首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Evaluation of the technology for analysis of incorporation of [3H]TTP into nuclei of Chinese hamster fibroblast and HeLa nuclei was performed. The synthesis of the DNA was dependent on all four deoxyribonucleotide triphosphates, Mg2+ and ATP. Nuclei pelleted after 5% trichloroacetic acid or 3 : 1 (methanol-acetic acid) precipitation at 4 °C resulted in an aggregate which could not be adequately resuspended for further washing. This problem was circumvented using 50% acetic acid fixation at 4 °C. Using this procedure the pellet of nuclei could be washed, removing much of radioactivity with minimal loss of nuclei, indicating adventitious adsorption of radioactive DNA. This was confirmed by sedimentation of unlabeled nuclei through the reaction mixture containing radioactive chromatin. We conclude that the existing methodologies for studying DNA synthesis in isolated nuclei have been inadequate.  相似文献   

2.
3.
DNA synthesis by isolated embryonic nuclei of Xenopus   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
Effect of ATP analogs of DNA synthesis in isolated nuclei   总被引:1,自引:0,他引:1  
Optimal synthesis of DNA in Ehrlich ascites cell nuclei is shown to be dependent upon the presence of both ATP and ADP. ATP can be replaced only by dATP. An ATP regenerating system is less effective than ATP alone or ATP in combination with ADP. ATP does not stimulate DNA synthesis primarily by maintenance of deoxyribonucleotide triphosphate levels. When the inhibition of DNA synthesis by high ATP levels is taken into account, the ATP analogs adenosine 5'-(alpha,beta-methylene)triphosphate, adenosine 5'-(beta, gamma-methylene)-triphosphate, and adenosine 5'-(beta, gamma-imino)triphosphate can neither substitute for ATP nor inhibit the ATP stimulation of DNA synthesis. Adenosine 5'-(3-thio)triphosphate, however, is a competitive inhibitor of DNA synthesis.  相似文献   

6.
7.
Nuclei, isolated from polyoma virus-infected mouse 3T6 cells, were incubated under condtions suitable for polyoma DNA synthesis. By using electrom microscopy and standard regression statistics, it was shown that replication is mainly unidirectional in a large number of molecules, indicating the presence of inactive replication forks. The replication forks were inactivated randomly, and the defect seemed to be present from the beginning of the in vitro incubation.  相似文献   

8.
Iron-induced DNA damage and synthesis in isolated rat liver nuclei.   总被引:2,自引:1,他引:2       下载免费PDF全文
Incubation of iron with isolated rat liver nuclei stimulated fragmentation of single-stranded DNA, incorporation of [3H]thymidine into DNA and the binding of 59Fe to DNA. FeCl2 was about twice as active as FeCl3. Lipid peroxidation took place in nuclei incubated with FeCl2, but not with FeCl3. Generation of reactive forms of oxygen was required for iron-mediated DNA damage, but evidence for direct interaction of reactive oxygen with DNA was not found. Apparent adducts of iron bound to DNA seemed to be formed by an enzymic mechanism.  相似文献   

9.
Cytosol obtained by centrifugation of cytoplasm from synchronized S-phase HeLa cells at 200 000 × g for 30 min had a stimulatory effect on the rate and extent of DNA synthesis in isolated nuclei. The cytosol preserved the ability of isolated nuclei to initiate early nascent intermediates (primary DNA pieces). The stimulatory activity was partially separated from the DNA polymerase activity present in the cytosol.  相似文献   

10.
11.
Nuclei were isolated from synchronized plasmodia of a true slime mold, Physarum polycephalum, in S-phase, and DNA synthesis in the nuclei was studied in vitro. The nuclei catalyzed DNA synthesis at the rate of 0.7 ng DNA/1.0 X 10(6) nuclei/30 min at 25 degrees C, which was 5 times higher than that catalyzed in G2-phase nuclei. The DNA synthesis required Mg2+, four kinds of deoxyribonucleoside 5'-triphosphates and ATP, suggesting that the mode of synthesis is a replicative-type, but not a repair-one. Sedimentation analysis of the DNA products revealed that the nuclei produced 2-4S DNA fragments mainly during a 30-sec pulse incubation, and 2-4S, 5-12S and longer fragments during a 15-min incubation. The pulse- and chase-labeling experiments showed that the 2-4S fragments shifted discontinuously to longer fragments. These results indicate that the nuclei catalyze the formation of 2-4S Okazaki fragments first and then their subsequent ligation. Eighty % and 96% of the DNA synthesis was inhibited by 200 micrograms/ml aphidicolin and 40 mM N-ethylmaleimide, respectively, but 80% of the activity was resistant to 100 microM 2',3'-dideoxythymidine 5'-triphosphate. These results suggest that the DNA synthesis is catalyzed by the alpha-type DNA polymerase of Physarum polycephalum.  相似文献   

12.
We have used an in vitro assay to study the induction of DNA synthesis by cytoplasmic extracts from the actively growing cell line Molt 4 in nuclei isolated from quiescent human lymphocytes. The TTP incorporation which takes place in these nuclei has been shown to be inhibitable by serine protease inhibitors, particularly aprotinin. This DNA synthesis has also been proposed to reflect the initiation of true DNA replication; however, we find evidence that much, if not most, of this incorporation is due to nonreplicative synthesis initiated on primer templates formed by calcium-dependent activation of the nuclear chromatin substrate. The principal DNA polymerase supplied by the Molt 4 extract appears to be polymerase alpha and the results show that the activated chromatin is a substrate for purified bacterial DNA polymerases. DNA synthesis is significantly enhanced by preincubation at 37 degrees C in the presence of calcium, and the almost complete inhibition of DNA synthesis induced by extracts or bacterial polymerases in the presence of T4 ligase suggests that this chromatin activation involves calcium-dependent endonucleases. Nevertheless, DNA synthesis in the isolated nuclei, with both Molt 4 extracts and bacterial polymerases, is substantially inhibited by addition of serine protease inhibitors, with aprotinin the most potent of those tested on a molar basis. Thus, the results suggest that specific proteolytic activity is required before nicked or damaged nuclear DNA can serve as an acceptable substrate for DNA polymerase activity.  相似文献   

13.
Nuclei were isolated from synchronized HeLa cells in the S-phase by a modification of the non-aqueous method described by Kirsch et al. (Science (1970) 168, 1592-1595). The method involved lyophilization of the cells, homogenization in non-aqueous glycerol and centrifugation in a gradient of 0-35% (w/w) 3-chloro-1,2-propanediol in glycerol. Such nucleic incorporated deoxyribonucleotides into DNA when incubated in an aqueous buffer containing Mg2+, ATP, dATP, dGTP, dCTP and dTTP. The product was sensitive to DNAase and banded with bulk DNA in isopycnic centrifugation. Sedimentation of the product in alkaline sucrose gradients after labelling of the nuclei for 2 min revealed labelled material in the 5 S peak and in the 18 S area. The material in the 5 S peak moved into the 12 S area after a 13 min chase.  相似文献   

14.
15.
DNA synthesis in isolated nuclei of morula-stage embryos of sea urchin was studied. Embryonic extracts of cleaving embryos (but not unfertilized eggs) stimulated DNA synthesis in the in vitro system. A stimulatory factor was identified which eluted at 0.52 M KCl during chromatography on DEAE-cellulose column. This factor was inactivated by heat treatment and trypsin digestion, and was resolved into three active peaks by gel filtration (Stokes radii of 6.3, 4.6, and 4.1 nm, respectively).  相似文献   

16.
17.
Ribosomal RNA synthesis in isolated nuclei   总被引:24,自引:0,他引:24  
  相似文献   

18.
Protein synthesis in isolated cell nuclei   总被引:45,自引:0,他引:45       下载免费PDF全文
1. Nuclei prepared from calf thymus tissue in a sucrose medium actively incorporate labelled amino acids into their proteins. This is an aerobic process which is dependent on nuclear oxidative phosphorylation. 2. Evidence is presented to show that the uptake of amino acids represents nuclear protein synthesis. 3. The deoxyribonucleic acid of the nucleus plays a role in amino acid incorporation. Protein synthesis virtually ceases when the DNA is removed from the nucleus, and uptake resumes when the DNA is restored. 4. In the essential mechanism of amino acid incorporation, the role of the DNA can be filled by denatured or partially degraded DNA, by DNAs from other tissues, and even by RNA. Purine and pyrimidine bases, monoribonucleotides, and certain dinucleotides are unable to substitute for DNA in this system. 5. When the proteins of the nucleus are fractionated and classified according to their specific activities, one finds the histones to be relatively inert. The protein fraction most closely associated with the DNA has a very high activity. A readily extractable ribonucleoprotein complex is also extremely active, and it is tempting to speculate that this may be an intermediary in nucleocytoplasmic interaction. 6. The isolated nucleus can incorporate glycine into nucleic acid purines, and orotic acid into the pyrimidines of its RNA. Orotic acid uptake into nuclear RNA requires the presence of the DNA. 7. The synthesis of ribonucleic acid can be inhibited at any time by a benzimidazole riboside (DRB) (which also retards influenza virus multiplication (11)). 8. The incorporation of amino acids into nuclear proteins seems to require a preliminary activation of the nucleus. This can be inhibited by the same benzimidazole derivative (DRB) which interferes with RNA synthesis, provided that the inhibitor is present at the outset of the incubation. DRB added 30 minutes later has no effect on nuclear protein synthesis. These results suggest that the activation of the nucleus so that it actively incorporates amino acids into its proteins requires a preliminary synthesis of ribonucleic acid. 9. Together with earlier observations (27, 28) on the incorporation of amino acids by cytoplasmic particulates, these results show that protein synthesis can occur in both nucleus and cytoplasm.  相似文献   

19.
H Krokan  E Bjorklid  H Prydz 《Biochemistry》1975,14(19):4227-4232
DNA replication in isolated nuclei from synchronized HeLa cells has been studied in an effort to optimalize the system and characterize the product. The synthesis was highly dependent on the four deoxyribonucleoside triphosphates, ATP, and Mg2+. Optimum pH was about 7.8. The system was further stimulated by monovalent ions with NH4Cl and Tris-HCl (each 65 mM) being the most effective. The four ribonucleoside triphosphates and glycerol gave a slight but very reproducible and additive stimulation. Low concentrations of spermine and spermidine (0.2-1.5 X 10(-4) M) were also slightly stimulatory (10-15%) whereas higher concentrations were inhibitory. The reaction product was DNase sensitive, and banded at 1.699 g/ml in neutral CsCl together with bulk HeLa nuclear DNA. When studied by neutral CsCl and alkaline Cs2SO4 gradients, the incorporation of [3H]TTP was mainly (more than 85%) due to further elongation of strands initiated in vivo as evidenced by BrdUrd labeling.  相似文献   

20.
The antitumor antibiotic neocarzinostatin that causes DNA strand breaks in vivo and in vitro is shown to induce DNA repair synthesis in HeLa S3 cells. In the repair assay, the parental DNA was prelabeled with 32P and a density label (bromodeoxyuridine) was introduced into the new synthesized DNA. Quantitation of the repair synthesis as measured by the incorporation of [3H]thymidine into the light parental DNA at varying doses of the drug indicate that there is a significant repair response at low levels of the drug (0.2--0.5 microgram/ml) which cause DNA strand breakage and inhibition of DNA synthesis. In isolated HeLa nuclei neocarzinostatin stimulates the incorporation of dTMP many-fold. This enhancement of dTMP incorporation, which requires the presence of a sulfhydryl agent, is a consequence of the drug-induced DNA strand breakage and is in the parental DNA. These results suggest that an intact cell membrane is not required for DNA strand breakage and its subsequent repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号