首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homocysteine is an intermediate of the one‐carbon (1‐C) pathway and increased concentrations have been related to neural crest‐related congenital anomalies. The neural crest and the 1‐C pathway might be involved also in the etiology of Congenital Diaphragmatic Hernia (CDH). In 22 CDH and 28 control newborns and their mothers, general characteristics were obtained by standardized questionnaires. The 1‐C pathway intermediates total homocysteine (tHcy), S‐adenosylmethionine (SAM), and S‐adenosylhomocysteine (SAH) were determined in cord blood. Correlations between maternal and newborn factors and risk estimates were investigated by univariate and multivariable logistic regression analyses. Birth weight (2962 vs. 3418 gram; p < 0.001) was lower and gestational age (270 vs. 277 days; p = 0.006) was shorter in case children. Control mothers were slightly older (32 vs. 35 year; p = 0.05). Other characteristics were comparable between case and control children and mothers. The concentrations of homocysteine, SAM and SAH, and the SAM/SAH ratio were comparable (tHcy: 8.57 vs. 8.56 μmol/l, p = 0.99; SAM: 152.7 vs. 157.3 nmol/l, p = 0.76; SAH: 43.5 vs. 48.9, p = 0.26; ratio: 3.8 vs. 3.5, p = 0.50). Maternal and newborn characteristics were not correlated to the biomarker concentrations. In conclusion, the biomarkers of methylation determined in cord blood are not associated with CDH risk. Maternal and child characteristics could not predict newborn biomarker concentrations of the 1‐C pathway. Birth Defects Research (Part A) 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
BACKGROUND: Alterations in maternal folate and homocysteine metabolism are associated with neural tube defects (NTDs). The role played by specific micronutrients and metabolites in the causal pathway leading to NTDs is not fully understood. METHODS: We conducted a case-control study to investigate the association between NTDs and maternal alterations in plasma micronutrients and metabolites in two metabolic pathways: methionine remethylation and glutathione transsulfuration. Biomarkers were measured in a population-based sample of women who had NTD-affected pregnancies (n = 43) and a control group of women who had a pregnancy unaffected by a birth defect (n = 160). We compared plasma concentrations of folate, vitamin B(12), vitamin B(6), methionine, S-adenosylmethionine (SAM), s-adenosylhomocysteine (SAH), adenosine, homocysteine, cysteine, and reduced and oxidized glutathione between cases and controls after adjusting for lifestyle and sociodemographic factors. RESULTS: Women with NTD-affected pregnancies had significantly higher plasma concentrations of SAH (29.12 vs. 23.13 nmol/liter, P = .0011), adenosine (0.323 vs. 0.255 mumol/liter; P = .0269), homocysteine (9.40 vs. 7.56 micromol/liter; P < .001), and oxidized glutathione (0.379 vs. 0.262 micromol/liter; P = .0001), but lower plasma SAM concentrations (78.99 vs. 83.16 nmol/liter; P = .0172) than controls. This metabolic profile is consistent with reduced methylation capacity and increased oxidative stress in women with affected pregnancies. CONCLUSIONS: Increased maternal oxidative stress and decreased methylation capacity may contribute to the occurrence of NTDs. Further analysis of relevant genetic and environmental factors is required to define the basis for these observed alterations.  相似文献   

3.
We report that the maternal folate status can influence folate-mediated one-carbon metabolism and DNA methylation in the placenta. Thirty-six female Sprague-Dawley rats were divided into the following three dietary groups: folate-supplemented (FS; 8 mg/kg folic acid, n=12), homocystine- and folate-supplemented (HFS; 0.3% homocystine and 8 mg/kg folic acid, n=12) and homocystine-supplemented and folate-deficient (HFD; 0.3% homocystine and no folic acid, n=12). The animals were fed their experimental diets from 4 weeks prior to mating until Day 20 of pregnancy (n=7-9 per group). The HFS diet increased the plasma homocysteine and placental DNA methylation but did not affect plasma folate, vitamin B-12, S-adenosyl methionine (SAM) or S-adenosyl homocysteine (SAH) levels, or the SAM/SAH ratio in the liver and placenta compared with the FS diet. The HFD diet induced severely low plasma folate concentrations, with plasma homocysteine levels increasing up to 100 micromol/L, and increased hepatic SAH and decreased placental SAM levels and SAM/SAH ratio in both tissues, with a concomitant decrease in placental DNA methylation. Placental DNA methylation was significantly correlated with placental (gamma=0.819), hepatic (gamma=0.7) and plasma (gamma=0.752) folate levels; plasma homocysteine level (gamma=-0.688); hepatic SAH level (gamma=-0.662) and hepatic SAM/SAH ratio (gamma=0.494). These results suggest that the maternal folate status in hyperhomocysteinemic rats influences the homeostasis of folate-mediated one-carbon metabolism and the methyl pool, which would, in turn, affect placental DNA methylation by altering the methylation potential of the liver.  相似文献   

4.
One-carbon metabolism is a network of metabolic pathways, disruption of which has been associated with cancer and other pathological conditions. Biomarkers of these pathways include homocysteine (HCY), S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH). A better understanding of the relationships between these biomarkers is needed for their utilization in research. This study investigated the relationships between fasting concentrations of plasma HCY, SAM, SAH and the ratio of SAM:SAH, and serum folate, vitamin B(12) and creatinine in a healthy adult population. A cross-sectional study recruited 678 volunteers; only subjects with complete data (n = 581) were included in this analysis. Correlations were used to examine bivariate relationships among the biomarkers and multivariate linear regression determined independent relationships with HCY, SAM and SAH treated as dependent variables in separate models. Multivariate logistic regression examined determinants of a low SAM:SAH ratio (defined as having a SAM:SAH ratio in the bottom quartile and SAH value in the top quartile). HCY correlated inversely with folate and vitamin B(12) and weakly correlated with SAH and creatinine. Both SAM and SAH correlated with creatinine but were independent of serum folate and vitamin B(12). In multivariate analyses, folate, vitamin B(12), creatinine, sex and age were associated with HCY; age and creatinine were determinants of SAM, and sex and creatinine determinants of SAH. Finally, male sex and increasing creatinine levels were associated with having a low SAM:SAH ratio. Findings suggest that HCY, SAM and SAH are relatively independent parameters and reflect distinct aspects of one-carbon metabolism.  相似文献   

5.
Previous studies have shown that L-arginine (L-Arg) administration to apoE-/-/iNOS-/- double knockout mice (dKO) on a Western diet paradoxically results in an increase in atherosclerotic lesion size. We hypothesized that the potential beneficial effects of L-Arg could be offset, in part, by the byproducts of L-Arg catabolism, especially the atherogenic risk factor, homocysteine. In the kidney, L-Arg is converted to L-ornithine and guanidinoacetate (GAA) by L-arginine-glycine amidinotransferase. The efficient transmethylation of GAA by an S-adenosyl-methionine (SAM)-dependent methyltransferase in liver yields creatine and S-adenosylhomocysteine (SAH), which is readily hydrolyzed to homocysteine and adenosine. We, therefore, measured total plasma homocysteine in the dKO mice and control mice. We found that L-Arg supplementation caused a 37% increase in total plasma homocysteine (tHcy) levels in dKO mice compared to controls not treated with L-Arg (5.2+/-2.2 vs 3.8+/-1.5 microM Hcy, p<0.04). In a liver cell line, HepG2, addition of 10 and 50 microM GAA in the presence of 50 microM L-methionine (L-Met) increased tHcy production by approximately 1.47 (p<0.0001) and 2.3-fold (p<0.0001), respectively. In the presence of additional 100 microM L-Met, baseline homocysteine production was elevated by 20% (p<0.005), and 10 and 50 microM GAA augmented homocysteine production by an additional 1.88- (p<0.0001) and 3.4-fold (p<0.001), respectively, compared with 50 microM L-Met. These data suggest that increased concentrations of a methyl acceptor, such as L-Arg-derived GAA, drives SAM-dependent-methylation and consequent homocysteine formation. Furthermore, L-Met levels can also influence homocysteine production likely by regulating the synthesis of the methyl donor SAM. Epidemiological studies have suggested that homocysteine is a graded risk factor. In animal models, modestelevations of homocysteine can cause endothelial dysfunction and augment atherosclerosis. Our data suggest that L-arginine supplementation may contribute to vascular injury and atherogenesis under some circumstances by elevating homocysteine levels.  相似文献   

6.
BACKGROUND: Maternal diabetes increases the risk of hypertrophic cardiomyopathy in the fetus. As signaling via the C-type natriuretic peptide (CNP) specific receptor protects against cardiac hypertrophy, we examined whether maternal type 1 diabetes affects the plasma concentrations of proCNP-derived peptides in newborn infants. METHODS: Plasma concentrations of proCNP-derived peptides were measured in umbilical cord plasma and human placental tissue extracts using sequence-specific radioimmunoassays raised against N-terminal and C-terminal proCNP regions, respectively. RESULTS: The median proCNP concentrations were similar in umbilical cord plasma from pregnant women with and without type 1 diabetes (17 pmol/L vs. 19 pmol/L, P not significant) and did not correlate with the proBNP concentrations in the same samples. However, the molar ratio between the proCNP and the CNP peptide was increased in umbilical cord plasma compared to adult plasma (4.6 vs. 1.1), which parallels our earlier findings for proBNP and BNP peptides. CONCLUSIONS: There is a discordant expression of CNP and BNP peptides in newborn infants of mothers with diabetes. Moreover, fetal metabolism of proCNP and CNP appears to differ from healthy adults. The precise mechanism underlying these differences warrants further investigation.  相似文献   

7.
Severe hyperhomocysteinemia (HHC) is associated with atherosclerosis. In hemodialysis (HD) patients, one of the main causes of death is cardiovascular disease. In animals, trace elements such as cobalt, copper, iron, and nickel ameliorated vitamin B(12) deficiency-induced HHC. However, correlations between plasma total homocysteine (tHcy) and trace elements in HD patients have not been investigated. Therefore, tHcy, folate, vitamin B(12), trace elements (cobalt, copper, iron, and nickel), and some laboratory parameters such as serum total protein, albumin, transferrin, ferritin, C-reactive protein (CRP), and interleukin-6 concentrations were determined in 122 hemodialysis patients. When patients were divided into groups according to their tHcy, we found no significant differences in concentrations of cobalt, copper, and total protein, while nickel was higher, and folate, vitamin B(12), and iron were lower in patients with lower than higher tHcy. In univariate regression analysis, tHcy negatively correlated with concentrations of folate (r = -0.302, p < 0.006), vitamin B(12) (r = -0.347, p < 0.0001), nickel (r = -0.289, p < 0.006), and CRP (r = -0.230, p < 0.02) and positively with serum albumin (r = 0.316, p < 0.0004) and hemoglobin (r = 0.329, p < 0.0001) values. No relationship between tHcy and serum concentrations of cobalt, copper, iron, or other laboratory parameters was found in HD patients. The effect of cobalt and nickel on homocysteine production was assessed in human peripheral mononuclear cells (PBMCs). Nickel but not cobalt at concentrations found in HD patients significantly inhibited homocysteine, cysteine, and S-adenosylhomocysteine production in human PBMCs. These results suggest that nickel might also be involved in the regulation of the methionine-folate cycle in humans, as was demonstrated in animal experiments.  相似文献   

8.

Background

Maternal smoking has been associated with elevated risk of type 2 diabetes among the offspring in adulthood. The mechanisms underlying this fetal “programming” effect remain unclear. The present study sought to explore whether maternal smoking affects metabolic health biomarkers in fetuses/newborns.

Methods

In a prospective singleton pregnancy cohort (n = 248), we compared metabolic health biomarkers in the newborns of smoking and non-smoking mothers. Outcomes included cord plasma insulin, proinsulin, insulin-like growth factor I (IGF-I), IGF-II, leptin and adiponectin concentrations, glucose-to-insulin ratio (an indicator of insulin sensitivity) and proinsulin-to-insulin ratio (an indicator of β-cell function).

Results

Independent of maternal (glucose tolerance, age, ethnicity, parity, education, body mass index, alcohol use) and infant (sex, gestational age, birth weight z score, mode of delivery, cord blood glucose concentration) characteristics, the newborns of smoking mothers had lower IGF-I concentrations (mean: 6.7 vs. 8.4 nmol/L, adjusted p = 0.006), and marginally higher proinsulin-to-insulin ratios (0.94 vs. 0.72, adjusted p = 0.06) than the newborns of non-smoking mothers. Cord plasma insulin, proinsulin, IGF-II, leptin and adiponectin concentrations and glucose-to-insulin ratios were similar in the newborns of smoking and non-smoking mothers.

Conclusions

Maternal smoking was associated with decreased fetal IGF-I levels, and borderline lower fetal β-cell function. Larger cohort studies are required to confirm the latter finding. The preliminary findings prompt the hypothesis that these early life metabolic changes may be involved in the impact of maternal smoking on future risk of metabolic syndrome related disorders in the offspring.  相似文献   

9.
Leptin concentrations are elevated in newborn infants of diabetic mothers   总被引:7,自引:0,他引:7  
BACKGROUND: Infants of diabetic mothers have been characterized by macrosomia due to hyperinsulinism. A relation has been observed between circulating levels of leptin and the intrauterine growth pattern. METHODS: We studied the leptin and insulin concentrations in the cord blood of 29 newborn infants of mothers with type 1 diabetes (iT1DM), 70 newborn infants of mothers with gestational diabetes and 105 newborn infants of nondiabetic mothers. RESULTS: There were significant differences (p < 0.001) between the 3 groups with the highest leptin levels 24.9 microg/l (range 1.7-94.1) in infants of mothers with iT1DM and the second-highest levels 14.0 microg/l (range 2.6-74.9) in infants of mothers with gestational diabetes (iGDM), whereas the control infants had the lowest leptin levels 10.0 microg/l (range 0.10-45.9). Girls had higher leptin concentrations than boys among the iT1DM and control infants. The insulin concentrations were 18.1 mU/l (range 1.9-123.3), 6.1 mU/l (range 1.1-51.4) and 3.6 mU/l (range 0.5-21.5) in the 3 groups (p < 0.001), respectively. A significant correlation was observed between leptin and insulin concentrations in iGDM and control infants (r = 0.51; p < 0.001 and r = 0.25; p < 0.05). Both absolute and relative birth weights correlated with leptin levels in all 3 groups (r = 0.60, p = 0.01 and r = 0.51, p = 0.05 in iT1DM; r = 0.51 and 0.56, p < 0.001 in iGDM and r = 0.42 and 0.59, p < 0.001 in control infants). CONCLUSION: Our results confirm the relation between leptin concentrations and birth weight. They also suggest that leptin may be involved in the increased accumulation of adipose tissue characteristic of infants of diabetic mothers.  相似文献   

10.
Contradictory results for concentrations of vitamin B12, holotranscobalamin (holoTC), and methylmalonic acid (MMA) have been reported. We tested the hypothesis that the extracellular vitamin B12 markers are not reflecting the intracellular vitamin B12-dependent biochemical reactions in individuals with type 2 diabetes. The study included 92 patients with diabetes and 72 controls with similar age and sex distribution. We measured vitamin B12 markers [MMA, total serum vitamin B12, holoTC, total homocysteine (tHcy)], red blood cell (RBC)-B12, and the plasma concentrations of the methylation markers [S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH)]. In comparison to controls, diabetic patients showed significantly higher concentrations of plasma SAH (median 15.1 vs. 11.8 nmol/L; p < 0.001) and lower SAM/SAH ratio (9.1 vs. 8.2; p = 0.006). Concentrations of total vitamin B12 and holoTC did not differ significantly between the groups, but plasma MMA concentrations were significantly higher in diabetics (250 vs. 206 nmol/L). However, RBC-B12 was lower in diabetics compared to controls (median 230 vs. 260 pmol/L; p = 0.001). The inverse correlation between MMA and RBC-B12 was stronger in the controls compared to that in the patients (correlation coefficient in controls R = −0.446, p = 0.001; in patients R = −0.289, p = 0.022). Metformin treatment was associated with a lower total serum vitamin B12, but a comparable RBC-B12 and a slightly lower MMA and better methylation index. In conclusion, patients with type 2 diabetes showed normal extracellular vitamin B12, but disturbed intracellular B12-dependent biochemical reactions. Metformin treatment was associated with low serum vitamin B12 and improved intracellular vitamin B12 metabolism despite low serum vitamin B12.  相似文献   

11.
IntroductionIrisin is considered to be a myokine and adipokine that may also participate in reproductive functions, as it increases significantly throughout pregnancy. However, the regulation of circulating irisin and its relationship with other cytokines has not been assessed thus far in pregnant women and their offspring.ObjectiveThe aim of this study was to evaluate differences in irisin and cytokine concentrations between women at the end of pregnancy and their offspring, as well as the relationship between maternal and newborn irisin and maternal and newborn biomarkers.MethodsTwenty-eight mother/newborn pairs were included in this study. The following biomarkers were evaluated in maternal venous and arterial umbilical cord blood samples: irisin, 27 cytokine panel, total antioxidant capacity (TAC), total plasma protein, and free fatty acid concentration.ResultsThe newborns had significantly lower irisin concentrations compared to their mothers (p = 0.03), but this difference was present only in babies born from mothers without labor prior to cesarean section delivery (p = 0.01). No significant differences in maternal and newborn irisin concentrations were found between diabetic and non-diabetic mothers or between overweight/obese and normal weight mothers. A significant positive correlation was found between TAC level and irisin concentration in newborns. Maternal and newborn interleukin (IL)-1β, IL-1RA, IL-5, IL-7, and interferon gamma-induced protein (IP)-10 levels were significantly positively correlated with irisin concentrations in both study groups. In addition, maternal IL1β, IL-5, IL-7, and IP-10 levels positively predicted maternal irisin concentrations. Furthermore, arterial cord blood TAC and IL-1β and IL1-RA levels positively predicted newborn irisin concentrations. Multiple regression analyses showed that maternal IL-13 negatively predicted offspring irisin levels (p = 0.03) and that maternal IL-1β positively predicted newborn irisin concentrations (p = 0.046).ConclusionNo evidence was found that serum irisin concentrations in mothers at pregnancy termination or those of their newborns correlated with maternal body mass index, the presence of diabetes mellitus, or free fatty acid levels. However, the results of this study indicated that cytokines might predict irisin concentration in mothers and their offspring, although interactions between irisin levels during pregnancy and the newborn have not yet been fully elucidated.  相似文献   

12.
S-Adenosylmethionine and S-adenosylhomocysteine (SAH), as the substrate and product of essential cellular methyltransferase reactions, are important metabolic indicators of cellular methylation status. Chronic elevation of SAH, secondary to the homocysteine-mediated reversal of the SAH hydrolase reaction, reduces methylation of DNA, RNA, proteins, and phospholipids. High affinity binding of SAH to the active site of cellular methyltransferases results in product inhibition of the enzyme. Using a sensitive new high pressure liquid chromatography method with coulometric electrochemical detection, plasma SAH levels in healthy young women were found to increase linearly with mild elevation in homocysteine levels (r = 0.73; p < 0.001); however, S-adenosylmethionine levels were not affected. Plasma SAH levels were positively correlated with intracellular lymphocyte SAH levels (r = 0.81; p < 0.001) and also with lymphocyte DNA hypomethylation (r = 0.74, p < 0.001). These results suggest that chronic elevation in plasma homocysteine levels, such as those associated with nutritional deficiencies or genetic polymorphisms in the folate pathway, may have an indirect and negative effect on cellular methylation reactions through a concomitant increase in intracellular SAH levels.  相似文献   

13.
Genetic and nutritional factors play a role in determining the functionality of the one-carbon (1C) metabolism cycle, a network of biochemical reactions critical to intracellular processes. Genes encoding enzymes for methylenetetrahydrofolate reductase (MTHFR) and methionine synthase (MTR) may determine biomarkers of the cycle including homocysteine (HCY), S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH). MTHFR C677T is an established genetic determinant of HCY but less is known of its effect on SAM and SAH. Conversely, the relationship between MTR A2756G and HCY remains inconclusive, and its effect on SAM and SAH has only been previously investigated in a female-specific population. Folate and vitamin B12 are essential substrate and cofactor of 1C metabolism; thus, consideration of gene–nutrient interactions may clarify the role of genetic determinants of HCY, SAM and SAH. This cross-sectional study included 570 healthy volunteers from Kingston, Ontario, Ottawa, Ontario and Halifax, Nova Scotia, Canada. Least squares regression was used to examine the effects of MTR and MTHFR polymorphisms on plasma HCY, SAM and SAH concentrations; gene–gene and gene–nutrient interactions were considered with the inclusion of cross-products in the model. Main effects of MTR and MTHFR polymorphisms on HCY concentrations were observed; however, no gene–gene or gene–nutrient interactions were found. No association was observed for SAM. For SAH, interactions between MTR and MTHFR polymorphisms, and MTHFR polymorphism and serum folate were found. The findings of this research provide evidence that HCY and SAH, biomarkers of 1C metabolism, are influenced by genetic and nutritional factors and their interactions.  相似文献   

14.
Homocysteine is a sulfur-containing, nonproteinogenic, neurotoxic amino acid biosynthesized during methyl cycles after demethylation of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH) and subsequent hydrolysis of SAH into homocysteine and adenosine. Formed homocysteine is either catabolized into cystathionine (transsulfuration pathway) by cystathionine β-synthase, or remethylated into methionine (remethylation pathway) by methionine synthase. To demonstrate the specificity of Ras-elicited effects on the activity of methyl cycles, wild-type pheochromocytoma PC12, mutant oncogenic rasH gene (MVR) expressing PC12 pheochromocytoma and normal c-rasH stably transfected M-CR3B cells were incubated with the Nω-nitro-l-arginine methyl ester (l-NAME), and manumycin, (inhibitors of nitric oxide synthase and farnesyltransferase, respectively). We have found that l-NAME significantly changes the SAM/SAH ratio in both MCR and MVR cells. Moreover, these alterations have reciprocal character; in the MCR cells, the SAM/SAH ratio was raised, whereas in the MVR cells this ratio was decreased. We conclude that depletion of endogenous NO with l-NAME increased the production of SAH only in cells with mutated oncogenic RasH, possibly through enhancement of production of reactive oxygen species (ROS). Oxidative stress can increase cystathionine β-synthase activity that switches methyl cycles from remethylation into transsulfuration pathway to maintain the intracellular glutathione pool (essential for the redox-regulating capacity of cells) via an adaptive process.  相似文献   

15.
Transmethylation reactions utilize S-adenosylmethionine (SAM) as a methyl donor and are central to the regulation of many biological processes: more than fifty SAM-dependent methyltransferases methylate a broad spectrum of cellular compounds including DNA, histones, phospholipids and other small molecules. Common to all SAM-dependent transmethylation reactions is the release of the potent inhibitor S-adenosylhomocysteine (SAH) as a by-product. SAH is reversibly hydrolyzed to adenosine and homocysteine by SAH hydrolase. Hyperhomocysteinemia is an independent risk factor for cardiovascular disease. However, a major unanswered question is if homocysteine is causally involved in disease pathogenesis or simply a passive and indirect indicator of a more complex mechanism. A chronic elevation in homocysteine levels results in a parallel increase in intracellular or plasma SAH, which is a more sensitive biomarker of cardiovascular disease than homocysteine and suggests that SAH is a critical pathological factor in homocysteine-associated disorders. Previous reports indicate that supplementation with folate and B vitamins efficiently lowers homocysteine levels but not plasma SAH levels, which possibly explains the failure of homocysteine-lowering vitamins to reduce vascular events in several recent clinical intervention studies. Furthermore, more studies are focusing on the role and mechanisms of SAH in different chronic diseases related to hyperhomocysteinemia, such as cardiovascular disease, kidney disease, diabetes, and obesity. This review summarizes the current role of SAH in cardiovascular disease and its effect on several related risk factors. It also explores possible the mechanisms, such as epigenetics and oxidative stress, of SAH.This article is part of a Directed Issue entitled: Epigenetic dynamics in development and disease.  相似文献   

16.
AIMS: To investigate the role of ghrelin in maternal and fetal metabolism, we determined its value in maternal smoking, a specific cause of reduced placenta function and fetal growth. METHODS: In 85 normal term pregnancies, 42 in smoking and 43 in non-smoking mothers, we measured ghrelin in the maternal blood at the onset of labor and in the cord blood of their 85 singletons immediately after birth. We determined the relationships between ghrelin and placental GH (PGH), pituitary GH (pitGH), and IGF-I. RESULTS: The newborns of smoking mothers weighed 0.24 kg less (p < 0.05) than those of non-smoking mothers. Cord blood ghrelin was 71% higher and PGH and cord blood IGF-I were 34% and 32% lower, respectively, in the pregnancies of smoking compared with non-smoking mothers (p < 0.05). Cord blood ghrelin was unrelated to pitGH and cord blood IGF-I. Maternal ghrelin was unchanged in smoking mothers, increased with maternal fasting duration (r = 0.26, p < 0.05), showed no correlation with PGH and negative correlation with cord blood IGF-I (r = -0.42, p < 0.01). CONCLUSION: The decrease in placental function and fetal growth in smoking mothers is associated with an increase in cord blood ghrelin, and no change in maternal ghrelin. Maternal ghrelin concentration increases with fasting, and is negatively correlated with cord blood IGF-I: it may signal a reduction in the level of nutrients available for placental transfer. No correlation supports a role for ghrelin in PGH or pitGH secretion.  相似文献   

17.
Summary. Mild hyperhomocysteinaemia is a postulated risk factor for occlusive vascular disease, including stroke. Subarachnoid haemorrhage (SAH) has an annual incidence of 10–20 per 100,000 and accounts for 5–10% of all strokes. Measurement of plasma total homocysteine (tHcy) in a cohort of vitamin B12 and folate replete patients did not reveal any association between tHcy and the aetiology of SAH. Received November 6, 2000 Accepted February 12, 2001  相似文献   

18.
Summary. Elevated plasma total homocysteine (tHcy) has been suggested to be an additional risk factor for cardiovascular disease in subjects with impaired glucose tolerance (IGT) and Type 2 diabetes (T2D). In order to investigate whether an insulin resistant/chronic hyperinsulinemic situation in male diabetic and prediabetic subjects directly influences the tHcy metabolism, fasting tHcy and post-methionine load tHcy plasma levels (PML-tHcy) were determined in 15 men with IGT, 13 men with newly dia-gnosed T2D, and 16 normoglycemic controls (NGT). Fasting tHcy (IGT, 13.1 ± 4.6; T2D, 12.8 ± 4.0; NGT, 10.7 ± 4.4 μmol/L) and PML-tHcy (IGT, 46.5 ± 17.39; T2D, 41.1 ± 6.8; NGT, 38.0 ± 9.7 μmol/L) showed no differences between the groups. Fasting tHcy and PML-tHcy correlated with fasting proinsulin (r = 0.395, p < 0.05; r = 0.386, p< 0.05) and creatinine (r = 0.489, p < 0.01; r = 0.339, p < 0.05), resp. Multiple regression analysis showed only a relationship between fasting tHcy and creatinine. No relationships have been found between fasting tHcy and PML-tHcy, resp., and indicators of an insulin resistant state, e.g., insulin and proinsulin, as well as serum cobalamin and folate concentrations. In conclusion, our data suggest that the degree of glucose intolerance has no direct impact on the metabolism of homocysteine. However, tHcy levels tend to be elevated with the development of nephropathy, indicating an association between tHcy and renal function in these subjects. Received May 11, 1999  相似文献   

19.
Maternal exposures may induce chromosome damage and birth defects in the fetus. Polymorphic variation in genes coding for enzymes involved in metabolic activation and detoxification of environmental procarcinogens may account for some of the differences in chromosome aberration frequencies in newborns. In this study, 40 mothers completed questionnaires regarding exposures they received during their pregnancy. Umbilical cord blood samples were analyzed for chromosome aberrations. An average of 1020 metaphase cell equivalents (equal to 1020 G-banded cells) were examined from each newborn. In 26 of the newborns, genotyping analysis was performed for genes functioning in metabolic activation and detoxification (cytochrome P450 genes: CYP2D6 and CYP1A1, and phase II genes: NAT1, NAT2, GSTT1, GSTM1, GSTP1, and epoxide hydrolase). A significant association between the CYP1A1 MspI polymorphism and chromosome aberration frequencies was observed in the newborns (p=0.02), with heterozygotes showing higher aberration frequencies than the wild type homozygotes. Some large differences in chromosome aberration frequencies for other genotypes were also noted, but these were not statistically significant. Exposure to tobacco smoke in utero also appeared to increase translocation frequencies. The mean frequency of translocations per 100 cell equivalents from newborns of mothers who smoked during pregnancy was significantly higher than that of newborns whose mothers did not smoke (0.21 vs. 0.11, respectively, p=0.045).  相似文献   

20.
Micronutrient research typically focuses on analyzing the effects of single or a few nutrients on health by analyzing a limited number of biomarkers. The observational study described here analyzed micronutrients, plasma proteins, dietary intakes, and genotype using a systems approach. Participants attended a community-based summer day program for 6–14 year old in 2 years. Genetic makeup, blood metabolite and protein levels, and dietary differences were measured in each individual. Twenty-four-hour dietary intakes, eight micronutrients (vitamins A, D, E, thiamin, folic acid, riboflavin, pyridoxal, and pyridoxine) and 3 one-carbon metabolites [homocysteine (Hcy), S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH)], and 1,129 plasma proteins were analyzed as a function of diet at metabolite level, plasma protein level, age, and sex. Cluster analysis identified two groups differing in SAM/SAH and differing in dietary intake patterns indicating that SAM/SAH was a potential marker of nutritional status. The approach used to analyze genetic association with the SAM/SAH metabolites is called middle-out: SNPs in 275 genes involved in the one-carbon pathway (folate, pyridoxal/pyridoxine, thiamin) or were correlated with SAM/SAH (vitamin A, E, Hcy) were analyzed instead of the entire 1M SNP data set. This procedure identified 46 SNPs in 25 genes associated with SAM/SAH demonstrating a genetic contribution to the methylation potential. Individual plasma metabolites correlated with 99 plasma proteins. Fourteen proteins correlated with body mass index, 49 with group age, and 30 with sex. The analytical strategy described here identified subgroups for targeted nutritional interventions.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0403-9) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号