was inhibited by BAPTA-AM, a major part of the synergistic augmentation of O2- production by FMLP and PMA remained after BAPTA-AM treatment, suggesting that a Ca2+-independent mechanism might be involved in the augmentation. FMLP and PMA caused an activation of phospholipase D (PLD) almost additively in a Ca2+-sensitive manner. The synergistic activation of mitogen-activated protein kinase (MAPK) was evoked by combined addition of PMA and FMLP in a BAPTA-AM resistant manner. However, PD98059, a MAPK kinase inhibitor, did not affect the synergistic augmentation of O2- production, although it potently inhibited the synergistic augmentation of tyrosine phosphorylation of MAPK. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, inhibited FMLP-induced O2- production, but it did not inhibit the synergistic augmentation of O2- production by PMA and FMLP. In contrast, staurosporine and GF109203X, protein kinase C inhibitors, reduced the synergistic augmentation induced by PMA and FMLP. In addition, pertussis toxin (PT) abolished the synergistic augmentation of O2- production. It is concluded that the synergistic augmentation of O2- production induced by PMA and FMLP is mediated through a PT-sensitive G protein and a protein kinase C in a Ca2+-independent manner.  相似文献   

19.
The effects of various protein kinase C (PKC) inhibitors on NADPH oxidase (NO) activation by the phorbol ester PMA and by the chemotactic peptide FMLP were studied. H-7 reduced the effects of both stimuli in human neutrophils (HN) and HL-60 cells by 13-63%. Polymyxin B did not inhibit NO activation by PMA and FMLP in HN and reduced the effects of both stimuli in HL-60 cells by 27-55%. Retinal and retinoic acid enhanced the effects of PMA and FMLP in HL-60 cells and of FMLP in HN up to 4.5-fold. In contrast, retinoic acid inhibited the effect of PMA in HN. In the presence of cytochalasin B, retinal inhibited the effect of FMLP in HN, whereas retinoic acid inhibited NO activation by FMLP in both cell types. The dual PKC/calmodulin inhibitors trifluoperazine and W-7 abolished NO activation by PMA and FMLP in HN and HL-60 cells. Thus, the effects of PKC inhibitors on NO activation exhibit (1) cell type specificity, (2) stimulus dependency and (3) no correlation with in vitro inhibition of PKC. Our results suggest that studies with PKC inhibitors presently available cannot clarify the role of PKC in NO activation.  相似文献   

20.
Defective protein kinase C-mediated actions in cystic fibrosis neutrophils   总被引:2,自引:0,他引:2  
Neutrophils from cystic fibrosis (CF) patients have been shown previously to be defective in their response (beta-glucuronidase exocytosis, NADPH oxidase activation) to the chemotactic peptide FMLP. In this work, we attempted to identify the defective step in this response. We showed that stimulated CF and control neutrophils do not differ in the formation of inositol phosphates. On the other hand, direct stimulation of protein kinase C with phorbol myristate acetate (PMA) revealed a subnormal stimulation of beta-glucuronidase exocytosis in CF neutrophils. Furthermore, retroinhibition exerted by PMA-activated protein kinase C on stimulated inositol phosphates or on beta-glucuronidase exocytosis was marginal or absent in CF neutrophils, whereas it was significant in the case of control neutrophils. Our observations suggest that the CFTR gene is expressed in neutrophils and is involved in protein kinase C-mediated actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号