首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using isolation of soluble peptides as a means of comparing the efficiency of tryptic hydrolysis of various forms of the phase-1 flagellin of Salmonella typhimurium, it was found that peptides terminating in N-methyllysine required a longer period of exposure to enzyme for their detection than did equivalent peptides terminating in lysine.  相似文献   

2.
Treatment of completely maleylated trypsinogen with trypsin resulted in a mutual exclusion of hydrolysis of the two arginyl peptide bonds wherein one half of the molecules of the modified zymogen were cleaved at the Arg55-Leu56 bond and the other half of the molecules were cleaved at the Arg105- Val106 bond and no molecules were cleaved at both arginyl bonds.  相似文献   

3.
4.
5.
1, 2-Cyclohexanedione reacts specifically with the guanidino group of arginine or arginine residues at pH 8 to 9 in sodium borate buffer in the temperature range of 25-40 degrees. The single product, N-7, N-8-(1,2-dihydroxycyclohex-1,2-ylene)-L-arginine (DHCH-arginine) is stable in acidic solutions and in borate buffers (pH 8 to 9). DHCH-Arginine is converted to N-7-adipyl-L-arginine by periodate oxidation. The structures of the two compounds were elucidated by chemical and physicochemical means. Arginine or arginyl residues can be regenerated quantitatively from DHCH-arginine by incubation at 37 degrees in hydroxylamine buffer at pH 7.0 FOR 7 TO 8 hours. Analysis of native egg white lysozyme and native as well as oxidized bovine pancreatic RNase, which were treated with cyclohexanedione, showed that only arginine residues were modified. The utility of the method in sequence studies was shown on oxidized bovine pancreatic ribonuclease A. Arginine modification was complete in 2 hours at 35 degrees in borate buffer at pH 9.0 with a 15-fold molar excess of the reagent. The derived peptides showed that tryptic hydrolysis was entirely limited to peptide bonds involving lysine residues, as shown both by two-dimensional peptide patterns and by isolation of the resulting peptides. The stability of DHCH-arginyl residues permits isolation of labeled peptides.  相似文献   

6.
7.
8.
Partial depurination of d-ApA produced two UV260nm-absorbing isomers, d-SpA and d-ApS (where S represents the depurinated deoxyribose sugar), that provided simple model compounds with which to examine, by HPLC, the response of nucleases to phosphodiester bonds flanked 3' or 5' by an apurinic site. The structural identity of each compound was established by (i) reaction with methoxyamine to confirm the presence of an abasic deoxyribose group, and (ii) degradation of d-SpA under mild alkaline conditions to distinguish it from d-ApS. At an enzyme concentration which led to complete hydrolysis of d-ApA, snake venom phosphodiesterase readily cleaved d-SpA to 5'-dAMP but had no discernible effect on d-ApS. Calf spleen phosphodiesterase also failed to act on one isomer, in this instance d-SpA, but additionally reacted at a much slower rate (approximately 100 fold) with d-ApS than with d-ApA. Three single-strand specific endonucleases, nuclease P1, nuclease S1 and mung bean nuclease, all responded in an identical manner, hydrolysing d-ApS but not d-SpA. The possibility that the aldehyde group at the AP sites might be responsible for some of these observations was rejected after repeating the enzyme digestions with the methoxyamine-capped molecules and observing no differences from the reactions with d-SpA and d-ApS.  相似文献   

9.
10.
Hydrolysis of Lys-Arg-Pro-Gly-Phe-Ser-Pro-Phe-Arg-Ser-Val-Gln-Val-Ser by trypsin (EC 3.4.21.4) yields lysyl-bradykinin by rupture of the Arg-Ser bond. The kcat/Km value found for this hydrolysis was 1.4 × 1010 M?1 × sec?1, which is 10?5-fold higher than that obtained for the hydrolysis of bradykinyl-Ser-Val-Gln-Val-Ser. This effect was abolished by acetylation of the lysine amino groups of the pentadecapeptide. Contrarywise, the esterolytic activity of trypsin on bradykinin methyl ester was the same as in lysyl-bradykinin methyl ester. The high susceptibility of Lys-bradykinyl-Ser-Val-Gln-Val-Ser to trypsin catalysis is striking because: a) it constitutes the first example that an amino acid residue distant from the bond split may enhance trypsin catalysis; b) this pentadecapeptide is the best synthetic substrate so far described for trypsin and c) the value of kcat/Km for its hydrolysis is unusually high for proteases.  相似文献   

11.
An analysis of a non-redundant set of protein structures from the Brookhaven Protein Data Bank has been carried out to find out the residue preference, local conformation, hydrogen bonding and other stabilizing interactions involving cis peptide bonds. This has led to a reclassification of turns mediated by cis peptides, and their average geometrical parameters have been evaluated. The interdependence of the side and main-chain torsion angles of proline rings provided an explanation why such rings in cis peptides are found to have the DOWN puckering. A comparison of cis peptides containing proline and non-proline residues show differences in conformation, location in the secondary structure and in relation to the centre of the molecule, and relative accessibilities of residues. Relevance of the results in mutation studies and the cis-trans isomerization during protein folding is discussed.  相似文献   

12.
The conformational characteristics of the peptide sequence X-l-Pro, where X  Gly or l-Ala and the peptide bond joining X and l-Pro is cis, are evaluated. Semi-empirical potential functions are used to estimate the contributions to the conformational energy made by the non-bonded van der Waals' and electrostatic interactions and the intrinsic torsional potentials about the NCa and CaC′ bonds. Rotations φ1 and ψ1 about the NCa and CaC′ bonds in residue X and rotation ψ2 about the CaC′ bond in l-Pro are permitted, while the angle of rotation φ2 about the NCa bond in l-Pro is fixed at 120 ° by the pyrrolidine ring. The presence of the cis peptide bond connecting X and l-Pro renders the backbone rotations φ1, ψ1 in X dependent upon the rotation ψ2 about the CaC′ bond in l-Pro. (Interdependence of rotations in neighboring residues joined by a cis peptide bond was previously observed in l-alanine oligomers.) The number of energetically allowed conformations for the Gly and l-Ala residues preceding a cis peptide bond l-Pro residue are found to be substantially reduced from those permitted when the peptide bond is trans or when l-Pro is replaced by an amino acid residue. On the other hand, ψ2 = 100 to 160 ° (cis′) and 300 to 0 ° (trans′) are found to be the lowest energy conformations of the l-Pro residue irrespective of the cis or trans conformation of the X-l-Pro peptide bond.  相似文献   

13.
14.
15.
J Bello 《Biopolymers》1988,27(10):1627-1640
Poly(trimethyl-L-lysine), [Lys(Me3)]n, is converted from random coil to α-helix at about 1/30 of the NaClO4 concentration required by poly(L-lysine), (Lys)n. NaClO4 generates turbidity in [Lys(Me)3]n at concentrations above that required for helix formation, and decreases turbidity above lM NaClO4. The turbidity runs parallel to enhanced, and then decreased, fluorescence of a dansyl label. Helix formation per se does not induce enhanced fluorescence. Increasing NaClO4 concentration increases Tm linearly with log[NaClO4] for both (Lys)n and [Lys(Me3)]n until the denaturing effect of high NaClO4 sets in. Increasing NaClO4 also increases the breadth of the transition. Heating helical [Lys(Me3)]n or (Lys)n does not produce a CD spectrum resembling that of “random-coil” (Lys)n, except for [Lys(Me3)]n at relatively low NaClO4 concentration.  相似文献   

16.
IR spectra of aqueous solutions of 1:1 mixtures of H2PO4? and various N bases have been studied as models for (POH?N) → (P?O?H+N) hydrogen bonds. 50% proton transfer is observed when the pKa of the protonated N base is 1.1 smaller than that of the phosphate group. The hydrogen bonds are easily polarizable near this equilibrium. These results strongly support the conclusion that such bonds contribute 1) to the self-association of ATP and ADP and 2) to the association of the hydrolysis products ADP and inorganic phosphate.  相似文献   

17.
Exchange rates were calculated as a function of pH from line widths of methylamine resonances in 13C-NMR spectra of N epsilon,N epsilon,N alpha,N alpha-[13C]tetramethyllysine (TML) and N epsilon,N epsilon,N alpha,N alpha-tetramethyllysine methyl ester (TMLME). The pH dependence of the dimethyl alpha-amine exchange rate could be adequately described by assuming base-catalyzed chemical exchange between two diastereotopic methyl populations related by nitrogen inversion. Deprotonation of the alpha-amine was assumed to occur by proton transfer to (1) OH-, (2) water, (3) a deprotonated amine or (4) RCO2-. Microscopic rate constants characterizing each of these transfer processes (k1, k2, k3 and k4, respectively) were determined by fitting the rates calculated from line width analysis to a steady-state kinetic model. Using this procedure it was determined that for both TML and TMLME k2 approximately equal to 1-10 M-1 s-1, k3 approximately equal to 10(6) M-1 s-1 and ki, the rate constant for nitrogen inversion was about 10(8)-10(9) s-1. Upper limits of 10(12) and 10(3) M-1 s-1 could be determined for k1 and k4, respectively. A similar kinetic analysis was used to explain pH-dependent line-broadening effects observed for the N-terminal dimethylalanyl resonance in 13C-NMR spectra of concanavalin A, reductively methylated using 90% [13C]formaldehyde. From exchange data below pH 4 it could be determined that amine inversion was limited by the proton transfer rate to the solvent, with a rate constant estimated at 20 M-1 s-1. Above pH 4, exchange was limited by proton transfer to other titrating groups in the protein structure. Based upon their proximity, the carboxylate side chains of Asp-2 and Asp-218 appear to be likely candidates. The apparent first-order microscopic rate constant characterizing proton transfer to these groups was estimated to be about 1 X 10(4) s-1. Rate constants characterizing nitrogen inversion (ki), proton transfer to OH- (k1) and proton transfer to the solvent (k2) were estimated to be of the same order of magnitude as those determined for the model compounds. On the basis of our results, it is proposed that chemical exchange processes associated with base-catalyzed nitrogen inversion may contribute to 15N or 13C spin-lattice relaxation times in reductively methylated peptides or proteins.  相似文献   

18.
19.
The antimicrobial peptide poly(arginyl-histidine) is secreted by the ergot fungus Verticillium kibiense. We previously showed that poly(arginyl-histidine) from the fungus inhibits the growth of certain microorganisms more effectively than that chemically synthesized from the L-form of arginine and histidine, implying some substantial differences between the fungal and synthetic peptides. To elucidate what causes such differences, we here investigated the structural features of the fungal peptides. The acid hydrolysates of the fungal peptide contained d-histidine. When synthetic poly(L-arginyl-D-histidine) mimicking the fungal peptide was added to the culture of Salmonella typhimurium together with poly(L-arginyl-L-histidine), poly(L-arginyl-D-histidine) was not easily degraded during the incubation compared with poly(L-arginyl-L-histidine). We concluded that the d-form of histidine residues in the fungal peptide prolongs the life of the peptide leading to the enhancement of antimicrobial activity.  相似文献   

20.
The root nodules of certain legumes including Medicago truncatula produce >300 different nodule-specific cysteine-rich (NCR) peptides. Medicago NCR antimicrobial peptides (AMPs) mediate the differentiation of the bacterium, Sinorhizobium meliloti into a nitrogen-fixing bacteroid within the legume root nodules. In vitro, NCR AMPs such as NCR247 induced bacteroid features and exhibited antimicrobial activity against S. meliloti. The bacterial BacA protein is critical to prevent S. meliloti from being hypersensitive toward NCR AMPs. NCR AMPs are cationic and have conserved cysteine residues, which form disulfide (S-S) bridges. However, the natural configuration of NCR AMP S-S bridges and the role of these in the activity of the peptide are unknown. In this study, we found that either cysteine replacements or S-S bond modifications influenced the activity of NCR247 against S. meliloti. Specifically, either substitution of cysteines for serines, changing the S-S bridges from cysteines 1-2, 3-4 to 1-3, 2-4 or oxidation of NCR247 lowered its activity against S. meliloti. We also determined that BacA specifically protected S. meliloti against oxidized NCR247. Due to the large number of different NCRs synthesized by legume root nodules and the importance of bacterial BacA proteins for prolonged host infections, these findings have important implications for analyzing the function of these novel peptides and the protective role of BacA in the bacterial response toward these peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号