首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Neonatal infection of the mouse T lymphotropic virus (MTLV), a member of herpes viridae, causes various organ-specific autoimmune diseases, such as autoimmune gastritis, in selected strains of normal mice. The infection selectively depletes CD4+ T cells in the thymus and periphery for 2-3 wk from 1 wk after infection. Thymectomy 3 wk after neonatal MTLV infection enhances the autoimmune responses and produces autoimmune diseases at higher incidences and in a wider spectrum of organs than MTLV infection alone. On the other hand, inoculation of peripheral CD4+ cells from syngeneic noninfected adult mice prevents the autoimmune development. These autoimmune diseases can be adoptively transferred to syngeneic athymic nude mice by CD4+ T cells. The virus is not detected by bioassay in the organs/tissues damaged by the autoimmune responses. Furthermore, similar autoimmune diseases can be induced in normal mice by manipulating the neonatal thymus/T cells (e.g., by neonatal thymectomy) without virus infection. These results taken together indicate that neonatal MTLV infection elicits autoimmune disease by primarily affecting thymocytes/T cells, not self Ags. It may provoke or enhance thymic production of CD4+ pathogenic self-reactive T cells by altering the thymic clonal deletion mechanism, or reduce the production of CD4+ regulatory T cells controlling self-reactive T cells, or both. The possibility is discussed that other T cell-tropic viruses may cause autoimmunity in humans and animals by affecting the T cell immune system, not the self Ags to be targeted by the autoimmunity.  相似文献   

2.
(C57BL/6 x A/J)F1 (B6AF1) mice thymectomized between days 1 and 4 of age develop autoimmune oophoritis (D3TX oophoritis) 4 to 6 wk later. Oophoritis can be adoptively transferred to young recipients, and the disease in D3TX mice is prevented by reconstitution with normal adult spleen cells. The present study was further defined the nature of the effector and suppressor cells. Contrary to an earlier report, oophoritis is transferred to syngeneic and not allogeneic recipients. The spleen cells from D3TX mice when stimulated in vitro with Con A, also transfer oophoritis to adult recipients. The effector cells are CD4+: oophoritis transfer is abrogated by CD4 antibody and not by CD8 antibody and C. Spleen cells from D3TX male mice transfer disease less efficiently than female cells, thus endogenous ovarian Ag may be required for activation of effector T cells. T cells from normal adult spleen that suppress D3TX oophoritis also appear to be of CD4+ phenotype. These cells are likely to be derived from adult thymus because adult thymocytes also suppress D3TX disease. We were unable to substantiate the earlier claim that suppressor cells in normal mice are ovarian Ag specific. Thus male and female spleen cells suppress disease with comparable efficiency, and deprivation of endogenous ovarian Ag by neonatal ovariectomy of cell donors had no observable effect on disease suppression.  相似文献   

3.
This study shows that the normal thymus produces immunoregulatory CD25+4+8- thymocytes capable of controlling self-reactive T cells. Transfer of thymocyte suspensions depleted of CD25+4+8- thymocytes, which constitute approximately 5% of steroid-resistant mature CD4+8- thymocytes in normal naive mice, produces various autoimmune diseases in syngeneic athymic nude mice. These CD25+4+8- thymocytes are nonproliferative (anergic) to TCR stimulation in vitro, but potently suppress the proliferation of other CD4+8- or CD4-8+ thymocytes; breakage of their anergic state in vitro by high doses of IL-2 or anti-CD28 Ab simultaneously abrogates their suppressive activity; and transfer of such suppression-abrogated thymocyte suspensions produces autoimmune disease in nude mice. These immunoregulatory CD25+4+8- thymocytes/T cells are functionally distinct from activated CD25+4+ T cells derived from CD25-4+ thymocytes/T cells in that the latter scarcely exhibits suppressive activity in vitro, although both CD25+4+ populations express a similar profile of cell surface markers. Furthermore, the CD25+4+8- thymocytes appear to acquire their anergic and suppressive property through the thymic selection process, since TCR transgenic mice develop similar anergic/suppressive CD25+4+8- thymocytes and CD25+4+ T cells that predominantly express TCRs utilizing endogenous alpha-chains, but RAG-2-deficient TCR transgenic mice do not. These results taken together indicate that anergic/suppressive CD25+4+8- thymocytes and peripheral T cells in normal naive mice may constitute a common T cell lineage functionally and developmentally distinct from other T cells, and that production of this unique immunoregulatory T cell population can be another key function of the thymus in maintaining immunologic self-tolerance.  相似文献   

4.
The predominant T cell subset in the bone marrow of specific pathogen-free C57BL/Ka and BALB/c mice expressed the alpha beta+ TCR CD4- CD8- surface phenotype. Purified C57BL/Ka alpha beta+ TCR CD4- CD8- marrow cells obtained by cell sorting suppressed the MLR of C57BL/Ka responder and BALB/c stimulator spleen cells. Although the percentage of typical T cells in the spleen was markedly reduced in adult nude mice or normal neonatal mice as compared to the normal adult, the percentage of alpha beta+ TCR CD4- CD8- cells in the spleen and marrow was not. The percentage of "self-reactive" V beta 5+ T cells in the BALB/c spleen was markedly reduced as compared to that in the C57BL/Ka spleen. However, the percentages in the bone marrow were similar. The results indicate that the predominant subset of marrow T cells in these pathogen-free mice differ with regard to surface marker phenotype, function, dependence on the adult thymus, and deletion of certain self-reactive V beta receptors as compared to typical spleen T cells. The marrow T cells appear to develop directly from marrow precursors without rearranged beta chain genes during a 48 hour in vitro culture.  相似文献   

5.
The origin of TCR-alphabeta+ CD4-CD8- cells is unclear, yet accumulating evidence suggests that they do not represent merely a default pathway of unselected thymocytes. Rather, they arise by active selection as evidenced by their absence in mice lacking expression of class I MHC. TCR-alphabeta+ CD4-CD8- cells also preferentially accumulate in mice lacking expression of Fas/APO-1/CD95 (lpr) or Fas-ligand (gld), suggesting that this subset might represent a subpopulation destined for apoptosis in normal mice. Findings from mice bearing a self-reactive TCR transgene support this view. In the current study we observe that in normal mice, TCR-alphabeta+ CD4-CD8- thymocytes contain a high proportion of cells undergoing apoptosis. The apoptotic subpopulation is further identified by its expression of B220 and IL2Rbeta and the absence of surface CD2. The CD4-CD8- B220+ phenotype is also enriched in T cells that recognize endogenous retroviral superantigens, and can be induced in TCR transgenic mice using peptide/MHC complexes that bear high affinity, but not low affinity, for TCR. A model is presented whereby the TCR-alphabeta+ CD2- CD4-CD8- B220+ phenotype arises from high intensity TCR signals. This model is broadly applicable to developing thymocytes as well as mature peripheral T cells and may represent the phenotype of self-reactive T cells that are increased in certain autoimmune conditions.  相似文献   

6.
Intrathymic tolerance results in elimination of T cells bearing self-reactive TCR V beta regions in mice expressing certain combinations of I-E and minor lymphocyte stimulatory (Mls) phenotypes. To determine if autoimmune strains of mice have a defect in intrathymic deletion of self-reactive TCR V beta regions, expression of V beta 3, V beta 6, V beta 8.1, and V beta 11 were examined in lpr/lpr and +/+ strains of mice; MRL/MpJ(H-2K, I-E+, Mlsb,), C57BL/6J(H-2b, I-E-, Mlsb,), C3H/HeJ(H-2k, I-E+, Mlsc), AKR/J(H-2k, I-E+, Mlsa); and in autoimmune NZB/N(H-2d, I-E+, Mlsa) and BXSB(H-2b, I-E-, Mlsb) mice. The results suggest that, during intrathymic development, self-reactive T cells are deleted in autoimmune strains of mice as found in normal control strains of mice. However, the TCR V beta repertoire is skewed in autoimmune strains compared to normal strains of mice. For example, MRL-lpr/lpr mice, but not other lpr/lpr strains, had increased expression of V beta 6 relative to expression in control MRL(-)+/+ mice, which is associated with collagen-induced arthritis. These data are consistent with a model of normal affinity for negative selection of self-reactive T cells in the thymus of autoimmune strains of mice followed by expansion of autoreactive T cell clones in the peripheral lymphoid organs. The peripheral lymphoid organs of lpr/lpr mice contain an expanded population of abnormal CD4-, CD8-, 6B2+ T cells. Elimination of self-reactive peripheral T cells suggests that these abnormal cells are derived from a CD4+ subpopulation in the thymus. Flow cytometry analysis of peripheral lymph node T cells from MRL-lpr/lpr mice reveal three populations of CD4+ T cells expressing low, intermediate and high intensity of B220 (6B2). This supports the hypothesis that in lpr/lpr mice, self-reactive CD4+ T cells are eliminated in the thymus, and that these cells lose expression of CD4 and acquire expression of 6B2 in the periphery.  相似文献   

7.
Previously we have shown that autoimmune diabetes, induced in rats by a protocol of adult thymectomy and split-dose gamma irradiation, can be prevented by the transfer of a subset of CD4+ T cells with a memory phenotype (CD45RC-), as well as by CD4+CD8- thymocytes, from syngeneic donors. Further studies now reveal that in the thymus the regulatory cells are observed in the CD25+ subset of CD4+CD8- cells, whereas transfer of the corresponding CD25- thymocyte subset leads to acceleration of disease onset in prediabetic recipients. However, in the periphery, not all regulatory T cells were found to be CD25+. In thoracic duct lymph, cells that could prevent diabetes were found in both CD25- and CD25+ subsets of CD4+CD45RC- cells. Further, CD25- regulatory T cells were also present within the CD4+CD45RC- cell subset from spleen and lymph nodes, but were effective in preventing diabetes only after the removal of CD25- recent thymic emigrants. Phenotypic analysis of human thymocytes showed the presence of CD25+ cells in the same proportions as in rat thymus. The possible developmental relationship between CD25+ and CD25- regulatory T cells is discussed.  相似文献   

8.
We studied immunity to the blood stage of the rodent malaria, Plasmodium vinckei vinckei, which is uniformly lethal to mice. BALB/c mice develop solid immunity after two infections and drug cure. The following experiments define the basis of this immunity. Transfer of pooled serum from such immune mice renders very limited protection to BALB/c mice and no protection to athymic nu/nu mice. Moreover, B cell-deficient C3H/HeN mice develop immunity to P. vinckei reinfection in the same manner as immunologically intact mice, an observation made earlier. In vivo depletion of CD4+ T cells in immune mice abrogates their immunity. This loss of immunity could be reversed through reconstitution of in vivo CD4-depleted mice with fractionated B-, CD8-, CD4+ immune spleen cells; however, adoptive transfer of fractionated CD4+ T cells from immune spleen into naive BALB/c or histocompatible BALB/c nude mice does not render recipients immune. In vivo depletion of CD8+ T cells did not influence the parasitemia in nonimmune or immune mice. Splenectomy of immune mice completely reverses their immunity. Repletion of splenectomized mice with their own spleen cells does not reconstitute their immunity. We conclude that some feature of the malaria-modified spleen acts in concert with the effector/inducer function of CD4+ T cells to provide protection from P. vinckei. To be consistent with this finding, a malaria vaccine may require a combination of malaria Ag to induce immune CD4+ T cells and an adjuvant or other vaccine vehicle to alter the spleen.  相似文献   

9.
Development of a C57BL/6-+/+ TCR transgenic mouse containing the rearranged TCR alpha- and beta-chain specific for the Db + HY male Ag results in production of a nearly monoclonal population of early thymocytes expressing the Db + HY reactive TCR. These thymocytes are autoreactive in H-2Db male mice and undergo clonal deletion and down-regulation of CD8. To study the effect of the lpr gene on development of autoreactive T cells, these transgenic mice were backcrossed with C57BL/6-lpr/lpr mice. T cell populations in the thymus and spleen were analyzed by three-color flow cytometry for expression of CD4, CD8, and TCR. The thymus of TCR transgenic H-2b/b lpr/lpr male mice had an increase in percent and absolute number of CD8dull thymocytes compared to TCR transgenic H-2b/b +/+ male mice. However, there was not a complete defect in clonal deletion, because clonal deletion and down-regulation of CD8 was apparent in both +/+ and lpr/lpr H-2Db HY+ male mice compared to H-2Db HY- female mice. The phenotype of splenic T cells was almost identical in TCR transgenic +/+ and lpr/lpr males with about 50% CD4-CD8- T cells and 50% CD8+ T cells. However, there was a dramatic increase in the SMLR proliferative response of splenic T cells from TCR transgenic lpr/lpr males compared to TCR transgenic +/+ males. To determine the specificity of this response, spleen cells from TCR transgenic lpr/lpr and +/+ mice were cultured with irradiated H-2b/b and H-2k/k male and female spleen cells. T cells from TCR transgenic C57BL/6-lpr/lpr male mice had an increased proliferative response to H-2b/b male spleen cells compared to T cells from TCR transgenic C57BL/6(-)+/+ male mice, but both lpr/lpr and +/+ mice had a minimal response to irradiated H-2b/b female or H-2k/k male or female stimulator cells. The splenic T cells from TCR transgenic lpr/lpr mice also had an increased specific cytotoxic activity against H-2b/b male target cells compared to TCR transgenic +/+ mice. These results demonstrate that there is a defect in negative selection of self-reactive T cells in the thymus of lpr/lpr mice and a defect in induction or maintenance of clonal anergy of self-reactive T cells in the periphery of lpr/lpr mice.  相似文献   

10.
T cell populations from BALB/c mice at different ages were analyzed to determine when in development Ts cells specific for the anti-mouse RBC (MRBC) autoantibody response become activated. Previous studies have shown that adult CD8+ T cells actively suppress this autoimmune response and adult spleen cells depleted of CD8+ cells can generate an anti-MRBC response in culture with MRBC. The present results demonstrate that T cells from mice less than 1 wk of age do not suppress the in vitro anti-MRBC response of adult spleen cell populations depleted of CD8+ Ts cells. By 2 wk of age Ts cells are detectable in this anti-self response and reach adult levels by 3 wk of age. Non-specific "natural suppressor" cells normally present in neonatal spleen cell populations are unable to suppress this autoantibody response, although they are active in suppressing anti-SRBC responses in the same cultures. Before the appearance of Ts cells active in the anti-MRBC response, neonatal spleen cell populations can generate anti-MRBC antibody-forming cells, both spontaneously in vivo and in vitro. The in vitro anti-MRBC response of neonatal spleen cells was shown to be Ag driven and Ag specific. The ability of unfractionated spleen cells to generate this response in vitro declines with age and is relatively low by 3 wk. This decline in responsiveness occurs simultaneously with the appearance of suppression specific for the anti-MRBC response, suggesting that the two events may be causally related.  相似文献   

11.
A number of experimental models of organ-specific autoimmunity involve a period of peripheral lymphopenia prior to disease onset. There is now considerable evidence that the development of autoimmune disease in these models is due to the absence of CD4+CD25+ regulatory T cells. However, the role of CD4+CD25+ regulatory T cells in the prevention of autoimmune disease in normal individuals has not been defined. Here we have assessed the affect of depletion of CD4+CD25+ regulatory T cells in BALB/c mice on the induction of autoimmune gastritis. The CD4+CD25+ T cell population was reduced to 95% of the original population in adult thymectomized mice by treatment with anti-CD25 mAb. By 48 days after the anti-CD25 treatment, the CD4+CD25+ regulatory T cell population had returned to a normal level. Treatment of thymectomized adult mice for up to 4 weeks with anti-CD25 mAb did not result in the development of autoimmune gastritis. Furthermore, we have demonstrated that depletion of CD4+CD25+ regulatory T cells, together with transient CD4+ T lymphopenia, also did not result in the development of autoimmune gastritis, indicating that peripheral expansion of the CD4+ T cell population, per se, does not result in autoimmunity in adult mice. On the other hand, depletion of CD4+CD25+ T cells in 10-day-old euthymic mice resulted in a 30% incidence of autoimmune gastritis. These data suggest that CD4+CD25+ regulatory T cells may be important in protection against autoimmunity while the immune system is being established in young animals, but subsequently other factors are required to initiate autoimmunity.  相似文献   

12.
The malaria parasite, Plasmodium yoelii 17X, causes a self-limited, nonlethal infection characterized, in the blood stage, by preferential invasion of reticulocytes. Previous studies have suggested that immunity to the blood stage infection may be related to enhanced levels of class I MHC Ag on the parasitized reticulocyte surface and can be adoptively transferred to immunodeficient mice by immune CD8+ T cells in the absence of CD4+ T cells. To further examine the mechanisms of CD8+ T cell involvement in immunity to blood stage P. yoelii infection, we performed in vivo CD8 depletion and adoptive transfer experiments. Depletion of CD8+ T cells during primary blood stage infection in BALB/c mice did not diminish the ability of the mice to resolve their infections. Spleen cells from immune BALB/c and C57BL/10 mice were transferred to BALB/c-nu/nu and C57BL/10-nu/nu mice, respectively. The recipient mice were CD4 depleted in vivo to kill any transferred CD4+ T cells. The mice failed to control the infection. Populations of CD4-, CD8+ T cells were transferred from immune CBA/CaJ donors to in vivo CD4-depleted CBA/CaJ recipients. The mice were unable to control the infection. Although immune unfractionated spleen cells transferred rapid protection in all three mouse strains and immune CD4+ T cells transferred immunity in the two mouse strains studied, CD8+ T cells by themselves were neither protective nor did they enhance immunity.  相似文献   

13.
B cells present BCR V region-derived Id-peptides on their MHC class II molecules to Id-specific CD4+ T cells. Prolonged Id-driven T-B collaboration could cause autoimmune disease, but this possibility is difficult to test in normal individuals. We have investigated whether mice doubly transgenic for an Id+ Ig L chain and an Id-specific TCR develop autoimmune disease. Surprisingly, T cell tolerance was not complete in these mice because a low frequency of weakly Id-reactive CD4+ T cells accumulated with age. These escapee Id-specific T cells provided chronic help for Id+ B cells, resulting in a lethal systemic autoimmune disease including germinal center reactions, hypergammaglobulinemia, IgG autoantibodies, glomerulonephritis, arthritis, skin affection, and inflammatory bowel disease. Inflamed tissues contained foci of Id-driven T-B collaboration, with deposition of IgG and complement. The disease could be transferred with B and T cells. The results demonstrate a novel mechanism for development of autoimmune disease in which self-reactive Id+ B cells receive prolonged help from Id-specific T cells, thus bypassing the need for help from T cells recognizing conventional Ag.  相似文献   

14.
Sequential appearance of T cell subpopulations occurs in the thymocytes of irradiated C3H/He mice (H-2k, Mls-1b2a, Thy-1.2) after transplantation with bone marrow cells of AKR/J mice (H-2k, Mls-1a2b, Thy-1.1) (AKR----C3H chimeras). The donor-derived thymocytes of AKR----C3H chimeras on day 14 after bone marrow transplantation (BMT) contained a large number of blastlike CD4+CD8+ cells which represent relatively immature thymocytes, whereas those on day 21 after BMT consisted of small sized CD4+,CD8+ cells which represent a great part in normal thymocytes. To define the developmental stage at which clonal deletion of self-reactive T cells occurs in adult thymus, we followed the fate of V beta 6- or V beta 11-bearing T cells in the donor-derived thymocytes at the early stage of AKR----C3H chimeras. Mature thymocytes expressing high intensity of V beta 6 or V beta 11, which are involved in recognition of Mls-1a or MHC I-E gene products, respectively, were deleted from the donor-derived thymocytes on day 21. Immature thymocytes expressing low intensity of V beta 6 in CD3low thymocyte fraction decreased in proportion, whereas those expressing low intensity of V beta 11 rather increased in proportion in the donor-derived thymocytes of AKR----C3H chimeras from day 14 to day 21 after BMT. These results suggest that the clonal deletion of V beta 6-positive cells occurs just at the stage of immature CD3lowCD4+CD8+ cells, whereas the clonal deletion of V beta 11-positive cells may begin at the transitional stage from CD3lowCD4+CD8+ cells to CD3high single positive cells. Timing of negative selection of thymocytes may vary in distinct T cells capable of recognizing different self-Ag.  相似文献   

15.
Defective recombination of both the TCR and Ig genes results in the absence of mature lymphocytes in mice with the scid mutation. We have shown previously that the transfer of neonatal, but not adult, thymocytes results in high levels of Ig production in 100% of C.B-17-scid (SCID) mice, in contrast to the 10 to 25% of SCID mice spontaneously producing low levels of oligoclonal Ig. In this report we demonstrate that neonatal CD4+8- thymocytes were able to induce this response; the CD4+8+ and CD4-8+ subpopulations were totally inactive and CD4-8- T cells had only limited activity several weeks after transfer. The stimulation of IgM production in SCID mice was detectable by 1 wk posttransfer of CD4+8- thymocytes or splenic T cells, and could be achieved with as few as 300 cells. The ability of neonatal CD4+8- thymocytes to induce Ig diminished gradually to insignificant levels at 3 wk postbirth; this loss of function was not associated with differential survival of neonatal T cells. Neonatal CD4+8- thymocytes from C.B-17 and other H-2d strains rescued Ig production, whereas cells from H-2b, H-2a, and H-2k strains were much less effective. These results suggest that a CD4+8- subpopulation found in both neonatal thymus and peripheral lymphoid tissues is able to induce the expansion or differentiation of the small numbers of functional B lymphocytes in SCID mice, and that the inducing T cell disappears shortly after birth, perhaps during the acquisition of self-tolerance.  相似文献   

16.
The relationship between NK cell and T cell progenitors was investigated by using mice with severe combined immune deficiency (scid). Scid mice are devoid of mature T and B cells because they cannot rearrange their Ig and TCR genes. However, they have normal splenic NK cells. Thymus of scid mice, although markedly hypocellular, contains cells that lyse YAC-1, an NK-sensitive tumor cell. By flow cytometry, two populations of cells were identified in the scid thymus. Eighty percent of the cells were Thy-1+, IL-2R(7D4)+, J11d+, CD3-, CD4-, CD8- whereas the remaining were IL-2R-, J11d-, CD3-, CD4-, and CD8-. By cell sorting, all NK activity was found in the latter population, which is phenotypically similar to splenic NK cells. To determine if the thymus contains a bipotential NK/T progenitor cell, J11d+, IL-2R+ cells were cultured and analyzed for the generation of NK cells in vitro. These cells were used because they resemble 15-day fetal and adult CD4- CD8- thymocytes that are capable of giving rise to mature T cells. Cultured J11d+ thymocytes acquired non-MHC-restricted cytotoxicity, but in contrast to mature NK cells, the resulting cells contained mRNA for the gamma, delta, and epsilon-chains of CD3. This suggests that J11d+ cells are early T cells that can acquire the ability to kill in a non-MHC-restricted manner, but which do not give rise to NK cells in vitro. The differentiative potential of scid thymocytes was also tested in vivo. Unlike bone marrow cells, scid thymocytes containing 80% J11d+ cells failed to give rise to NK cells when transferred into irradiated recipients. Together these results suggest that mature NK cells reside in the thymus of scid mice but are not derived from a common NK/T progenitor.  相似文献   

17.
Thymectomy of BALB/c mice on day 3 of life results in the development of autoimmune gastritis (AIG) due to the absence of CD4(+)CD25(+) regulatory T cells. However, depletion of CD4(+)CD25(+) T cells by treatment with anti-CD25 rarely resulted in AIG. Depletion was efficient, as transfer of splenocytes from depleted mice induced AIG in nu/nu mice. One explanation for this result is that CD4(+)CD25(-) T cells upon transfer to nude recipients undergo lymphopenia-induced proliferation, providing a signal for T cell activation. Cotransfer of CD25(+) T cells did not inhibit initial proliferation but did suppress AIG. Surprisingly, immunization with the AIG target Ag, H/K ATPase, in IFA failed to induce disease in normal animals but induced severe AIG in CD25-depleted mice. These results demonstrate that second signals (nonspecific proliferation, TCR activation, or inflammation) are needed for induction of autoimmunity in the absence of CD25(+) regulatory T cells.  相似文献   

18.
Although human maternal autoantibodies may transfer transient manifestation of autoimmune disease to their progeny, some neonatal autoimmune diseases can progress, leading to the loss of tissue structure and function. In this study we document that murine maternal autoantibody transmitted to progeny can trigger de novo neonatal pathogenic autoreactive T cell response and T cell-mediated organ-specific autoimmune disease. Autoantibody to a zona pellucida 3 (ZP3) epitope was found to induce autoimmune ovarian disease (AOD) and premature ovarian failure in neonatal, but not adult, mice. Neonatal AOD did not occur in T cell-deficient pups, and the ovarian pathology was transferable by CD4(+) T cells from diseased donors. Interestingly, neonatal AOD occurred only in pups exposed to ZP3 autoantibody from neonatal days 1-5, but not from day 7 or day 9. The disease susceptibility neonatal time window was not related to a propensity of neonatal ovaries to autoimmune inflammation, and it was not affected by infusion of functional adult CD4(+)CD25(+) T cells. However, resistance to neonatal AOD in 9-day-old mice was abrogated by CD4(+)CD25(+) T cell depletion. Finally, neonatal AOD was blocked by Ab to IgG-FcR, and interestingly, the disease was not elicited by autoantibody to a second, independent native ZP3 B cell epitope. Therefore, a new mechanism of neonatal autoimmunity is presented in which epitope-specific autoantibody stimulates de novo autoimmune pathogenic CD4(+) T cell response.  相似文献   

19.
Non-obese diabetic (NOD) mice develop spontaneous T-cell responses against pancreatic beta-cells, leading to islet cell destruction and diabetes. Despite high genetic similarity, non-obese resistant (NOR) mice do not develop diabetes. We show here that spleen cells of both NOD and NOR mice respond to the islet cell antigen glutamic acid decarboxylase-65 in IFN-gamma-ELISPOT assays. Moreover, NOR-T cells induce periinsulitis in NOD SCID recipient mice. Thus, a potentially pathogenic islet cell-specific T-cell response arises in NOR and NOD mice alike; the mechanism that prevents the autoimmune progression of self-reactive T cells in NOR mice presumably acts at the level of effector function. Consistent with this hypothesis, CD4+CD25+ cell-depleted spleen cells from NOR mice mediated islet cell destruction and overt diabetes in NOD SCID mice. Therefore, islet cell-specific effector cells in NOR mice appear to be under the control of CD4+CD25+ regulatory T cells, confirming the importance of regulatory cells in the control of autoimmune diabetes.  相似文献   

20.
CD4+ CD25+ regulatory T cells (T(Reg)) play a critical role in the control of autoimmunity. However, little is known about how T(Reg) suppress self-reactive T cells in vivo, thus limiting the development of T(Reg)-based therapy for treating autoimmune diseases. This is in large part due to the dependency on a state of lymphopenia to demonstrate T(Reg)-mediated suppression in vivo and the unknown Ag specificity of T(Reg) in most experimental models. Using a nonlymphopenic model of autoimmune pneumonitis and T(Reg) with known Ag specificity, in this study we demonstrated that these T(Reg) can actively suppress activation of self-reactive T cells and protect mice from fatal autoimmune pneumonitis. The protection required T(Reg) with the same Ag specificity as the self-reactive T cells and depended on IL-10 and TGF-beta. These results suggest that suppression of autoimmunity by T(Reg) in vivo consists of multiple layers of regulation and advocate for a strategy involving Ag-specific T(Reg) for treating organ-specific autoimmunity, because they do not cause generalized immune suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号