首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Systems biology is a new and rapidly developing research area in which, by quantitatively describing the interaction among all the individual components of a cell, a systems-level understanding of a biological response can be achieved. Therefore, it requires high-throughput measurement technologies for biological molecules, such as genomic and proteomic approaches for DNA/RNA and protein, respectively.Recently, a new concept, lipidomics, which utilizes the mass spectrometry (MS) method for lipid analysis,has been proposed. Using this lipidomic approach, the effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) on sphingomyelin metabolism, a major class of sphingolipids, were evaluated. Sphingomyelin molecules were extracted from cells and analyzed by matrix-assisted laser desorption ionization-time of flight MS. It was found that MNNG induced profound changes in sphingomyelin metabolism, including the appearance of some new sphingomyelin species and the disappearance of some others, and the concentrations of several sphingomyelin species also changed. This was accompanied by the redistribution of acid sphingomyelinase (ASM), a key player in sphingomyelin metabolism. On the other hand, imipramine, an inhibitor of ASM,caused the accumulation of sphingomyelin. It also prevented some of the effects of MNNG, as well as the redistribution of ASM. Taken together, these data suggested that the lipidomic approach is highly effective for the systematic analysis of cellular lipids metabolism.  相似文献   

2.
1. DNA labelled with (14)C in the purine residues was prepared by treating newborn rats with [(14)C]formate and killing them for preparation of nucleic acids at 11-17 months. This DNA was incubated with N-methyl-N'-nitro-N-nitrosoguanidine, and then analysed for products of methylation and deamination reactions. 2. Evidence was found for the formation of 7-methylguanine and a smaller amount of 3-methyladenine, and, after preliminary denaturation of the DNA, 1-methyladenine was detected. The presence of cysteine increased the extent of methylation. No evidence was found for the formation of xanthine or hypoxanthine, even at pH5.5.  相似文献   

3.
The antimutagenic activity of protein-constituting amino acids except histidine on the mutagenicity of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) was investigated in vitro using Salmonella typhinurium TA-100 as an indicator bacterium (Ames test), and concentrations (IC50) of amino acids that inhibit 50% of the mutagenecity were measured. Cysteine was found to be most active and glycine, tryptophan, lysine, and arginine were strong antimutagenic amino acids. Other amino acids showed moderate or weak antimutagenic activities, depending on the amino acids. The results indicate that amino acids play a substantial role in chemoprevention of N-nitroso amine-induced mutagenicity.  相似文献   

4.
The effect of increased cellular concentrations of adenosine 3′,5′ monophosphate (cAMP) upon mutation frequency induced by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) was studied in V79 Chinese hamster lung cells. Incubation with either forskolin, which increased the accumulation of cAMP, or 8BrcAMP, an analogue of cAMP, resulted in an increase in the mutation frequency which was concentration-dependent, regardless of whether these agents were added before or after mutagen treatment. Increased cAMP concentrations were shown in these cells to inhibit growth; however, this does not seem to be the mechanism responsible for the increase in mutation frequency as low serum concentrations which also retard growth reduced the mutation frequency observed with MNNG.  相似文献   

5.
Since alkylating agents are widely present in the environment and constitute a continuous challenge to genome integrity, cells and organisms have developed defense mechanisms to remove such lesions. We monitored the response of human keratinocytes to a very low concentration of a methylating agent, namely 2.5 nM N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). The effect of a 60-min exposure of quiescent cells to 2.5 nM MNNG was studied in terms of DNA integrity, poly(ADP-ribose) metabolism, clonogenic survival and DNA synthesis. We observed two waves of DNA strand break formation and resealing. Interestingly, the amount of DNA strand breaks in exposed cells was lower than in unexposed control cells. This phenomenon was also observed when cells were exposed to MNNG in the presence of a protein synthesis inhibitor, or when they were maintained on ice during the treatment. A dose of 2.5 nM MNNG stimulated poly(ADP-ribose) turnover, reduced the intracellular NAD+ content, stimulated DNA synthesis and caused a remarkable increase in clonogenic survival. Thus, the cellular responses to extremely low concentrations of MNNG differ sharply from those observed at higher doses of this carcinogen. We conclude that the very low dose response cannot be extrapolated from usual dose-response analyses.  相似文献   

6.
Summary The effects of N-methyl-N–nitro-N-nitroso-guanidine (NTG) on protoplasts of Streptomycetes are markedly different from its action on spores, showing high mutagenic activity even at concentrations having no marked effect on protoplast survival. Strain improvement, eg in chlorotetracycline-producing strains of S. aureofaciens, was most effective when protoplasts were subjected to prolonged treatment (2 h) with low concentrations of NTG (50 /ug/ml).  相似文献   

7.
The suitability was evaluated of MNNG as a mutagen inducing increased frequencies of mutations in the cell populations of three strains of chlorococcal algae for the purposes of selection. MNNG has proved to be highly toxic to those algae as it produces severe physiological responses of the affected cells. The mutagenic effect of MNNG was relatively small in comparison with the recorded toxic effect. From these results it has been concluded that in reverse to NEU, MNNG can hardly be applied with such good an effect in the mutation breeding of chlorococcal algae that are suitable for mass cultivation.  相似文献   

8.
Compared withEscherichia coli, Halobacterium mediterranei was highly resistant to the lethal effect of N-methyl-N-nitro-N-nitrosoguanidine (nitrosoguanidine), but it was sensitive to the mutagenic action of this chemical agent. Nitrosoguanidine at 500 g ml–1 gave a cell survival level between 1% and 10%, and this allowed us to obtain more Josamycin-resistant mutants compared with lower concentrations, which gave higher survival rates but fewer mutants. The efficiency of the mutagenicity obtained with the nitrosoguanidine treatment was examined under a variety of conditions. The optimal conditions for obtaining Josamycinresistant mutants were achieved by exposing, in darkness and without shaking, a suspension of about 108 log-phase cells to 500 g nitrosoguanidine in 1 ml of 50 mM modified saline Tris-maleate buffer at pH 7.5, or in 1 ml of 5 mM modified saline Tris-citrate-maleate for 30 min at 37°C.  相似文献   

9.
Bacillus thuringiensis is shown to have an inducible error-free repair system for alkylation damage as found in Escherichia coli and Bacillus subtilis. Growth of cells in the presence of low concentrations of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) induces an adaptive response which is characterized by an increase in resistance to killing and mutagenesis by challenge with higher concentrations of MNNG. In addition, we have noted with interest that adaptive low doses seem to produce lesions at a rate sufficient to induce an increase of mutation frequency, and inhibition of cell division. The possibility of an interaction between SOS and adaptive responses with these low doses of MNNG is discussed.  相似文献   

10.
11.
Haemophilis influenzae is shown to lack the inducible, error-free repair system for alkylation damage that others have found in Escherichia coli. Prior growth in a low concentration of N-methyl-N′-nitro-N-nitrosoguanidine had only an additive effect on a subsequent brief exposure to a high concentration. Furthermore, chloramphenicol did not significantly modify the mutagenic response. In both respects, H. influenzae differs from E. coli. Experiments carried out in preparation for these tests showed that exposure to N-methyl-N′-nitro-N-nitrosoguanidine in complex growth medium was more effective by about an order of magnitude than exposure in pH 6.0 tris-maelare buffer in inducing mutations, in killing the cells, and in causing strand breaks in the preexisting DNA and gaps in newly synthesized DNA. Thus the effect of the medium is on the amount of initial damage rather than on some special feature of the mutation process. Part but not all of the effect can be accounted for by the difference in pH of the 2 media. The nature of the mutagenic process is the same under the 2 exposure conditions; i.e., reparable pre-mutational damage is produced by the agent and subsequently converted to final mutation by replication. The dose—effect curves have a non-linear initial portion under both exposure conditions, and possible reasons for this non-linearity are discussed.  相似文献   

12.
The interaction of β-cyclodextrin (β-CD) with mixed bilayers composed of sphingomylein and cholesterol (Chol) above and below the accepted stable complexation ratio (67:33) was investigated. Membranes with the same (symmetric) and different (asymmetric) compositions in their inner and outer leaflets were deposited at surface pressures of 20, 30, and 40 mN/m at the solid-liquid interface. Using neutron reflectometry, membranes of various global molar ratios (defined as the sum of the molar ratios of the inner and outer leaflets), were characterized before and after β-CD was added to the subphase. The structure of bilayers with global molar ratios at or above the stable complexation ratio was unchanged by β-CD, indicating that β-CD is unable to remove sphingomyelin or complexed Chol. However, β-CD removed all uncomplexed Chol from bilayers composed of global molar ratios below the stable complexation ratio. The removal of Chol by β-CD was independent of the initial structure of the membranes as deposited, suggesting that asymmetric membranes homogenize by the exchange of molecules between leaflets. The interaction of β-CD with the aforementioned membranes was independent of the deposition surface pressure except for a symmetric 50:50 membrane deposited at 40 mN/m. The scattering from 50:50 bilayers with higher packing densities (deposited at 40 mN/m) was unaffected by β-CD, suggesting that the removal of Chol can depend on both the composition and packing density of the membrane.  相似文献   

13.
14.
15.
A comparative study of the enzymes of tricarboxylic acid (TCA) and glyoxylate cycles in the mutant Yarrowia lipolytica strain N1 capable of producing -ketoglutaric acid (KGA) and citric acid showed that almost all enzymes of the TCA cycle are more active under conditions promoting the production of KGA. The only exception was citrate synthase, whose activity was higher in yeast cells producing citric acid. The production of both acids was accompanied by suppression of the glyoxylate cycle enzymes. The activities of malate dehydrogenase, aconitase, NADP-dependent isocitrate dehydrogenase, and fumarase were higher in cells producing KGA than in cells producing citric acid.  相似文献   

16.
Outbred 7-week old male Wistar rats were exposed for 21 days to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) via the drinking water and N7-methyl deoxyguanosine 3'-monophosphate (N7-MedGp) levels in DNA from the pyloric mucosa (target tissue) and white blood cells (wbc: non-target tissue) were determined by 32P-postlabelling. Exposure to MNNG resulted in the non-linear, dose-related formation of N7-medGp in both tissues. Adduct levels in the pyloric mucosa were determined to be 1058, 5.4 and 1.1 μmole N7-medGp mole-1 deoxyguanosine 3'-monophosphate (dGp) after exposure to 4.1, 0.62 and 0.006 mg MNNG kg-1 day-1 respectively whereas adduct levels in the wbc DNA were lower at 5.2, 0.52 and 0.68 μmoles N7-medGp mole-1 dGp after exposure to 4.1, 0.62 and 0.062 mg MNNG kg-1 day-1 respectively. In addition, the persistence of N7-medGp was investigated. Loss of adduct occurred rapidly, with a decrease of 87 and 97% respectively in target tissue and wbc DNA by 48 h after cessation of 4.1 mg MNNG kg-1 day-1 exposure; 14 days post-MNNG treatment, however, N7-medGp was still detectable (0.46 μmole N7-medGp mole-1 dGp) in pyloric mucosal DNA. The quantitation of N7-medGp after exposure to low doses of carcinogen, i.e. 0.006 mg MNNG kg-1 day-1, approaching environmentally relevant levels has not been previously reported, and indicates that the 32P-postlabelling assay developed here possesses sufficient sensitivity to quantitate N7- medGp in human DNA arising from environmental exposure to methylating agents.  相似文献   

17.
Various species of actinomycetes and cyanobacteria can impart earthy/musty off-flavours to drinking water supplies and to pond-raised fish and other aquatic food animals. The genetic determinants for production of the most common off-flavour compounds [geosmin and 2-methylisoborneol (MIB)] have not been extensively studied. An attempt has been rrlade to study the genetics of production of these compounds was demonstrated by DNA-curing analysis. The effects of two curing agents [ethidium bromide (EB) and N-methyl-N′-nitro-N-nitrosoguanidine (NTG)] on tha loss of linear plasmid DNA and generation of bald mutants (no aerial mycelia) inStreptomyces halstedii andStereptomyces violaceusniger which produce geosmin and MIB, respectively, were observed. Production of earthy/musty odour was not eliminated, but was reduced by 55–95% in the plasmid cured strain. Data suggested that off-flavour production is likely chromosomally-encoded in theseStreptomyces isolates.  相似文献   

18.
A continuous cell line derived from the pupal ovary of Spodoptera exigua was established by treating primary cells with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Three days after treating cells with 3.0 μg/ml of MNNG, the cells formed a monolayer and were initially subcultured 60 d after the MNNG was removed, followed by subculturing for 30 passages. The established cell line, designated IOZCAS-Spex 12, consisted of a mixture of three types of cells, including spherical, spindle-shaped, and oval cells. The population doubling time of the cell line during its logarithmic growth phase was found to be 71 h. DNA amplification fingerprinting polymerase chain reaction analysis confirmed that the new cell line originated from S. exigua. Susceptibility of IOZCAS-Spex 12 cells to infection by certain nucleopolyhedroviruses was investigated. The results showed that the cell line was highly susceptible to infection by S. exigua nucleopolyhedrovirus and Autographa californica multiple nucleopolyhedrovirus, slightly susceptible to infection by Spodoptera litura nucleopolyhedrovirus, and not susceptible to infection by Helicoverpa armigera nucleopolyhedroviruses or Hyphantria cunea nucleopolyhedroviruses. The results of this study suggest that MNNG treatment may overcome existing limitations to obtaining continually proliferating cells and may open up the possibilities for immortalizing isolated insect cells.  相似文献   

19.
The capacities ofHalobacterium cutirubrum and a moderate halophile NRC 41227 to survive and recover from treatment with N-methyl-N-nitro-N-nitrosoguanidine have been compared.Halobacterium cutirubrum is resistant to this chemical and its mutation frequency is only slightly affected, whereas NRC 41227 is highly sensitive and its mutation frequency is markedly increased. The chemically treated extreme halophile fully regains viability during liquid holding, in notable contrast to its known failure to recover from the effects of ultraviolet irradiation.  相似文献   

20.
Resorcinolic lipids, or resorcinols, are commonly found in plant membranes. They consist of a substituted benzene ring forming the hydrophilic lipid head, attached to an alkyl chain forming the hydrophobic tail. Experimental results show alternative effects of resorcinols on lipid membranes. Depending on whether they are added to lipid solutions before or after the formation of the liposomes, they either stabilize or destabilize these liposomes. Here we use atomistic molecular dynamics simulations to elucidate the molecular nature of this dual effect. Systems composed of either one of three resorcinol homologs, differing in the alkyl tail length, interacting with dimyristoylphosphatidylcholine lipid bilayers were studied. It is shown that resorcinols preincorporated into bilayers induce order within the lipid acyl chains, decrease the hydration of the lipid headgroups, and make the bilayers less permeable to water. In contrast, simulations in which the resorcinols are incorporated from the aqueous solution into a preformed phospholipid bilayer induce local disruption, leading to either transient pore formation or even complete rupture of the membrane. In line with the experimental data, our simulations thus demonstrate that resorcinols can either disturb or stabilize the membrane structure, and offer a detailed view of the underlying molecular mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号