共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Both rDNA gene multiplicity and genome size vary widely among eukaryotes. For some time, there has been debate regarding any possible relationship between these two parameters. The present study uses data on genome size and rDNA copy number for 162 species of plants and animals to test the association between genome size and rDNA copy number, and provides the first convincing evidence of a strong positive relationship between the two within and among these two groups of organisms. No simple explanations exist for this relationship, but it is nevertheless of clear relevance from both practical and theoretical perspectives. 相似文献
3.
4.
Previous studies in yeast have suggested that the SGS1 DNA helicase or the Mus81-Mms4 structure-specific endonuclease is required to suppress the accumulation of lethal recombination intermediates during DNA replication. However, the structure of these intermediates and their mechanism of the suppression are unknown. To examine this reaction, we have isolated and characterized a temperature-sensitive (ts) allele of MUS81. At the non-permissive temperature, sgs1Δ mus81ts cells arrest at G2/M phase after going through S-phase. Bulk DNA replication appears complete but is defective since the Rad53 checkpoint kinase is strongly phosphorylated under these conditions. In addition, the induction of Rad53 hyper-phosphorylation by MMS was deficient at permissive temperature. Analysis of rDNA replication intermediates at the non-permissive temperature revealed elevated pausing of replication forks at the RFB in the sgs1Δ mus81ts mutant and a novel linear structure that was dependent on RAD52. Pulsed-field gel electrophoresis of the mus81Δ mutant revealed an expansion of the rDNA locus depending on RAD52, in addition to fragmentation of Chr XII in the sgs1Δ mus81ts mutant at permissive temperature. This is the first evidence that Mus81 functions in quality control of replication forks and that it is involved in the maintenance of rDNA repeats in vivo. 相似文献
5.
Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicroscopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader–Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications. 相似文献
6.
Recessive mutations in the GJB2 gene and large deletions of the cis-regulatory element of this gene are the main causes of congenital nonsyndromic sensorineural hearing loss in many countries, including Russia. Large deletions represent 0.3–10% of all alleles in the DFNB1 locus in different populations and are usually observed in compound heterozygous state with intragenic mutations or are rarely observed in the homozygous or compound-heterozygous state with another large deletion. According to published studies, six large deletions exist, including three frequent deletions del(GJB6-D13S1830), del(GJB6-D13S1854), and del(GJB2-D13S175) and three rare deletions observed in single cases. The present study describes the results of the copy number analysis of the GJB2 regulatory region for the detection of unknown deletions in patients with a single heterozygous recessive intragenic mutation. Additionally, a quantitative analysis of GJB2 and GJB6 gene sequences in individuals bearing homozygous mutation in the GJB2 gene, which might also have mutation in the hemizygous state, is performed. The system for quantitative analysis of the region including the regulatory element of the GJB2 gene based on the MLPA® approach is developed. Moreover, a commercial kit of reagents is used for the detection of copy number of the GJB2 and GJB6 genes by the same method. As a result of the conducted analysis, no changes in copy number are detected in the explored regions. Obviously, if Russian patients have mutations in unidentified regulatory or other regions of the DFNB1 locus, frequency of such unidentified mutations is extremely rare. 相似文献
7.
8.
Differential DNA amplification and copy number control in the hypotrichous ciliate Euplotes crassus 总被引:3,自引:0,他引:3
During macronuclear development in hypotrichous ciliated protozoans, several thousand macronuclear DNA molecules are amplified several-hundred fold. We investigated the regulation of this amplification by determining the copy numbers of three different macronuclear DNA molecules in the hypotrichous ciliate Euplotes crassus. Two of the macronuclear DNA molecules were present in approximately 1,000 copies per cell, while the third was present in approximately 6,500 copies per cell. These reiteration levels were achieved either during macronuclear development, or shortly thereafter, and were maintained during vegetative growth. The most abundant macronuclear DNA molecule is present as a single-copy sequence in the micronuclear genome. Thus, its high copy number results from differential amplification. These results indicate that DNA amplification during macronuclear development is regulated individually for each macronuclear DNA molecule. 相似文献
9.
Capsulation and gene copy number at the cap locus of Haemophilus influenzae type b. 总被引:7,自引:2,他引:7
下载免费PDF全文

Although more than 98% of natural isolates of Haemophilus influenzae type b carry a duplication of 17 kilobases (kb) of DNA at the chromosomal capsulation locus, only one copy is required for capsulation. In one laboratory-derived and two clinical type b strains, the capsulation locus had a single copy of this 17-kb segment, together with 1.3 kb of DNA identified as lying between the repeats of the duplicated locus. This 1.3 kb appears to be crucial for capsule production, since strains lacking it, although retaining a 17-kb segment, were capsule deficient. On comparing capsule polysaccharide production by these three type b strains with that by a prototypic type b strain with a duplicated locus, a gene dosage effect was demonstrated, with a halving of detectable polysaccharide in the single-copy strains. Despite this reduction in polysaccharide, these strains retained virulence potential as evidenced by bacteremia and meningitis in infant rats. As well as subserving augmented capsule polysaccharide production, a duplicated configuration of the type b cap locus endows strains with genetic instability not found in capsulate single-copy variants. We speculate that a survival advantage might be conferred on strains carrying a duplication at this locus as a result of gene dosage, the genetic instability of the locus, or both. 相似文献
10.
Guthrie PA Gaunt TR Abdollahi MR Rodriguez S Lawlor DA Smith GD Day IN 《Nucleic acids research》2011,39(8):e54
We describe a generic design for ratiometric analysis suitable for determination of copy number variation (CNV) class of a gene. Following two initial sequence-specific PCR priming cycles, both ends of both amplicons (one test and one reference) in a duplex reaction, are all primed by the same universal primer (UP). Following each amplification denaturation step, the UP target and its reverse complement (UP') in each strand form a hairpin. The bases immediately beyond the 3'-end of the UP and 5' of UP' are chosen such as not to base pair in the hairpin (otherwise priming is ablated). This hairpin creates a single constant environment for priming events and chaperones free 3'-ends of amplicon strands. The resultant 'amplification ratio control system' (ARCS) permits ratiometric representation of amplicons relative to the original template into PCR plateau phase. These advantages circumvent the need for real-time PCR for quantitation. Choice of different %(G+C) content for the target and reference amplicons allows liquid phase thermal melt discrimination and quantitation of amplicons. The design is generic, simple to set up and economical. Comparisons with real-time PCR and other techniques are made and CNV assays demonstrated for haptoglobin duplicon and 'chemokine (C-C motif) ligand 3-like 1' gene. 相似文献
11.
12.
Insertion sequence (IS) elements are bacterial genes that are able to transpose to different locations in the genome. These elements are often used in molecular epidemiology as genetic markers that track the spread of pathogens. Transposable elements have frequently been described as "selfish DNA" because they facilitate their own transposition, causing damage when they insert into coding regions, while contributing little if anything to the bacterial host. According to this hypothesis, the expansion of copy number of insertion sequences is opposed by negative selection against high copy numbers. From an alternative point of view, we might expect IS elements to intrinsically regulate transposition within cells, thereby limiting damage to their bacterial host. Here, we report evidence that the copy number of IS6110 in Mycobacterium tuberculosis is controlled by selection against the element. We first construct 12 different models of marker change resulting from a combination of possible transposition functions and selective regimes. We then compute the Akaike Information Criterion for each model to identify the models that best explain data consisting of serial isolates of M. tuberculosis genotyped with IS6110. We find that the best performing models all include selection against the accumulation of copies. Specifically, our analysis points to the interaction of separate copies of the element causing lethal effects. We discuss the implications of these findings for genome evolution and molecular epidemiology. 相似文献
13.
14.
15.
Mona Abirached-Darmency Emilce Prado-Vivant Liudmila Chelysheva Thomas Pouthier 《Génome》2005,48(3):556-561
Within Fabaceae, legume species have a variable genome size, chromosome number, and ploidy level. The genome distribution of ribosomal genes, easily detectable by fluorescent in situ hybridization (FISH), is a good tool for anchoring physical and genetic comparative maps. The organisation of 45S rDNA and 5S loci was analysed by FISH in the 4 closely related species: Pisum sativum, Medicago truncatula, Medicago sativa (2 diploid taxa), and Lathyrus sativus. The 2 types of rDNA arrays displayed interspecific variation in locus number and location, but little intraspecific variation was detected. In the model legume, M. truncatula, the presence of 2 adjacent 45S rDNA loci was demonstrated, and the location of the rDNA loci was independent of the general evolution of the genome DNA. The different parameters relative to clustering of the rDNA loci in specific chromosome regions and the possible basis of rDNA instability are discussed. 相似文献
16.
Klumpp S 《PloS one》2011,6(5):e20403
Genetic circuits in bacteria are intimately coupled to the cellular growth rate as many parameters of gene expression are growth-rate dependent. Growth-rate dependence can be particularly pronounced for genes on plasmids; therefore the native regulatory systems of a plasmid such as its replication control system are characterized by growth-rate dependent parameters and regulator concentrations. This natural growth-rate dependent variation of regulator concentrations can be used for a quantitative analysis of the design of such regulatory systems. Here we analyze the growth-rate dependence of parameters of the copy number control system of ColE1-type plasmids in E. coli. This analysis allows us to infer the form of the control function and suggests that the Rom protein increases the sensitivity of control. 相似文献
17.
Regulation of mitochondrial biogenesis is essential for proper cellular functioning. Mitochondrial DNA (mtDNA) depletion and the resulting mitochondrial malfunction have been implicated in cancer, neurodegeneration, diabetes, aging, and many other human diseases. Although it is known that the dynamics of the mammalian mitochondrial genome are not linked with that of the nuclear genome, very little is known about the mechanism of mtDNA propagation. Nevertheless, our understanding of the mode of mtDNA replication has ad- vanced in recent years, though not without some controversies. This review summarizes our current knowledge of mtDNA copy number control in mammalian cells, while focusing on both mtDNA replication and turnover. Although mtDNA copy number is seemingly in excess, we reason that mtDNA copy number control is an important aspect of mitochondrial genetics and biogenesis and is essential for normal cellular function. 相似文献
18.
Identification and characterization of a second copy number control gene in mini-F plasmids 总被引:9,自引:0,他引:9
Summary We previously reported the existence of a series of chemically induced trans recessive copy-number mutations (cop) for mini-F plasmids and the existence of a similar series of cop mutations induced by insertion of the ampicillin resistance transposon Tn3. In this paper we describe the experiments showing that these two series of mutations are in different genes. Briefly, the experiments show that the one mutant series can complement the other, that the mutations map in distinct but adjacent regions, that the copy numbers of double mutants are the products of the copy numbers determined by the single mutations, and that Tn3 does not elevate copy number by a polar effect on the adjacent cop gene defined by chemical mutagenesis. We term the latter gene copA and the gene mutated by Tn3, copB. We also demonstrate here that copB mutations are recessive to the wild type allele. Further, we have characterized copB by deletion and recombinational analysis as the series of five 19- to 22-base-pair directly repeated sequences that had previously been designated incC-that is, one of the incompatibility genes. The evidence for this conclusion is that plasmids lacking two, three or five direct repeats have their copy number elevated proportionately. Possible mechanisms for copB control of replication are discussed. 相似文献
19.
Escherichia coli minichromosomes: random segregation and absence of copy number control 总被引:10,自引:0,他引:10
Minichromosomes, i.e. plasmids that can replicate from an integrated oriC, have been puzzling because of their high copy numbers compared to that of the chromosomal oriC, their lack of incompatibility with the chromosome and their high loss frequencies. Using single cell resistance to tetracycline or ampicillin as an indicator of copy number we followed the development of minichromosome distributions in Escherichia coli cells transformed with minichromosomes and then allowed to grow towards the steady state. The final copy number distribution was not reached within 15 to 20 generations. If the minichromosome carried the sop (partitioning) genes from plasmid F, the development of the copy number distribution was further drastically delayed. We conclude that E. coli cells have no function that directly controls minichromosomal copy numbers, hence the absence of incompatibility in the sense of shared copy number control. We suggest that minichromosomes are subject to the same replication control as the chromosome but segregate randomly in the absence of integrated partitioning genes. This, combined with evidence that the lowest copy number classes are normally present despite high average copy numbers, can account for the high loss frequencies. 相似文献