首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
In the last few years, major progress has been made to elucidate the structure, function, and regulation of P-type plasma membrane H+-and Ca2+-ATPases. Even though a number of regulatory proteins have been identified, many pieces are still lacking in order to understand the complete regulatory mechanisms of these pumps. In plant plasma membrane H+- and Ca2+-ATPases, autoinhibitory domains are situated in the C- and N-terminal domains, respectively. A model for a common mechanism of autoinhibition is discussed.  相似文献   

3.
A novel kinesin-like protein with a calmodulin-binding domain   总被引:4,自引:0,他引:4  
Calcium regulates diverse developmental processes in plants through the action of calmodulin. A cDNA expression library from developing anthers of tobacco was screened with 35S-labeled calmodulin to isolate cDNAs encoding calmodulin-binding proteins. Among several clones isolated, a kinesin-like gene (TCK1) that encodes a calmodulin-binding kinesin-like protein was obtained. The TCK1 cDNA encodes a protein with 1265 amino acid residues. Its structural features are very similar to those of known kinesin heavy chains and kinesin-like proteins from plants and animals, with one distinct exception. Unlike other known kinesin-like proteins, TCK1 contains a calmodulin-binding domain which distinguishes it from all other known kinesin genes. Escherichia coli-expressed TCK1 binds calmodulin in a Ca2+-dependent manner. In addition to the presence of a calmodulin-binding domain at the carboxyl terminal, it also has a leucine zipper motif in the stalk region. The amino acid sequence at the carboxyl terminal of TCK1 has striking homology with the mechanochemical motor domain of kinesins. The motor domain has ATPase activity that is stimulated by microtubules. Southern blot analysis revealed that TCK1 is coded by a single gene. Expression studies indicated that TCK1 is expressed in all of the tissues tested. Its expression is highest in the stigma and anther, especially during the early stages of anther development. Our results suggest that Ca2+/calmodulin may play an important role in the function of this microtubule-associated motor protein and may be involved in the regulation of microtubule-based intracellular transport.  相似文献   

4.
Plant calcium pumps, similarly to animal Ca2+ pumps, belong to the superfamily of P-type ATPase comprising also the plasma membrane H+-ATPase of fungi and plants, Na+/K+ ATPase of animals and H+/K+ ATPase of mammalian gastric mucosa. According to their sensitivity to calmodulin the plant Ca2+-ATPases have been divided into two subgroups: type IIA (homologues of animal SERCA) and type IIB (homologues of animal PMCA). Regardless of the similarities in a protein sequence, the plant Ca2+ pumps differ from those in animals in their cellular localization, structure and sensitivity to inhibitors. Genomic investigations revealed multiplicity of plant Ca2+-ATPases; they are present not only in the plasma membranes and ER but also in membranes of most of the cell compartments, such as vacuole, plastids, nucleus or Golgi apparatus. Studies using yeast mutants made possible the functional and biochemical characterization of individual plant Ca2+-ATMPases. Plant calcium pumps play an essential role in signal transduction pathways, they are responsible for the regulation of [Ca2+] in both cytoplasm and endomembrane compartments. These Ca2+-ATPases appear to be involved in plant adaptation to stress conditions, like salinity, chilling or anoxia.  相似文献   

5.
Plant plasma membrane H+-ATPases and Ca2+-ATPases maintain low cytoplasmic concentrations of H+ and Ca2+, respectively, and are essential for plant growth and development. These low concentrations allow plasma membrane H+-ATPases to function as electrogenic voltage stats, and Ca2+-ATPases as “off” mechanisms in Ca2+-based signal transduction. Although these pumps are autoregulated by cytoplasmic concentrations of H+ and Ca2+, respectively, they are also subject to exquisite regulation in response to biotic and abiotic events in the environment. A common paradigm for both types of pumps is the presence of terminal regulatory (R) domains that function as autoinhibitors that can be neutralized by multiple means, including phosphorylation. A picture is emerging in which some of the phosphosites in these R domains appear to be highly, nearly constantly phosphorylated, whereas others seem to be subject to dynamic phosphorylation. Thus, some sites might function as major switches, whereas others might simply reduce activity. Here, we provide an overview of the relevant transport systems and discuss recent advances that address their relation to external stimuli and physiological adaptations.

The regulation of plasma membrane H+-ATPases and autoinhibited Ca2+-ATPases exhibits a complex and dynamic network of posttranslational regulation. The regulation of plasma membrane H+-ATPases and autoinhibited Ca2+-ATPases exhibits a complex and dynamic network of posttranslational regulation.

P-type ATPases are found in all domains of life and constitute a large superfamily of membrane-bound pumps that share a common machinery, including a reaction cycle that involves catalytic phosphorylation of an Asp, resulting in a phosphorylated intermediate (reviewed in Palmgren and Nissen, 2011; (hence the name P-type; Box 1). The catalytic phosphoryl-aspartate intermediate is not to be confused with regulatory phosphorylation, which occurs on Ser, Thr, and Tyr residues. Five major families of P-type ATPases have been characterized (P1–5), each of which is divided into a number of subfamilies (named with letters). Plasma membrane H+-ATPases are classified as P3A ATPases, whereas Ca2+ pumps constitute P2A and P2B ATPases. In plants, these pumps are best characterized in the model plant Arabidopsis thaliana (Arabidopsis).Box 1Enzymology of P-type ATPases.P-type ATPases (reviewed in Palmgren and Nissen, 2011) alternate between two extreme conformations during their catalytic cycle: a high-affinity (with respect to ATP and the ion to be exported) Enzyme1 (E1) state, and a low-affinity Enzyme2 (E2) state. Many P-type ATPases are autoinhibited by built-in molecular constraints, namely their C- and N-terminal (for plasma membrane H+-ATPases; Palmgren et al., 1999) or N-terminal (for P2B Ca2+-ATPases; Malmström et al., 1997) regulatory (R) domains of approximately 100 amino acid residues, which act as brakes by stabilizing the pumps in a low-affinity conformation (Palmgren and Nissen, 2011), most likely E2. Neutralizing the R domain results in a shift in conformational equilibrium towards a high-affinity state, likely E1. In this way, the R domains of plasma membrane H+-ATPases and Ca2+-ATPases allow posttranslational modification events to control the turnover numbers of these pumps. A structure of a plasma membrane H+-ATPase (from the distantly related yeast S. cerevisiae) in its autoinhibited state has been solved (Heit et al., 2021). Its R domain is situated adjacent to the P domain, which would suggest that the R domain functions to restrict the conformational flexibility of the pump. Normally, the hydrolysis of ATP and transport are tightly coupled in P-type ATPases. Therefore, P-type ATPases hydrolyze bound ATP as soon as their ligand-binding site(s) in the membrane region are occupied, but not before. Thus, increasing the ligand affinity of an ATPase simultaneously increases its turnover number, provided that the concentration of ATP is not limiting, which is rarely the case in cells. A specific feature of plasma membrane H+-ATPases is that in the autoinhibited state, ATP hydrolysis is only loosely coupled to H+ pumping, whereas pump activation results in tight coupling, with one H+ pumped per ATP split (Pedersen et al., 2018).In response to internal and/or external cues, plasma membrane H+-ATPase and Ca2+-ATPase activities are controlled by intracellular concentrations of H+ and Ca2+, respectively, via interacting proteins, through posttranslational modification by phosphorylation, and by regulated trafficking of the pump to and from the plasma membrane. Their regulation sometimes involves changes in gene expression and turnover, although this is rare, perhaps because both processes are time- and energy-consuming (Haruta et al., 2018).  相似文献   

6.
Bonza MC  Luoni L 《FEBS letters》2010,584(23):4783-4788
Plant auto-inhibited Ca2+-ATPase 8 (ACA8) and animal plasma membrane Ca2+-ATPase 4b (PMCA4b) are representatives of plant and animal 2B P-type ATPases with a regulatory auto-inhibitory domain localized at the N- and C-terminus, respectively. To check whether the regulatory domain works independently of its terminal localization and if auto-inhibitory domains of different organisms are interchangeable, a mutant in which the N-terminus of ACA8 is repositioned at the C-terminus and chimeras in which PMCA4b C-terminus is fused to the N- or C-terminus of ACA8 were analysed in the yeast mutant K616 devoid of endogenous Ca2+-ATPases. Results show that the regulatory function of the terminal domain is independent from its position in ACA8 and that the regulatory domain belonging to PMCA4b is able to at least partially auto-inhibit ACA8.  相似文献   

7.
8.
Sarcoplasmic reticulum (SR) Ca2+-ATPase of the scallop cross-striated adductor muscle was purified with deoxycholate and digested with lysyl endopeptidase for sequencing of the digested fragments. Overlapping cDNA clones of the ATPase were isolated by screening the cDNA library with an RT-PCR product as a hybridization probe, which encodes the partial amino acid sequence of the ATPase. The predicted amino acid sequence of the ATPase contained all the partial sequences determined with the proteolytic fragments and consisted of the 993 residues with 70% overall sequence similarity to those of the SR ATPases from rabbit fast-twitch and slow-twitch muscles. An outline of the structure of the scallop ATPase molecule is predicted to mainly consist of ten transmembrane and five ‘stalk’ domains with two large cytoplasmic regions as observed with the rabbit ATPase molecules. The sequence relationship between scallop and other sarco/endoplasmic reticulum-type Ca2+-ATPases is discussed.  相似文献   

9.
The effect of phospholipids on the activity of isoform ACA8 of Arabidopsis thaliana plasma membrane (PM) Ca2+-ATPase was evaluated in membranes isolated from Saccharomyces cerevisiae strain K616 expressing wild type or mutated ACA8 cDNA. Acidic phospholipids stimulated the basal Ca2+-ATPase activity in the following order of efficiency: phosphatidylinositol 4-monophosphate>phosphatidylserine>phosphatidylcholine?phosphatidylethanolamine?0. Acidic phospholipids increased Vmax-Ca2+ and lowered the value of K0.5-Ca2+ below the value measured in the presence of calmodulin (CaM). In the presence of CaM acidic phospholipids activated ACA8 by further decreasing its K0.5-Ca2+ value. Phosphatidylinositol 4-monophosphate and, with lower efficiency, phosphatidylserine bound peptides reproducing ACA8 N-terminus (aa 1–116). Single point mutation of three residues (A56, R59 and Y62) within the sequence A56-T63 lowered the apparent affinity of ACA8 for phosphatidylinositol 4-monophosphate by two to three fold, indicating that this region contains a binding site for acidic phospholipids. However, the N-deleted mutant Δ74-ACA8 was also activated by acidic phospholipids, indicating that acidic phospholipids activate ACA8 through a complex mechanism, involving interaction with different sites. The striking similarity between the response to acidic phospholipids of ACA8 and animal plasma membrane Ca2+-ATPase provides new evidence that type 2B Ca2+-ATPases share common regulatory properties independently of structural differences such as the localization of the terminal regulatory region at the N- or C-terminal end of the protein.  相似文献   

10.
Sixty percent of calcium in milk is transported across the mammary cells apical membrane by the plasma membrane Ca2+-ATPase 2 (PMCA2). The effect of abrupt cessation of milk production on the Ca2+-ATPases and mammary calcium transport is unknown. We found that 24 h after stopping milk production, PMCA2 and secretory pathway Ca2+-ATPases 1 and 2 (SPCA1 and 2) expression decreased 80-95%. PMCA4 and Sarco/Endoplasmic Reticulum Ca2+-ATPase 2 (SERCA2) expression increased with the loss of PMCA2, SPCA1, and SPCA2 but did not increase until 72-96 h of involution. The rapid loss of these Ca2+-ATPases occurs at a time of high mammary tissue calcium. These results suggest that the abrupt loss of Ca2+-ATPases, required by the mammary gland to regulate the large amount of calcium associated with milk production, could lead to accumulation of cell calcium, mitochondria Ca2+ overload, calcium mediated cell death and thus play a part in early signaling of mammary involution.  相似文献   

11.
Hsieh WL  Pierce WS  Sze H 《Plant physiology》1991,97(4):1535-1544
Ca2+-ATPases keep cytoplasmic [Ca2+] low by pumping Ca2+ into intracellular compartments or out of the cell. The transport properties of Ca2+-pumping ATPases from carrot (Daucus carota cv Danvers) tissue culture cells were studied. ATP-dependent Ca2+ transport in vesicles that comigrated with an endoplasmic reticulum marker, was stimulated three- to fourfold by calmodulin. Cyclopiazonic acid (a specific inhibitor of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase) partially inhibited oxalate-stimulated Ca2+ transport activity; however, it had no effect on calmodulin-stimulated Ca2+ uptake driven by ATP or GTP. The results would suggest the presence of two types of Ca2+-ATPases, an endoplasmic reticulum- and a plasma membrane-type. Interestingly, incubation of membranes with [gamma32P]ATP resulted in the formation of a single acyl [32P]phosphoprotein of 120 kilodaltons. Formation of this phosphoprotein was dependent on Ca2+, but independent of Mg2+. Its enhancement by La3+ is characteristic of a phosphorylated enzyme intermediate of a plasma membrane-type Ca-ATPase. Calmodulin stimulated Ca2+ transport was decreased by W-7 (a calmodulin antagonist), ML-7 (myosin light chain kinase inhibitor) or thyroxine. Acidic phospholipids, like phosphatidylserine, stimulated Ca2+ transport, similar to their effect on the erythrocyte plasma membrane Ca2+-ATPase. These results would indicate that the calmodulin-stimulated Ca2+ transport originated in large part from a plasma membrane-type Ca2+ pump of 120 kilodaltons. The possibility of calmodulin-stimulated Ca2+-ATPases on endomembranes, such as the endoplasmic reticulum and secretory vesicles, as well as the plasma membrane is suggested.  相似文献   

12.
The GTP-driven component of Ca2+ uptake in red beet (Beta vulgaris L.) plasma membrane vesicles was further characterized to confirm its association with the plasma membrane Ca2+-translocating ATPase and assess its utility as a probe for this transport system. Uptake of 45Ca2+ in the presence of GTP demonstrated similar properties to those previously observed for red beet plasma membrane vesicles utilizing ATP with respect to pH optimum, sensitivity to orthovanadate, dependence on Mg:substrate concentration and dependence on Ca2+ concentration. Calcium uptake in the presence of GTP was also strongly inhibited by erythrosin B, a potent inhibitor of the plant plasma membrane Ca2+-ATPase. Furthermore, after treatment with EGTA to remove endogenous calmodulin, the stimulation of 45Ca2+-uptake by exogenous calmodulin was nearly equivalent in the presence of either ATP or GTP. Taken together these results support the proposal that GTP-driven 45Ca2+ uptake represents the capacity of the plasma membrane Ca2+-translocating ATPase to utilize this nucleoside triphosphate as an alternative substrate. When plasma membrane vesicles were phosphorylated with [γ-32P]-GTP, a rapidly turning over, 100 kilodalton phosphorylated peptide was observed which contained an acyl-phosphate linkage. While it is proposed that this peptide could represent the catalytic subunit of the plasma membrane Ca2+-ATPase, it is noted that this molecular weight is considerably lower than the 140 kilodalton size generally observed for plasma membrane Ca2+-ATPases present in animal cells.  相似文献   

13.
Vanadate inhibition of sarcoplasmic reticulum Ca2+-ATPase and other ATPases.   总被引:15,自引:0,他引:15  
Vanadate is a potent inhibitor of the Ca2+-ATPase activity of sarcoplasmic reticulum in the presence of A-23187. The purified enzyme is sensitive to vanadate even in the absence of the ionophore. Ca2+ and norepinephrine protect the enzyme against inhibition of vanadate. The nonspecificity of vanadate is emphasized by the finding of inhibition of several other ATPases including the Ca2+Mg2+-ATPases of the ascites and human red cell plasma membranes, Mg2+-ATPase of the ascites plasma membrane, and the K+-ATPases of E.coli and hog gastric mucosal cell membranes. The ascites plasma membrane Ca2+-ATPase (an ecto ATPase) and mitochondrial ATPase are not inhibited by vanadate.  相似文献   

14.
We have previously reported on calcium transport mechanisms in American lobster, Homarus americanus, using 45Ca2+ coupled with vesicle preparations of hepatopancreatic endoplasmic reticulum. The active transport of calcium across membranes bordering calcium-sequestering stores such as sarcoplasmic or endoplasmic reticulum is catalyzed by membrane-spanning proteins, the sarco-endoplasmic Ca2+-ATPases (SERCAs). In the study described here we used advanced bioinformatics and molecular techniques to clone SERCA from the economically important Caribbean spiny lobster, Panulirus argus. We report the complete cloning of a full-length SERCA from P. argus antenna cDNA (GenBank accession number AY702617). This cDNA has a 1020-amino acid residue open reading frame which is 90% identical to published sequences of other crustacean SERCA proteins. Our data support the hypothesis that one crustacean and three vertebrate genes controlling calcium transport were derived from a common ancestral gene.  相似文献   

15.
The fungal plasma membrane contains a proton-translocating ATPase that is closely related, both structurally and functionally, to the [Na+, K+]-, [H+, K+]-, and [Ca2+]-ATPases of animal cells, the plasma-membrane [H+]-ATPase of higher plants, and several bacterial cation-transporting ATPases. This review summarizes currently available information on the molecular genetics, protein structure, and reaction cycle of the fungal enzyme. Recent efforts to dissect structure-function relationships are also discussed.  相似文献   

16.
  • 1.1. Parotid plasma membrane nonpump low-affinity Ca2+-ATPase, which possesses high-affinity (Ca2+ + Mg2+ )-ATPase activity, was characterized.
  • 2.2. Purified Ca2+-ATPase hydrolyzed the nucleoside triphosphates, GTP, ITP, CTP, UTP, TTP (67–93% of ATP) and nucleoside diphosphates, ADP. GDP, IDP, CDP, TDP (12–40% of ATP) but not AMP and p-NPP.
  • 3.3. The maximum activities of Ca2+- and (Ca2+ +Mg2+ )-ATPases were obtained in the presence of 1 mM and 0.13 μ M Ca2+, respectively.
  • 4.4. The Km values for Ca2+ in Ca2+- and (Ca2++ Mg2+ )-ATPases were 0.2 mM and 22 nM. respectively.
  • 5.5. The activities of both Ca2+- and (Ca2+ + Mg2+ )-ATPases were found in the right-side-out-vesicles obtained from the plasma membrane-rich fraction.
  • 6.6. These features suggest that Ca2+-ATPase is an ecto-Ca2+-dependent nucleoside triphosphatase.
  相似文献   

17.
K inesin-like c almodulin-b inding p rotein (KCBP) is a recently identified novel kinesin-like protein that appears to be unique to and ubiquitous in plants. KCBP is distinct from all other known KLPs in having a calmodulin-binding domain adjacent to its motor domain. We have used different regions of KCBP to study its interaction with tubulin subunits and the regulation of this interaction by Ca2+-calmodulin. The results show that the carboxy-terminal part of the KCBP, with or without calmodulin-binding domain, binds to tubulin subunits and this binding is sensitive to nucleotides. In the presence of Ca2+-calmodulin the motor with calmodulin-binding domain does not bind to tubulin. This Ca2+-calmodulin modulation is abolished in the presence of antibodies specific to the calmodulin-binding domain of KCBP. Similar binding studies with the carboxy-terminal part of KCBP lacking the calmodulinbinding domain show no effect of Ca2+-calmodulin. These results indicate that Ca2+-calmodulin modulates the interaction of KCBP with tubulin subunits and this modulation is due to the calmodulin-binding domain in the KCBP. Calcium-dependent calmodulin modulation of KCBP interaction with tubulin suggests regulation of KCBP function by calcium, the first such regulation of a kinesin heavy chain among all the known kinesin-like proteins.  相似文献   

18.
19.
In Nicotiana plumbaginifolia, plasma membrane H+-ATPases (PMAs) are encoded by a gene family of nine members. Here, we report on the characterization of a new isogene, NpPMA5 (belonging to subfamily IV), and the determination of its expression pattern using the β-glucuronidase (gusA) reporter gene. pNpPMA5gusA was expressed in cotyledons, in vascular tissues of the stem (mainly in nodal zones), and in the flower and fruit. In the flower, high expression was found in the pollen tube after in vitro or in vivo germination. Northern blotting analysis confirmed that NpPMA5 was expressed in the pollen tube contrary to NpPMA2 (subfamily I) or NpPMA4 (subfamily II), two genes highly expressed in other tissues. The subcellular localization of PM H+-ATPase in the pollen tube was analyzed by immunocytodecoration. As expected, this enzyme was localized to the plasma membrane. However, neither the tip nor the base of the pollen tube was labeled, showing an asymmetrical distribution of this enzyme. This observation supports the hypothesis that the PM H+-ATPase is involved in creating the pH gradient that is observed along the pollen tube and is implicated in cell elongation. Compared to other plant PM H+-ATPases, the C-terminal region of NpPMA5 is shorter by 26 amino acid residues and is modified in the last 6 residues, due to a sequence rearrangement, which was also found in the orthologous gene of Nicotiana glutinosa, a Nicotiana species distant from N. plumbaginifolia and Petunia hybrida and Lycopersicon esculentum, other Solanacae species. This modification alters part of the PM H+-ATPase regulatory domain and raises the question whether this isoform is still regulated. The genomic and cDNA nucleotide sequences of NpPMA5 have been deposited into the Genbank database (AY772462–AY772468).  相似文献   

20.
Calcium (Ca2+)-ATPases are ATP-dependent enzymes that transport Ca2+ ions against their electrochemical gradient playing the fundamental biological function of keeping the free cytosolic Ca2+ concentration in the submicromolar range to prevent cytotoxic effects. In plants, type IIB autoinhibited Ca2+-ATPases (ACAs) are localised both at the plasma membrane and at the endomembranes including endoplasmic reticulum (ER) and tonoplast and their activity is primarily regulated by Ca2+-dependent mechanisms. Instead, type IIA ER-type Ca2+-ATPases (ECAs) are present mainly at the ER and Golgi Apparatus membranes and are active at resting Ca2+. Whereas research in plants has historically focused on the biochemical characterization of these pumps, more recently the attention has been also addressed on the physiological roles played by the different isoforms. This review aims to highlight the main biochemical properties of both type IIB and type IIA Ca2+ pumps and their involvement in the shaping of cellular Ca2+ dynamics induced by different stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号