首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulmonary inflammation contributes to ventilator-induced lung injury. Sepsis-induced pulmonary inflammation (first hit) may be potentiated by mechanical ventilation (MV, second hit). Electrical stimulation of the vagus nerve has been shown to attenuate inflammation in various animal models through the cholinergic anti-inflammatory pathway. We determined the effects of vagotomy (VGX) and vagus nerve stimulation (VNS) on systemic and pulmonary inflammation in a two-hit model. Male Sprague-Dawley rats were i.v. administered lipopolysaccharide (LPS) and subsequently underwent VGX, VNS or a sham operation. 1 hour following LPS, MV with low (8 mL/kg) or moderate (15 mL/kg) tidal volumes was initiated, or animals were left breathing spontaneously (SP). After 4 hours of MV or SP, rats were sacrificed. Cytokine and blood gas analysis was performed. MV with 15, but not 8 mL/kg, potentiated the LPS-induced pulmonary pro-inflammatory cytokine response (TNF-α, IL-6, KC: p<0.05 compared to LPS-SP), but did not affect systemic inflammation or impair oxygenation. VGX enhanced the LPS-induced pulmonary, but not systemic pro-inflammatory cytokine response in spontaneously breathing, but not in MV animals (TNF-α, IL-6, KC: p<0.05 compared to SHAM), and resulted in decreased pO(2) (p<0.05 compared to sham-operated animals). VNS did not affect any of the studied parameters in both SP and MV animals. In conclusion, MV with moderate tidal volumes potentiates the pulmonary inflammatory response elicited by systemic LPS administration. No beneficial effects of vagus nerve stimulation performed following LPS administration were found. These results questions the clinical applicability of stimulation of the cholinergic anti-inflammatory pathway in systemically inflamed patients admitted to the ICU where MV is initiated.  相似文献   

2.
High-mobility group box 1 (HMGB1) is a 30-kDa DNA-binding protein that displays proinflammatory cytokine-like properties. HMGB1-dependent inflammatory processes have been demonstrated in models of sterile injury, including ischemia-reperfusion injury and hemorrhagic shock. Here, we tested the hypothesis that the systemic inflammatory response and associated remote organ injury that occur after peripheral tissue injury are highly dependent on HMGB1. Toll-like receptor 4 (TLR4) wild-type (WT) mice subjected to bilateral femur fracture after treatment with neutralizing antibodies to HMGB1 had lower serum IL-6 and IL-10 levels compared with mice treated with nonimmune control IgG. Similarly, compared with injured mice treated with control IgG, anti-HMGB1 antibody-treated mice had lower serum alanine aminotransferase levels and decreased hepatic and gut mucosal NF-kappaB DNA binding. TLR4 mutant (C3H/HeJ) mice subjected to bilateral femur fracture had less systemic inflammation and liver injury than WT controls. Residual trauma-induced systemic inflammation and hepatocellular injury were not ameliorated by treatment with a polyclonal anti-HMGB1 antibody, even though HMGB1 levels were transiently elevated just 1 h after injury in both WT and C3H/HeJ mice. Collectively, these data demonstrate a critical role for a TLR4-HMGB1 pathway in the initiation of systemic inflammation and end-organ injury following isolated peripheral tissue injury.  相似文献   

3.
We sought to determine whether gut-derived microbial factors influence the hepatic or intestinal inflammatory response to hemorrhagic shock and resuscitation (HS/R). Conventional and gnotobiotic mice contaminated with a defined microbiota without gram-negative bacteria were subjected to either a sham procedure or HS/R. Tissue samples were obtained 4 h later for assessing ileal mucosal permeability to FITC dextran and hepatic and ileal mucosal steady-state IL-6, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and TNF mRNA levels. Whereas HS/R significantly increased ileal mucosal permeability in conventional mice, this effect was not apparent in gnotobiotic animals. HS/R markedly increased hepatic mRNA levels for several proinflammatory genes in both conventional and gnotobiotic mice. HS/R increased ileal mucosal IL-6 and COX-2 mRNA expression in conventional but not gnotobiotic mice. If gnotobiotic mice were contaminated with Escherichia coli C25, HS/R increased ileal mucosal permeability and upregulated expression of IL-6 and COX-2. These data support the view that the hepatic inflammatory response to HS/R is largely independent of the presence of potentially pathogenic gram-negative bacteria colonizing the gut, whereas the local mucosal response to HS/R is profoundly influenced by the microbial ecology within the lumen during and shortly after the period of hemorrhage.  相似文献   

4.

Background

Chronic obstructive pulmonary disease (COPD) is a chronic airway inflammatory disease caused by repeated exposure to noxious gases or particles. It is now recognized that the disease also features systemic inflammation. The purpose of our study was to compare airway and systemic inflammation in COPD to that seen in healthy subjects and to relate the inflammation with the disease severity.

Methods

Ninety-five COPD patients, encompassing the whole severity spectrum of the disease, were recruited from our outpatient clinic and rehabilitation center and compared to 33 healthy subjects. Induced sputum and blood samples were obtained for measurement of inflammatory cell count. Interleukin (IL)-4, IL-6, IL-10, TNF-α and IFN-γ produced by 24 h sputum and blood cell cultures were measured.

Results

Compared to healthy subjects, COPD exhibited a prominent airway neutrophilic inflammation associated with a marked IL-10, IL-6 and TNF-α release deficiency that contrasted with a raised IFN-γ production. Neutrophilic inflammation was also prominent at blood level together with raised production of IFN-γ, IL-10 and TNF-α. Furthermore, sputum neutrophilia correlated with disease severity assessed by GOLD stages. Likewise the extent of TNF-α release from blood cells also positively correlated with the disease severity but negatively with that of sputum cell culture. Blood release of TNF-α and IL-6 negatively correlated with body mass index. Altogether, our results showed a significant relationship between cellular marker in blood and sputum but poor relationship between local and systemic release of cytokines.

Conclusions

COPD is characterized by prominent neutrophilic inflammation and raised IFN-γ production at both bronchial and systemic level. Overproduction of TNF-α at systemic level correlates with disease severity and inversely with body mass index.  相似文献   

5.
Airway and systemic inflammation are features of chronic obstructive pulmonary disease (COPD), and there is growing interest in clarifying the inflammatory processes. Strenuous exercise induces an intensified systemic inflammatory response in patients with COPD, but no study has investigated the airway inflammatory and anti-inflammatory responses to exercise. Twenty steroid-na?ve, ex-smokers with diagnosed COPD (forced expired volume in 1 s = 66 ± 12%) underwent baseline collection of venous blood and induced sputum followed by an incremental exercise test to symptom limitation 48 h later. Additional venous blood samples were collected following exercise at 0, 2, and 24 h, while induced sputum was collected 2 and 24 h after exercise. Sputum and blood samples were analyzed for differential cell count, CD4(+) and CD8(+) T lymphocytes (serum only), interleukin (IL)-6, IL-8, IL-10, chemokine (C-C motif) ligand 5 (CCL5), and high sensitivity C-reactive protein (serum only). There was an increase in the number of sputum eosinophils (cells/gram, P = 0.012) and a reduction in sputum IL-6 (P = 0.01) 24 h postexercise. Sputum IL-8 and CCL5 were also persistently decreased after exercise (P = 0.0098 and P = 0.0012, respectively), but sputum IL-10 did not change. There was a decrease in serum eosinophils 2 h after exercise (P = 0.0014) and a reduction in serum CCL5 immediately following and 2 h postexercise (P < 0.0001). Both serum eosinophils and CCL5 returned to baseline levels within 24 h. An acute bout of exercise resulted in a significant increase in the number of sputum eosinophils, which may be mediated by serum CCL5. However, there was also a reduction in sputum proinflammatory cytokines, suggesting some anti-inflammatory effect of exercise in the lungs of steroid-na?ve patients with COPD.  相似文献   

6.
Bacterial genome is characterized by frequent unmethylated cytosine-phosphate-guanine (CpG) motifs. Deleterious effects can occur when synthetic oligodeoxynucleotides (ODN) with unmethylated CpG dinucleotides (CpG-ODN) are administered in a systemic fashion. We aimed to evaluate the effect of intratracheal CpG-ODN on lung inflammation and systemic inflammatory response. C57BL/6J mice received intratracheal administration of CpG-ODN (0.01, 0.1, 1.0, 10, or 100 μM) or control ODN without CpG motif. Bronchoalveolar lavage (BAL) fluid was obtained 3 or 6 h or 1, 2, 7, or 14 days after the instillation and subjected to a differential cell count and cytokine measurement. Lung permeability was evaluated as the BAL fluid-to-plasma ratio of the concentration of human serum albumin that was injected 1 h before euthanasia. Nuclear factor (NF)-κB DNA binding activity was also evaluated in lung homogenates. Intratracheal administration of 10 μM or higher concentration of CpG-ODN induced significant inflammatory cell accumulation into the airspace. The peak accumulation of neutrophils and lymphocytes occurred 1 and 2 days after the CpG-ODN administration, respectively. Lung permeability was increased 1 day after the 10 μM CpG-ODN challenge. CpG-ODN also induced nuclear translocation of NF-κB and upregulation of various inflammatory cytokines in BAL fluid and plasma. Histopathology of the lungs and liver revealed acute lung injury and liver damage with necrosis, respectively. Control ODN without CpG motif did not induce any inflammatory change. Since intratracheal CpG-ODN induced acute lung injury as well as systemic inflammatory response, therapeutic strategies to neutralize bacterial DNA that is released after administration of bactericidal agents should be considered.  相似文献   

7.
In hemorrhagic shock and trauma, patients are prone to develop systemic inflammation with remote organ dysfunction, which is thought to be caused by pro-inflammatory mediators. This study investigates the role of the immuno-modulatory cytokine IL-10 in the development of organ dysfunction following hemorrhagic shock. Male C57/BL6 and IL-10 KO mice were subjected to volume controlled hemorrhagic shock for 3 h followed by resuscitation. Animals were either sacrificed 3 or 24 h after resuscitation. To assess systemic inflammation, serum IL-6, IL-10, KC, and MCP-1 concentrations were measured with the Luminex? multiplexing platform; acute lung injury (ALI) was assessed by pulmonary myeloperoxidase (MPO) activity and lung histology and acute liver injury was assessed by hepatic MPO activity, hepatic IL-6 levels, and serum ALT levels. There was a trend towards increased IL-6 and KC serum levels 3 h after resuscitation in IL-10 KO as compared to C57/BL6 mice; however this did not reach statistical significance. Serum MCP-1 levels were significantly increased in IL-10 KO mice 3 and 24 h following resuscitation as compared to C57/BL6 mice. In IL-10 KO mice, pulmonary MPO activity was significantly increased 3 h following resuscitation and after 24 h histological signs of acute lung injury were more apparent than in C57/BL6 mice. In contrast, no significant differences in any liver parameters were detected between IL-10 KO and C57/BL6 mice. Our data indicate that an endogenous IL-10 deficiency augments acute lung but not liver injury following hemorrhagic shock.  相似文献   

8.
The inflammatory response to chronic infections such as periodontitis may be central to the systemic implications of these diseases. This study examined the possible association between specific gene polymorphisms and the systemic inflammatory response in individuals suffering from severe generalized periodontitis. Ninety-four subjects with periodontitis were genotyped for polymorphisms in IL-1A (-889), IL-1B (-511, +3954), TNF-A (-308), IL-6 (-174) and TLR4 (-299, -399) genes. We found that the genotypes for IL-1A or IL-6 are associated with higher levels of serum IL-6 (P < 0.03) and serum CRP (P < 0.05), similarly the TNF-A genotype is associated with higher levels of serum IL-6 (P < 0.05) after correction for age, body mass index, gender, ethnicity and cigarette smoking. Systemic inflammatory responses are higher in severe periodontitis patients carrying rare alleles for functional inflammatory gene polymorphisms. These results suggest that cytokine genotypes are important determinants of the systemic inflammatory response in subjects with periodontitis. Genetic polymorphism therefore, may in part explain the reported association between periodontitis and systemic disease.  相似文献   

9.
10.
TNF-alpha has been associated with chorioamnionitis and the subsequent development of bronchopulmonary dysplasia in preterm infants. We asked whether bioactive recombinant ovine TNF-alpha could induce chorioamnionitis, lung inflammation, lung maturation, and systemic effects in fetal sheep. We compared the responses to IL-1alpha, a cytokine known to induce these responses in preterm sheep. Intra-amniotic TNF-alpha caused no chorioamnionitis, no lung maturation, and a very small increase in inflammatory cells in the fetal lung after 5 h, 2 days (d), and 7 d. In contrast, IL-1alpha induced inflammation and lung maturation. TNF-alpha given into the airways at birth increased granulocytes in the bronchoalveolar lavage fluid of ventilated preterm lungs and decreased the mRNA for surfactant protein C but did not adversely effect postnatal lung function. An intravascular injection of IL-1alpha caused a systemic inflammatory response in fetal sheep, whereas there was no fetal response to intravascular TNF-alpha. Fetal and newborn preterm sheep are minimally responsive to TNF-alpha. Therefore, the presence of a mediator such as TNF-alpha in a developing animal does not necessarily mean that it is causing the responses anticipated from previous results in adult animals.  相似文献   

11.
12.
Exposure to pathogen-associated molecular patterns such as LPS can cause an immune refractory state in mammals known as endotoxin tolerance (ET), resulting in a decreased inflammatory response after pathogen contact. This ET concept was used to reduce the severity of an experimentally-induced clinical mastitis. Cows were pretreated with 1?μg LPS per udder quarter and challenged 72?h (group L72EC) or 240?h (group L240EC) later with 500 CFU Escherichia coli. Pretreated animals showed no leukopenia after challenge, no (L72EC), or only slightly (L240EC), elevated body temperature and significantly reduced systemic and local clinical scores compared with cows that were not pretreated. Whereas an increase of milk somatic cell count after the E. coli challenge was abrogated in L72EC animals, it was significantly delayed in the L240EC group. In both pretreated groups the bacterial load in milk was markedly reduced. Based on the expression of inflammation-related genes in lobulo-alveolar mammary tissue, the tolerizing effect of LPS pretreatment is based on the inhibited up-regulation of inflammatory (TNF-α, IL-6, CXCL8, CCL20) and anti-inflammatory genes (IL-10, IRAK-M). These findings indicate that the concept of ET may be usefully applied as mastitis prophylaxis facilitating a rapid response to microbial infection and avoiding dysregulated inflammation.  相似文献   

13.
Adiponectin (APN) is an adipose tissue-derived factor with anti-inflammatory and vascular protective properties whose levels paradoxically decrease with increasing body fat. In this study, APN's role in the early development of ALI to LPS was investigated. Intratracheal LPS elicited an exaggerated systemic inflammatory response in APN-deficient (APN(-/-)) mice compared with wild-type (wt) littermates. Increased lung injury and inflammation were observed in APN(-/-) mice as early as 4 h after delivery of LPS. Targeted gene expression profiling performed on immune and endothelial cells isolated from lung digests 4 h after LPS administration showed increased proinflammatory gene expression (e.g., IL-6) only in endothelial cells of APN(-/-) mice when compared with wt mice. Direct effects on lung endothelium were demonstrated by APN's ability to inhibit LPS-induced IL-6 production in primary human endothelial cells in culture. Furthermore, T-cadherin-deficient mice that have significantly reduced lung airspace APN but high serum APN levels had pulmonary inflammatory responses after intratracheal LPS that were similar to those of wt mice. These findings indicate the importance of serum APN in modulating LPS-induced ALI and suggest that conditions leading to hypoadiponectinemia (e.g., obesity) predispose to development of ALI through exaggerated inflammatory response in pulmonary vascular endothelium.  相似文献   

14.

Background

Complex biological processes such as acute inflammation induced by trauma/hemorrhagic shock/ (T/HS) are dynamic and multi-dimensional. We utilized multiplexing cytokine analysis coupled with data-driven modeling to gain a systems perspective into T/HS.

Methodology/Principal Findings

Mice were subjected to surgical cannulation trauma (ST) ± hemorrhagic shock (HS; 25 mmHg), and followed for 1, 2, 3, or 4 h in each case. Serum was assayed for 20 cytokines and NO2 /NO3 . These data were analyzed using four data-driven methods (Hierarchical Clustering Analysis [HCA], multivariate analysis [MA], Principal Component Analysis [PCA], and Dynamic Network Analysis [DyNA]). Using HCA, animals subjected to ST vs. ST + HS could be partially segregated based on inflammatory mediator profiles, despite a large overlap. Based on MA, interleukin [IL]-12p40/p70 (IL-12.total), monokine induced by interferon-γ (CXCL-9) [MIG], and IP-10 were the best discriminators between ST and ST/HS. PCA suggested that the inflammatory mediators found in the three main principal components in animals subjected to ST were IL-6, IL-10, and IL-13, while the three principal components in ST + HS included a large number of cytokines including IL-6, IL-10, keratinocyte-derived cytokine (CXCL-1) [KC], and tumor necrosis factor-α [TNF-α]. DyNA suggested that the circulating mediators produced in response to ST were characterized by a high degree of interconnection/complexity at all time points; the response to ST + HS consisted of different central nodes, and exhibited zero network density over the first 2 h with lesser connectivity vs. ST at all time points. DyNA also helped link the conclusions from MA and PCA, in that central nodes consisting of IP-10 and IL-12 were seen in ST, while MIG and IL-6 were central nodes in ST + HS.

Conclusions/Significance

These studies help elucidate the dynamics of T/HS-induced inflammation, complementing other forms of dynamic mechanistic modeling. These methods should be applicable to the analysis of other complex biological processes.  相似文献   

15.
The multifunctional cytokine interleukin (IL)-6 has been shown to modulate inflammation and angiogenesis. In a mouse model of lung angiogenesis induced by chronic left pulmonary artery ligation (LPAL), we previously showed increased expression of IL-6 mRNA in lung homogenates 4 h after the onset of pulmonary ischemia. To determine whether IL-6 influences both new vessel growth and inflammatory cell influx, we studied wild-type (WT) and IL-6-deficient C57Bl/6J (KO) mice after LPAL (4 h and 1, 7, 14 days). We measured IL-6 protein of the lung by ELISA, the lavage cell profile of the left lung, and new systemic vessel growth with radiolabeled microspheres (14 days after LPAL) in WT and KO mice. We confirmed a 2.4-fold increase in IL-6 protein in the left lung of WT mice compared with right lung 4 h after LPAL. A significant increase in lavaged neutrophils (7.5% of total cells) was observed only in WT mice 4 h after LPAL. New vessel growth was significantly attenuated in KO relative to WT (0.7 vs. 1.9% cardiac output). In an additional series, treatment of WT mice with anti-neutrophil antibody demonstrated a reduction in lavaged neutrophils 4 h after LPAL; however, IL-6 protein remained elevated and neovascularization to the left lung (2.3% cardiac output) was not altered. These results demonstrate that IL-6 plays an important modulatory role in lung angiogenesis, but the changes are not dependent on trapped neutrophils.  相似文献   

16.
Changes in the number and ex vivo function of peripheral blood neutrophils were investigated following intraperitoneal administration of cadmium-chloride in rats. Besides a dose-dependent increase in the number of peripheral blood neutrophils, changes were found in the functional state of isolated polymorphonuclear leukocytes (PMNs). Increased spontaneous adhesion and activation, and TNF activity in a conditioned medium were observed in cultures of granulocytes in comparison to granulocytes from control (saline-treated) animals. Increased levels of plasma activity of inflammatory cytokines, tumor necrosis factor (TNF) and interleukin-6 (IL-6) were noted following cadmium administration. Cytological signs of pulmonary inflammation were revealed histologically and the majority of neutrophils recovered from the lungs by enzyme digestion exhibited a capacity of nitroblue tetrazolium (NBT) reduction. Our data demonstrate that acute cadmium intoxication leads to a systemic inflammatory response characterized by numerical and functional changes in the granulocyte compartment and to increased levels of inflammation-related cytokine activity in the circulation. Correlations between the increased number of peripheral blood neutrophils and IL-6 plasma activity (r=0.776, p<0.00001) and the number of neutrophils recovered from the lung tissue (r=0.893, p<0.00001) suggested that systemic cadmium-induced inflammation might be involved in the pulmonary toxicity of cadmium.  相似文献   

17.
The restoration of blood flow, i.e., reperfusion, is the treatment of choice to save viable tissue following acute ischemia of a vascular territory. Nevertheless, reperfusion can be accompanied by significant inflammatory events that limit the beneficial effects of blood flow restoration. To evaluate the potential role of the intestinal microbiota in facilitating the development of tissue injury and systemic inflammation, germ-free and conventional mice were compared in their ability to respond to ischemia and reperfusion injury. In conventional mice, there was marked local (intestine) and remote (lung) edema formation, neutrophil influx, hemorrhage, and production of TNF-alpha, KC, MIP-2, and MCP-1. Moreover, there was an increase in the concentration of serum TNF-alpha and 100% lethality. In germ-free mice, there was no local, remote, or systemic inflammatory response or lethality after intestinal ischemia and reperfusion and, in contrast to conventional mice, germ-free animals produced greater amounts of IL-10. Similar results were obtained after administration of LPS, i.e., little production of TNF-alpha or lethality and production of IL-10 after LPS in germ-free mice. Blockade of IL-10 with Abs induced marked inflammation and lethality in germ-free mice after ischemia and reperfusion or LPS administration, demonstrating that the ability of these mice to produce IL-10 was largely responsible for their "no inflammation" phenotype. This was consistent with the prevention of reperfusion-associated injury by the exogenous administration of IL-10 to conventional mice. Thus, the lack of intestinal microbiota is accompanied by a state of active IL-10-mediated inflammatory hyporesponsiveness.  相似文献   

18.
Recent studies have shown that erythropoietin (EPO) offers protection against ischemia, hemorrhagic shock and systemic inflammation in many tissues and it has been suggested that EPO has anti-inflammatory effects. With the aim of investigating the potential acute anti-inflammatory effects of EPO in a human in vivo model of acute systemic low-grade inflammation, we measured circulating inflammatory mediators after intravenous administration of Escherichia coli endotoxin (LPS) bolus injection (0.1 ng/kg of body weight) in young healthy male subjects. The subjects were divided into three groups receiving either (1) LPS alone, (2) EPO alone (15,000 IE of rHuEPO) or (3) EPO and LPS. Endotoxin administration alone induced a 3-, 12- and 5-fold increase in plasma concentrations of TNF-α, IL-6 and IL-10, respectively, 3 h after LPS challenge. When EPO was given prior to a bolus injection with endotoxin, the levels of TNF-α and IL-6 were enhanced by 5- and 40-fold, respectively, whereas the endotoxin-induced increase in IL-10 response was not influenced by EPO. In contrast to our hypothesis, we find that EPO augments the acute inflammatory effect.  相似文献   

19.
Patients with acute respiratory distress syndrome are at increased risk for developing multiorgan system dysfunction. The goal of this study was to establish an in vivo murine model to assess the differential effects of ventilation-protective strategies on the development of acute lung injury and systemic organ inflammation. C57B/6 mice were randomized to mechanical ventilation (MV) with conventional, high (17 ml/kg) or protective, low (6 ml/kg) tidal volume (VT) after intratracheal hydrochloric acid or no intervention. Mean arterial pressure was continuously monitored during MV and did not differ between groups. After 4 h, lung injury was assessed by measurement of wet/dry lung weight, lung lavage protein concentration and cell count, and histology. Concentration of IL-6, TNF-alpha, VEGF, and VEGF receptor-2 (VEGFR2) was measured in lung, liver, kidney, and heart. Results were compared with control, spontaneously breathing mice. Lung injury and altered pulmonary cytokine expression were not detected after MV of healthy mice with low or high VT. Although MV did not significantly alter IL-6 or TNF-alpha in systemic organs, VEGF concentration significantly increased in liver and kidney. After acid aspiration, mice ventilated with high VT manifested lung injury and increased IL-6 and VEGFR2 in lung, liver, and kidney, whereas VEGF increased only in liver and kidney. MV with low VT after acid aspiration attenuated lung injury, both IL-6 and VEGFR2 expression in lung and systemic organs, and hepatic, but not renal, increased VEGF. Our data suggest that MV strategy has differential effects on systemic inflammatory changes and thus may selectively predispose to systemic organ dysfunction.  相似文献   

20.
X Li  Z Zheng  X Li  X Ma 《Cytokine》2012,60(1):114-121
Heparins, including unfractionated heparin (UFH) and low-molecular-weight heparins (LMWH), are glycosaminoglycans that are largely used as anti-thrombotic drugs. While the mechanisms of their anticoagulant actions in blood have been extensively studied, their effects on the inflammation of the endothelium are still under investigation since the endothelium plays a central role in sepsis. Furthermore, UFH is much cheaper than LMWH. The aim of this study was to determine how UFH regulates lipopolysaccharide (LPS)-induced inflammatory response on endothelial cells in vitro, and define the role of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) in mediating this effect. Human pulmonary microvascular endothelial cells (HPMECs) were pretreated with UFH (0.01U/ml-10U/ml), prior to stimulation with LPS (10μg/ml). Markers of systemic inflammation and endothelial activation were assessed. Interleukin (IL)-1β, IL-6, E-selectin, intercellular adhesion molecule (ICAM)-1 release were subsequently measured at 2h, 6h and 12h. Phosphorylation of p38 MAPK at 2h, 6h and nuclear translocation of the proinflammatory NF-κB at 2h were assessed. In HPMEC, UFH significantly attenuated LPS-induced production of IL-1β, IL-6, E-selectin and ICAM-1, as well as phosphorylation of p38 MAPK and NF-κB translocation, especially in 10U/ml. In conclusion, UFH at high dose significantly protects against endothelial-cell-mediated immune response. The inhibition of p38 MAPK and NF-κB activation certainly represents one of the mechanisms by which UFH exerts its anti-inflammatory effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号