首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: In this report we investigate the isoforms of protein kinase C (PKC) present in cultured adrenal chromaffin cells with respect to their modulation by treatment with phorbol ester and their possible differential involvement in the regulation of responses to histamine and bradykinin. The presence of individual isoforms of PKC was investigated by using eight isoform specific antisera, as a result of which PKC-α, ε, and ζ were identified. To characterize down-regulation of these enzymes, cells were incubated for 6–48 h with 1 µM phorbol myristate acetate (PMA). PKC-ε down-regulated more rapidly than PKC-α. At 12 h, PMA pretreatment, for example, PKC-ε was maximally down-regulated (23 ± 4% of controls), whereas PKC-α was unchanged. PKC-α showed partial down-regulation by 24 h of PMA pretreatment. PKC-ζ did not down-regulate at any of the times tested. Translocation from cytosol to membrane in response to PMA was also more rapid for PKC-ε than for PKC-α. The accumulation of total 3H-inositol (poly)phosphates in response to bradykinin or histamine was essentially abolished by prior treatment with 10-min PMA treatment (1 µM). However, with 12-h exposure to PMA, the bradykinin response was restored to the level seen with no prior PMA exposure. The histamine response showed no recovery by 12 h of PMA, but showed partial recovery by 24 h of PMA pretreatment. These observations showed that the restoration of the response to bradykinin corresponds to the loss of PKC-ε, whereas the restoration of the histamine response corresponds to the loss of PKC-α. This picture was confirmed with further studies on cytosolic Ca2+. The results show that chromaffin cells exhibit an unusual pattern of down-regulation of PKC isoforms on prolonged exposure to PMA, and that there is a differential effect of exposure to PMA on the histamine and bradykinin responses, suggesting that different PLC-linked receptors in chromafin cells are differentially regulated by PKC isoforms.  相似文献   

2.
Protein kinase C (PKC) represents a family of structurally related Ser/Tre kinases which are involved in mitogenic signalling and may contribute to human neoplasia. To address this issue, the messenger RNA and protein levels of PKC isoenzymes α and β were analyzed in several human sarcoma- and carcinoma-derived cell lines. Carcinomas contained low or undetectable levels of either PKC-α or PKC-β. Sarcomas exhibited similar or increased PKC expression compared to human diploid fibroblasts. Moreover, sarcoma cell lines expressing one PKC isoform did not contain detectable levels of the other. When PKC was depleted from the tumor cells, we observed that the PKC overexpressing sarcomas had reduced their malignant properties as determined by their ability to grow in semisolid medium. In addition, epidermal growth factor-stimulated and erbB2-transformed fibroblasts exhibited enhanced cell growth in the absence of PKC. We propose a model for the effect of PKC as a negative regulator of proliferation in epithelial cells and a growth promoter in fibroblasts. © 1994 wiley-Liss, Inc.  相似文献   

3.
Treatment of rat pinealocytes with 4 beta-phorbol 12,13-dibutyrate down-regulated protein kinase C (PKC) activity. Loss of activity was concentration-dependent (50% loss at 8 x 10(-7) M after 18 h of treatment) and time-dependent (50% loss after 2 h with 3 x 10(-6) M). Phenylephrine, an alpha 1-adrenergic agonist, and phorbol esters unable to activate PKC did not down-regulate the enzyme. alpha 1-Adrenergic amplification of beta-adrenergic stimulation of cyclic AMP accumulation, a response previously shown to be mediated by PKC activation, was reduced by only 50% in cells in which PKC activity was down-regulated by approximately 95%. These data suggest that there is not a simple proportional relationship between the degree of activation of pinealocyte PKC and the alpha 1-adrenergic amplification of beta-adrenergic cyclic AMP synthesis. In down-regulated cells, alpha 1-adrenergic amplification of beta-adrenergic induction of serotonin N-acetyltransferase activity, a key cyclic AMP-responsive enzyme involved in the nocturnal synthesis of the pineal hormone melatonin, was unchanged. Thus, even though alpha 1-adrenergic amplification of cyclic AMP synthesis is impaired, sufficient cyclic AMP is generated to allow a full induction of serotonin N-acetyltransferase activity. This finding raises the important question of whether the alpha 1-adrenergic amplification mechanism has a physiological role in regulating melatonin synthesis in vivo.  相似文献   

4.
The MARCKS (myristylated alanine-rich C-kinase substrate) protein is an abundant calmodulin-binding protein that is a major and specific endogenous substrate of protein kinase C (PKC). Stimulation of cells with phorbol esters or other activators of PKC has been shown previously to result in rapid phosphorylation of MARCKS proteins and redistribution of these myristylated C-kinase substrates from membrane to cytosol. Here we show that NIH3T3 murine fibroblasts transformed by p21-HA-C-RAS or pp60-V-SRC oncoproteins have markedly reduced levels of p68-MARCKS and that most of the remaining MARCKS protein is found in the cytosol. 3T3 cells containing a nontransforming oncoprotein p26-BCL2, in contrast, exhibited normal levels and distribution of p68-MARCKS. When taken together with recent evidence that MARCKS proteins are involved in regulating organization of the membrane cytoskeleton, our findings suggest that oncoprotein-mediated alterations in MARCKS protein levels and subcellular distribution may contribute to the development or maintenance of the transformed phenotpe.  相似文献   

5.
Abstract : Phosphorylation of specific amino acid residues is believed to be crucial for the agonist-induced regulation of several G protein-coupled receptors. This is especially true for the three types of opioid receptors (μ, δ, and α), which contain consensus sites for phosphorylation by numerous protein kinases. Protein kinase C (PKC) has been shown to catalyze the in vitro phosphorylation of μ- and δ-opioid receptors and to potentiate agonist-induced receptor desensitization. In this series of experiments, we continue our investigation of how opioid-activated PKC contributes to homologous receptor down-regulation and then expand our focus to include the exploration of the mechanism(s) by which μ-opioids produce PKC translocation in SH-SY5Y neuroblastoma cells. [d Ala2,N-Me-Phe4,Gly-ol]enkephalin (DAMGO)-induced PKC translocation follows a time-dependent and biphasic pattern beginning 2 h after opioid addition, when a pronounced translocation of PKC to the plasma membrane occurs. When opioid exposure is lengthened to >12 h, both cytosolic and particulate PKC levels drop significantly below those of control-treated cells in a process we termed “reverse translocation.” The opioid receptor antagonist naloxone, the PKC inhibitor chelerythrine, and the L-type calcium channel antagonist nimodipine attenuated opioid-mediated effects on PKC and μ-receptor down-regulation, suggesting that this is a process partially regulated by Ca2+-dependent PKC isoforms. However, chronic exposure to phorbol ester, which depletes the cells of diacylglycerol (DAG) and Ca2+-sensitive PKC isoforms, before DAMGO exposure, had no effect on opioid receptor down-regulation. In addition to expressing conventional (PKC-α) and novel (PKC-ε) isoforms, SH-SY5Y cells also contain a DAG-and Ca2+-independent, atypical PKC isozyme (PKC-ξ), which does not decrease in expression after prolonged DAMGO or phorbol ester treatment. This led us to investigate whether PKC-ξ is similarly sensitive to activation by μ-opioids. PKC-ξ translocates from the cytosol to the membrane with kinetics similar to those of PKC-α and ε in response to DAMGO but does not undergo reverse translocation after longer exposure times. Our evidence suggests that direct PKC activation by μ-opioid agonists is involved in the processes that result in μ-receptor down-regulation in human neuroblastoma cells and that conventional, novel, and atypical PKC isozymes are involved.  相似文献   

6.
7.
8.
The complexity of the mammalian p53 pathway and protein kinase C (PKC) family has hampered the discrimination of the effect of PKC isoforms on p53 activity. Using yeasts co-expressing the human wild-type p53 and a mammalian PKC-α, -δ, -ε or -ζ, we showed a differential regulation of p53 activity and phosphorylation state by PKC isoforms. Whereas PKC-α reduced the p53-induced yeast growth inhibition and cell cycle arrest, PKC-δ and -ε enhanced the p53 activity through p53 phosphorylation, and PKC-ζ had no effect on p53. This work identified positive and negative p53 regulators which represent promising pharmacological targets in anti-cancer therapy.  相似文献   

9.
Exposure of fibroblasts derived from keloid tissues, desmoid and dermal tissue from individuals with Gardner's syndrome (GS) to dexamethasone resulted in the suppression of protein kinase C (PKC) activity and [3H]thymidine incorporation into DNA, and a 20-fold induction of glutamine synthetase activity. Treatment of GS and keloid fibroblasts with 0.1 microM dexamethasone for 36 h increased glucocorticoid receptor (GR) synthesis, as determined by [35S]methionine labeling and immunoprecipitation with a monoclonal antibody to the human GR. The suppression of PKC activity by dexamethasone was shown to result from a loss of protein mass as determined by immunoblotting using an antibody to PKC type III. In contrast to these results, exposure of fibroblasts isolated from normal tissues to dexamethasone did not result in the suppression PKC and [3H]thymidine incorporation, there was only a sixfold induction of glutamine synthetase, and a decrease of GR synthesis. As no primary receptor binding defect could be detected, the altered response of tumor cells to steroid-occupied receptor indicates a partial post-receptor binding defect in GS and keloid cells.  相似文献   

10.
Activation of protein kinase C (PKC) bu phorbol esters (TPA) results in a modification of the cyclic AMP system leading to either attenuation or amplification of the cyclic AMP signal. In the non-neoplastic T51B rat live cell line, TPA, when added to intact cells, had no effect on the basal level of cyclic AMP synthesis but caused a 1.5 fold amplification of the stimulation induced by β-adrenergic agents, cholera toxin and forskolin. The effect appeared to be mediated by PKC since diacylglycerols caused the same amplification as did TPA while inactive phorbol esters were without effect. Phosphorylation of Gs or the catalytic subunit of adenylate cyclase by PKC is likely to be responsible for the enhancement of cyclic AMP synthesis. TPA also caused translocation of PKC; however, the time course of the translocation was loner than the time course of the enhancement of adenylate cyclase activity. Thus, the ability of TPA to amplify cyclic AMP synthesis is probably mediated by activation of PKC that is already present in the membrane.  相似文献   

11.
We investigated the regulatory mechanism of interleukin-6 (IL-6) synthesis induced by interleukin-1 (IL-1) in osteoblast-like MC3T3-E1 cells. IL-1 stimulated the secretion of IL-6 in a dose-dependent manner in the range between 0.1 and 100 ng/ml. Staurosporine and calphostin C, inhibitors of protein kinase C (PKC), significantly enhanced the IL-1-induced secretion of IL-6. The stimulative effect of IL-1 was markedly amplified in PKC down-regulated MC3T3-E1 cells. IL-1 produced diacylglycerol in MC3T3-E1 cells. IL-1 had little effect on the formation of inositol phosphates and choline. On the contrary, IL-1 significantly stimulated the formation of phosphocholine dose-dependently. D-609, an inhibitor of phosphatidylcholine-specific phospholipase C, suppressed the IL-1-induced diacylglycerol production. The IL-1-induced IL-6 secretion was significantly enhanced by D-609. These results indicate that IL-1 activates PKC via phosphatidylcholine-specific phospholipase C in osteoblast-like cells, and the PKC activation then limits IL-6 synthesis induced by IL-1 itself. J. Cell. Biochem. 67:103–111, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
The increase of intracellular free calcium concentration ([Ca(2+)](i)) and protein kinase C (PKC) activity are two major early mitogenic signals to initiate proliferation of human T cells. However, a rapid change in intracellular pH (pH(i)), acidification or alkalinization during the activation, is also associated after these two signals. The aim of this study was to define whether the change in pH(i) is affected by calcium and protein kinase C (PKC), in phytohemagglutinin (PHA)-stimulated T cells. T cells were isolated from human peripheral blood. The [Ca(2+)](i) and the pH(i) were measured using, respectively, the fluorescent dyes, Fura-2, and BCECF. In addition, down-regulation of PKC activity by PMA (1 microM, 18 h) was confirmed in these cells using a protein kinase assay. The results indicated that, (1) alkalinization was induced by PHA or PMA in T cells; the results of alkalinization was PKC-dependent and Ca(2+)-independent, (2) in PKC down-regulated T cells, PHA induced acidification; this effect was enhanced by pre-treating the cells with the Na(+)/H(+) exchange inhibitor, 5-(N,N-dimethyl)-amiloride, (DMA, 10 microM, 20 min), (3) the acidification was dependent on the Ca(2+) influx and blocked by removal of extracellular calcium or the addition of the inorganic channel blocker, Ni(2+), and (4) Thapsigargin (TG), a Ca(2+)-ATPase inhibitor, confirmed that acidification by the Ca(2+) influx occurred in T cells in which PKC was not down-regulated. These findings indicate two mechanisms, alkalinization by PKC and acidification by Ca(2+) influx, exist in regulating pH(i) in T cells. This is the first report that PHA stimulates the acidification by Ca(2+) influx but not alkalinization in T cells after down-regulation of PKC. In conclusion, the activity of PKC in T cells determines the response in alkalinization or acidification by PHA.  相似文献   

13.
The serum deprivation response gene (SDPR, alias sdr) has been previously isolated for its high mRNA expression in serum-starved cells compared to contact-inhibited NIH3T3 cells; such regulation is not observed in single-oncogene transformed NIH3T3 cells after serum starvation. More recently Sdpr has been identified as a substrate of protein kinase C (PKC): this interaction determines the compartimentalization of PKC to caveolae, a plasma membrane invagination of which Sdpr is a major component. Lack of Sdpr-PKC interaction in transformed cells has been proposed to be involved in the alteration of PKC subcellular localization and substrate specificity. Here we report the cloning of the human SDPR homologue (HGMW-approved symbol SDPR) and its mapping to 2q32-q33 in the human genome. In analogy with the murine system, SDPR mRNA expression is increased when human fibroblasts are serum starved, it becomes down-regulated during synchronous cell-cycle reentry, but it is not induced in cells arrested by contact inhibition. Analysis of SDPR expression in human tissues reveals a near ubiquitous expression, with highest levels found in heart and lung. We show that human SDPR encodes PS-p68, a previously characterized phosphatidylserine-binding protein purified from human platelets. Accordingly, recombinant Sdpr is able to specifically bind phosphatidylserine in the absence of Ca2+. SDPR is homologous to two genes in the databank, one of which, srbc, is similarly regulated during growth arrest and encodes a phosphatidylserine-binding protein that is a substrate of PKC.  相似文献   

14.
Abstract: Exposure of human SK-N-MC neurotumor cells to 4β-phorbol 12-myristate 13-acetate (PMA) increased isoproterenol stimulation of cyclic AMP levels by severalfold. This potentiation was blocked by inhibitors of protein kinase C (PKC) and did not occur in cells in which PKC had been down-regulated. PMA treatment also enhanced the stimulation by dopamine, cholera toxin, and forskolin. Thus, the effect of PMA on the adenylylcyclase system was postreceptor and involved either the guanine nucleotide binding regulatory (G) proteins or the cyclase itself. As PMA treatment did not impair the inhibition of isoproterenol stimulation by neuropeptide Y, an involvement of the inhibitory G protein Gi was unlikely. Cholate extracts of membranes from control and PMA-treated cells were equally effective in the reconstitution of adenylylcyclase activity in S49 cyc? membranes, which lack the stimulatory G protein subunit G; thus, Gs did not appear to be the target of PMA action. Membranes from PMA-treated cells exhibited increased adenylylcyclase activity to all stimulators including Mn2+ and Mn2+ plus forskolin. In addition, activity was increased when control membranes were incubated with ATP and purified PKC from rat brain. This is consistent with a direct effect of PKC on the adenylylcyclase catalyst in SK-N-MC cells. PMA treatment also resulted in a shift to less sensitivity in the Kact for isoproterenol but not for dopamine or CGP-12177 (a β3-adrenergic agonist) stimulation. Thus, the β1 but not the D1 or β3 receptors were being desensitized by PKC activation. Analysis of SK-N-MC cells by western blotting with antibodies against different PKC isozymes revealed that both the α and ζ isozymes were present in these cells. Whereas PKC-α was activated and translocated from cytosol to membrane by phorbol esters, the ζ isozyme was not. Thus, PKC-α, which has been implicated in desensitization in other cell lines, also appears to potentiate adenylylcyclase activity.  相似文献   

15.
16.
17.
18.
19.
Abstract: Murine neuroblastoma cells, N1E-115, were induced to differentiate into neuron-like cells by serum deprivation for 18 h. As previous studies have shown that the suppression of protein kinase C (PKC) activity by selective inhibitors or neutralizing antibodies induces neuroblastoma cells to differentiate, we tested the hypothesis that serum deprivation may cause a rapid loss in membrane PKC activity that occurs well before the morphological changes that are characteristic of cell differentiation. A significant reduction in particulate (membrane) PKC activity was indeed observed within 3 h of serum withdrawal when enzyme activity was measured in intact native membranes by the recently described in vitro "direct" assay. This rapid reduction in enzyme activity was confirmed by the decreased phosphorylation of the MARCKS protein, an endogenous PKC-selective substrate, in intact cells. The decrease in membrane PKC activity occurred without any loss in the amount of membrane-associated enzyme, suggesting that some factor(s) resident in neuroblastoma membranes was suppressing PKC activity. Indeed, results indicate the presence of an endogenous inhibitor of PKC tightly associated with neuroblastoma membranes. This inhibitory activity increased in the membranes of cells subjected to serum deprivation, raising the possibility that it was likely responsible for the decline in membrane PKC activity in differentiating N1E-115 cells. Preliminary characterization indicated that the inhibitory activity is a protein and is localized mainly in the membrane fraction. Thus, these results demonstrate directly that endogenous inhibitor can regulate membrane-associated PKC activity in cells and thereby modulate PKC-related neuronal functions.  相似文献   

20.
Since insulin effects on glucose transport persist in phorbol ester "desensitized" or "down-regulated" BC3H-1 myocytes, we reexamined the evidence for protein kinase C (PKC) depletion. After 24 hrs of 5 microM 12-0-tetradecanoyl phorbol-13-acetate (TPA) treatment, PKC-directed histone phosphorylation and acute TPA effects on glucose transport were lost, but PKC-dependent vinculin phosphorylation was still evident. Hydroxylapatite (HAP) chromatography revealed loss of a type III, but not a type II, PKC-dependent vinculin phosphorylation. Immunoblots of cytosolic preparations of PKC-"depleted" myocytes confirmed the retention of PKC. Our findings indicate that TPA "down-regulated" BC3H-1 myocytes contain immunoreactive and functionally active PKC. The latter may explain the continued effectiveness of both insulin and diacylglycerol (DiC8) for stimulating glucose transport in "down-regulated" cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号