首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lassi, fermented milks product containing angiotensin-I-converting-enzyme (ACE)-inhibitory peptides were produced by using selected Lactobacillus acidophilus NCDC-15 and the incubation period and simmering effect was also optimized for production of ACE-inhibitory peptides. The time–temperature combination for the heat treatment was optimized using RSM. The biological activity was measured in the supernatant of the fermented milk after centrifugation. The lowest IC50 values for the inhibition of angiotensin-converting enzyme (ACE) was found 28.9 ± 0.95 μg protein/ml in the supernatant of milk fermented by L. acidophilus and heated at 78 °C for 10 h. The fractions which showed the highest ACE-inhibitory indexes were further purified by different techniques including solid phase extraction, RP-HPLC and FPLC and the related peptides were identified by LC–MS/MS using the Ultimate 3000 nano HPLC system (Dionex) coupled to a 4000 Q TRAP electro-spray ionization mass spectrometry. The high ACE-inhibitory activity containing fractions of the milk fermented by L. acidophilus contained the sequences of b-casein (b-CN) fragment. The fraction-III showed minimum IC50 value i.e. 14.57 ± 0.72 μg/ml compared with fraction-I and fraction-II. Among these peptides 14 peptides have been identified from the fraction-I of the lassi prepared from L. acidophilus i.e. β-CN f47–56, β-CN f47–57, β-CN f199–209, β-CN f176–182, β-CN f176–183, β-CN f176–184, β-CN f1–7, β-CN f57–68, β-CN f166–175, β-CN f195–206, β-CN f195–207, β-CN f195–209, β-CN f94–106 and β-CN f169–176 showed partially or completely homology to that the milk protein bioactive peptides having ACE inhibitory. The two peptides KVLPVPQK (β-CN f169–176) and YQEPVLGPVRGPFPIIV (β-CN f193–209) have the same sequence as ACE inhibitory peptides (Maeno et al. in J Dairy Sci 79(8):1316–1321, 1996; Yamamoto et al. in J Dairy Sci 77:917–922, 1994b).  相似文献   

2.
Fermentation of milk with lactic acid bacteria is the most suitable approach to enrich the bioactive peptides in fermented milk products. So in the present study, two sets of fermented milk (lassi) were prepared. The one lassi was prepared using standard Dahi culture NCDC-167(BD4) and the other one was made with the same Dahi culture combined with Lactobacillus acidophilus NCDC-15 as an adjunct culture. The preparation steps i.e. preheat treatment and incubation period were optimized by using response surface methodology to obtain maximum antioxidant activity. Lassi prepared with adjunct culture using optimized conditions showed an antioxidant activity of 0.66?±?0.01 µM Trolox/mg protein which was significantly higher than that control (0.22?±?0.01 µM Trolox/mg protein). Out of 59 peptide fragments of β casein fermented by L. acidophilus and 24 peptides from control have been identified by LC–MS/MS. Most of the peptides showed the antioxidant activity. The therapeutic potential of fermented milk products could be improved by increased production of bioactive peptides through controlled fermentation using appropriate proteolytic starter strain.  相似文献   

3.
In this study, Lactobacillus helveticus MTCC5463 was evaluated for its proteolytic activity and production of bioactive peptides during fermentation of honey supplemented milk under specified growth conditions. Generally, lactic acid bacteria have a strong proteolytic system. However, L. helveticus MTCC5463 showed maximum proteolytic activity at 4 % level of honey supplementation compared to 6 % and control. Similarly, water soluble extract derived from fermented honey based milks exhibited different level of bioactive peptides productions during fermentation. L. helveticus MTCC5463 showed maximum peptides production at 4 % level of honey supplementation compared to control during HPLC analysis and LC–MS analysis.  相似文献   

4.
Fungi are commonly involved in dairy product spoilage and the use of bioprotective cultures can be a complementary approach to reduce food waste and economic losses. In this study, the antifungal activity of 89 Lactobacillus and 23 Pediococcus spp. isolates against three spoilage species, e.g., Yarrowia lipolytica, Rhodotorula mucilaginosa and Penicillium brevicompactum, was first evaluated in milk agar. None of the tested pediococci showed antifungal activity while 3, 23 and 43 lactobacilli isolates showed strong antifungal activity or total inhibition against Y. lipolytica, R. mucilaginosa and P. brevicompactum, respectively. Then, the three most promising strains, Lactobacillus paracasei SYR90, Lactobacillus plantarum OVI9 and Lactobacillus rhamnosus BIOIII28 at initial concentrations of 105 and 107 CFU/ml were tested as bioprotective cultures against the same fungal targets in a yogurt model during a 5-week storage period at 10 °C. While limited effects were observed at 105 CFU/ml inoculum level, L. paracasei SYR90 and L. rhamnosus BIOIII28 at 107 CFU/ml respectively retarded the growth of R. mucilaginosa and P. brevicompactum as compared to a control without selected cultures. In contrast, growth of Y. lipolytica was only slightly affected. In conclusion, these selected strains may be good candidates for bioprotection of fermented dairy products.  相似文献   

5.
Gundruk is a fermented leafy vegetable and khalpi is a fermented cucumber product, prepared and consumed in the Himalayas. In situ fermentation dynamics during production of gundruk and khalpi was studied. Significant increase in population of lactic acid bacteria (LAB) was found during first few days of gundruk and khlapi fermentation, respectively. Gundruk fermentation was initiated by Lactobacillus brevis, Pediococcus pentosaceus and finally dominated by Lb. plantarum. Similarly in khalpi fermentation, heterofermentative LAB such as Leuconostoc fallax, Lb. brevis and P. pentosaceus initiated the fermentation and finally completed by Lb. plantarum. Attempts were made to produce gundruk and khalpi using mixed starter culture of LAB previously isolated from respective products. Both the products prepared under lab condition had scored higher sensory-rankings comparable to market products.  相似文献   

6.
Lactococcus lactis subsp lactis BSA (L. lactis BSA) was isolated from a commercial fermented product (BSA Food Ingredients, Montreal, Canada) containing mixed bacteria that are used as starter for food fermentation. In order to increase the bacteriocin production by L. lactis BSA, different fermentation conditions were conducted. They included different volumetric combinations of two culture media (the Man, Rogosa and Sharpe (MRS) broth and skim milk), agitation level (0 and 100 rpm) and concentration of commercial nisin (0, 0.15, and 0.30 µg/ml) added into culture media as stimulant agent for nisin production. During fermentation, samples were collected and used for antibacterial evaluation against Lactobacillus sakei using agar diffusion assay. Results showed that medium containing 50 % MRS broth and 50 % skim milk gave better antibacterial activity as compared to other medium formulations. Agitation (100 rpm) did not improve nisin production by L. lactis BSA. Adding 0.15 µg/ml of nisin into the medium-containing 50 % MRS broth and 50 % skim milk caused the highest nisin activity of 18,820 AU/ml as compared to other medium formulations. This activity was 4 and ~3 times higher than medium containing 100 % MRS broth without added nisin (~4700 AU/ml) and 100 % MRS broth with 0.15 µg/ml of added nisin (~6650 AU/ml), respectively.  相似文献   

7.
Broiler salmonellosis is a major problem for poultry industry. Here, we supplemented broiler feed with 1% of ginger stems (GS) fermented with Lactobacillus paracasei and analyzed the effects on the resistance to Salmonella gallinarum. The chickens were divided into four dietary groups. The control group (C) received the basal diet, and the other chickens received the basal diet supplemented with 0.1% w/w L. paracasei ML-7 (L group), 0.1% ginger stem powder (GS group), or 0.2% fermented ginger stem (FGS group) for 21 days. The dietary groups were further split into two subgroups: one challenged with 1 × 105 CFU/mL S. gallinarum orally administered in 1 mL of saline from days 7 and 14, and one that received 1 mL of saline without bacteria. Both uninfected and S. gallinarum-infected broilers fed with fermented GS (FGS) significantly increased body weight and feed intake, and had lower mortality compared to relative control groups. Furthermore, dietary FGS decreased cecal, Salmonella spp. counts and serum IgA and IgG levels. These results indicate that FGS prevented S. gallinarum colonization and promoted weight gain in broilers, suggesting that FGS supplementation can be effectively used as a replacement of antibiotic growth promoters to prevent Salmonella infection.  相似文献   

8.
In a previous study, the synbiotic combination of selected Lactobacillus gasseri strains and Cudrania tricuspidata leaf extract (CT) was shown to significantly improve the functionality of fermented milk, and the greatest synbiotic effect was exhibited with L. gasseri 505. The aim of the present study was to investigate the growth kinetics and fermentation metabolism of this specific synbiotic combination. Fermentation was carried out in synthetic media and milk with or without CT supplementation using L. gasseri 505. Whole genome sequencing and comparative genomics analyses were conducted to verify the novelty of strain. Titratable acidity, pH, microbial population, and organic acid production were measured during the fermentation period. The addition of CT accelerated the acidification rate, supporting the growth of L. gasseri 505, and the production of fermentation metabolites such as lactic acid and pyruvic acid also significantly increased during fermentation of both of CT-supplemented synthetic media and milk. In particular, the formic acid and propionic acid in CT were significantly utilized during fermentation of milk by L. gasseri 505. Moreover, the antioxidant capacity of CT-supplemented fermented milk increased due to the release of bioactive compounds until the exponential growth phase, after which the antioxidant activity declined due to degradation and loss of potency. Therefore, this study established that L. gasseri 505 efficiently utilized the CT-related nutrients during fermentation producing resulting metabolites with health-promoting effects, although it is necessary to control the fermentation time to obtain dairy products with optimum functionality.  相似文献   

9.
In the study, two Lactobacillus cultures i.e. L. casei (NK9) and L. fermentum (LF) were studied for their proteolytic activity, di and tripeptidase activity, ACE-inhibitory activity and peptides production under optimized growth condition from fermented goat milk (Capra aegagrus hircus). NK9 and LF were found to be a strong proteolytic culture with 2.0% rate of inoculation after 48 h. LF (10 kDa retentate) produced maximum peptides among all the retentates of the fermented goat milk. Goat milk fermented with NK9 (10 kDa permeates) exhibited peptide sequence i.e. AFPEHK which had ACE inhibitory activity, matched with goat milk protein databases of AHTPDB. However, L. casei (NK9) and L. fermentum (LF) could be explored for the production of ACE inhibitory peptides from fermented goat milk.  相似文献   

10.
Lacto-N-biose (LNB) and galacto-N-biose (GNB) are major building blocks of free oligosaccharides and glycan moieties of glyco-complexes present in human milk and gastrointestinal mucosa. We have previously characterized the phospho-β-galactosidase GnbG from Lactobacillus casei BL23 that is involved in the metabolism of LNB and GNB. GnbG has been used here in transglycosylation reactions, and it showed the production of LNB and GNB with N-acetylglucosamine and N-acetylgalactosamine as acceptors, respectively. The reaction kinetics demonstrated that GnbG can convert 69 ± 4 and 71 ± 1 % of o-nitrophenyl-β-d-galactopyranoside into LNB and GNB, respectively. Those reactions were performed in a semi-preparative scale, and the synthesized disaccharides were purified. The maximum yield obtained for LNB was 10.7 ± 0.2 g/l and for GNB was 10.8 ± 0.3 g/l. NMR spectroscopy confirmed the molecular structures of both carbohydrates and the absence of reaction byproducts, which also supports that GnbG is specific for β1,3-glycosidic linkages. The purified sugars were subsequently tested for their potential prebiotic properties using Lactobacillus species. The results showed that LNB and GNB were fermented by the tested strains of L. casei, Lactobacillus rhamnosus (except L. rhamnosus strain ATCC 53103), Lactobacillus zeae, Lactobacillus gasseri, and Lactobacillus johnsonii. DNA hybridization experiments suggested that the metabolism of those disaccharides in 9 out of 10 L. casei strains, all L. rhamnosus strains and all L. zeae strains tested relies upon a phospho-β-galactosidase homologous to GnbG. The results presented here support the putative role of human milk oligosaccharides for selective enrichment of beneficial intestinal microbiota in breast-fed infants.  相似文献   

11.
The objective of this study was to evaluate the ability of five strains of meat-borne bacteria to decrease N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) and to elucidate the mechanism in Mann-Rogosa-Sharp (MRS) broth. Lactobacillus pentosus R3 was found to be the most effective in decreasing the concentration of the two N-nitrosamines (NAs) in MRS broth, with a rate of 22.05% for NDMA and 23.31% for NDEA. The concentration of the two NAs could not be reduced by either extracellular metabolites or intracellular extracts of Lb. pentosus R3 (P?>?0.05), and proteinaceous substances in the cell debris were found to be responsible for the decrease. These were surface-layer proteins (SLPs) located on the cell wall. Therefore, the decrease in NDMA and NDEA by Lb. pentosus R3 is associated with its SLPs. Lb. pentosus R3 may be developed as a starter culture in the production of fermented foods with lower NAs.  相似文献   

12.
Kung-Som is a popular traditional Thai fermented shrimp product. It is rich in glutamic acid, which is the major substrate for the biosynthesis of gamma-aminobutyric acid (GABA) by lactic acid bacteria (LAB). In the present study, LAB from Kung-Som were isolated, screened for GABA formation, and the two isolates that transform glutamic acid most efficiently into GABA were identified. Based on the API-CHL50 fermentation profile and a phylogenetic tree of 16S rDNA sequences, strain CS3 and CS5 were identified as Lactobacillus futsaii, which was for the first time shown to be a promising GABA producer. L. futsaii CS3 was the most efficient microorganism for the conversion of 25 mg/mL monosodium glutamate (MSG) to GABA, with a maximum yield of more than 99% conversion rate within 72 h. The open reading frame (ORF) of the glutamate decarboxylase (gad) gene was identified by PCR. It consists of 1410 bp encoding a polypeptide of 469 amino acids with a predicted molecular weight of 53.64 kDa and an isoelectric point (pI) of 5.56. Moreover, a good quality of the constructed model of L. futsaii CS3 was also estimated. Our results indicate that L. futsaii CS3 could be of interest for the production of GABA-enriched foods by fermentation and for other value-added products.  相似文献   

13.
Three hundred and sixty presumptive lactic acid bacteria (LAB) isolated from pregnant sows, newborn, suckling, and weaned piglets were preliminarily screened for anti-Salmonella activity. Fifty-eight isolates consisting of Lactobacillus reuteri (n = 32), Lactobacillus salivarius (n = 10), Lactobacillus mucosae (n = 8), Lactobacillus johnsonii (n = 5), and Lactobacillus crispatus (n = 3) were selected and further characterized for probiotic properties including production of antimicrobial substances, acid and bile tolerance, and cell adherence to Caco-2 cells. Eight isolates including Lact. johnsonii LJ202 and Lact. reuteri LR108 were identified as potential probiotics. LJ202 was selected for further use in co-culture studies of two-bacterial and multiple-bacterial species to examine its inhibitory activity against Salmonella enterica serovar Enteritidis DMST7106 (SE7106). Co-culture of LJ202 and SE7106 showed that LJ202 could completely inhibit the growth of SE7106 in 10 h of co-culture. In co-culture of multiple-bacterial species, culturable fecal bacteria from pig feces were used as representative of multiple-bacterial species. The study was performed to examine whether interactions among multiple-bacterial species would influence antagonistic activity of LJ202 against SE7106 and fecal coliform bacteria. Co-culture of SE7106 with different combinations of fecal bacteria and probiotic (LJ202 and LR108) or non-probiotic (Lact. mucosae LM303) strains revealed that the growth of SE7106 was completely inhibited either in the presence or in the absence of probiotic strains. Intriguingly, LJ202 exhibited notable inhibitory activity against fecal coliform bacteria while LR108 did not. Taken together, the results of co-culture studies suggested that LJ202 is a good probiotic candidate for further study its inhibitory effects against pathogen infections in pigs.  相似文献   

14.
Bacterial strains were isolated from cassava-derived food products and, for the first time, from cassava by-products, with a focus on gari, a flour-like product, and the effluents from the production processes for gari and fufu (a dough also made from cassava flour). A total of 47 strains were isolated, all of which were tested to determine their resistance to acidic pH and to bile salt environments. Four of the 47 isolates tested positive in both environments, and these four isolates also showed antibacterial behaviour towards both Gram-positive and Gram-negative microbial pathogens (i.e. Methicillin-resistance Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Salmonella enteritidis, Escherichia coli, Escherichia coli (O157), Yersinia enterocolitica). In most cases, the antibacterial activity was related to bacteriocin production. Molecular identification analysis (16S rDNA and randomly amplified polymorphic DNA-PCR) revealed that the four isolates were different strains of the same species, Lactobacillus fermentum. These results demonstrate that bacteria isolated from cassava-derived food items and cassava by-products have interesting properties and could potentially be used as probiotics.  相似文献   

15.
A putative gene (gadlbhye1) encoding glutamate decarboxylase (GAD) was cloned from Lactobacillus brevis HYE1 isolated from kimchi, a traditional Korean fermented vegetable. The amino acid sequences of GADLbHYE1 showed 48% homology with the GadA family and 99% identity with the GadB family from L. brevis. The cloned GADLbHYE1 was functionally expressed in Escherichia coli using inducible expression vectors. The expressed recombinant GADLbHYE1 was successfully purified by Ni–NTA affinity chromatography, and had a molecular mass of 54 kDa with optimal hydrolysis activity at 55 °C and pH 4.0. Its thermal stability was determined to be higher than that of other GADs from L. brevis, based on its melting temperature (75.18 °C). Kinetic parameters including Km and Vmax values for GADLbHYE1 were 4.99 mmol/L and 0.224 mmol/L/min, respectively. In addition, the production of gamma-aminobutyric acid in E. coli BL21 harboring gadlbhye1/pET28a was increased by adding pyridoxine as a cheaper coenzyme.  相似文献   

16.
17.
Nine wild Lactobacillus strains, namely Lactobacillus plantarum 53, Lactobacillus fermentum 56, L. fermentum 60, Lactobacillus paracasei 106, L. fermentum 250, L. fermentum 263, L. fermentum 139, L. fermentum 141, and L. fermentum 296, isolated from fruit processing by-products were evaluated in vitro for a series of safety, physiological functionality, and technological properties that could enable their use as probiotics. Considering the safety aspects, the resistance to antibiotics varied among the examined strains, and none of the strains presented hemolytic and mucinolytic activity. Regarding the physiological functionality properties, none of the strains were able to deconjugate bile salts; all of them presented low to moderate cell hydrophobicity and were able to autoaggregate, coaggregate with Listeria monocytogenes and Escherichia coli, and antagonize pathogenic bacteria. Exposure to pH 2 sharply decreased the survival of the examined strains after 1- or 2-h exposure; variable decreases were noted after 3-h exposure to pH 3. Overall, exposure to pH 5 and to bile salts (0.15, 0.3, and 1%) did not decrease the strains’ survival. Examined strains presented better ability to survive from the exposure to simulated gastrointestinal conditions in laboratorial media and milk than in grape juice. Considering the technological properties, all the strains were positive for proteolytic activity and EPS and diacetyl production, and most of them had good tolerance to 1–4% NaCl. These results indicate that wild Lactobacillus strains isolated from fruit processing by-products could present performance compatible with probiotic properties and technological features that enable the development of probiotic foods with distinct characteristics.  相似文献   

18.
The screening of three strains of lactic acid bacteria identified as Lactobacillus rhamnosus, Lactobacillus reuteri, and Lactobacillus helveticus showed significant antagonistic activity against Klebsiella pneumoniae strains characterized by multiple antibiotic resistance. Lactobacilli cocultivated with the Klebsiella strains inhibited their growth 20 to 86% on the first and second days, respectively. Exoproteome analysis of L. rhamnosus cocultivated with K. pneumoniae revealed the induction of peptidoglycan hydrolases, including extracellular lytic transglycosylases, family II (MltA), and endopeptidases capable of disrupting the peptidoglycan bacterial cell wall.  相似文献   

19.
Klebsiella pneumoniae is a 2,3-butanediol producer, and R-acetoin is an intermediate of 2,3-butanediol production. R-acetoin accumulation and dissimilation in K. pneumoniae was studied here. A budC mutant, which has lost 2,3-butanediol dehydrogenase activity, accumulated high levels of R-acetoin in culture broth. However, after glucose was exhausted, the accumulated R-acetoin could be reused by the cells as a carbon source. Acetoin dehydrogenase enzyme system, encoded by acoABCD, was responsible for R-acetoin dissimilation. acoABCD mutants lost the ability to grow on acetoin as the sole carbon source, and the acetoin accumulated could not be dissimilated. However, in the presence of another carbon source, the acetoin accumulated in broth of acoABCD mutants was converted to 2,3-butanediol. Parameters of R-acetoin production by budC mutants were optimized in batch culture. Aerobic culture and mildly acidic conditions (pH 6–6.5) favored R-acetoin accumulation. At the optimized conditions, in fed-batch fermentation, 62.3 g/L R-acetoin was produced by budC and acoABCD double mutant in 57 h culture, with an optical purity of 98.0 %, and a substrate conversion ratio of 28.7 %.  相似文献   

20.
During the mixed culture of Lactobacillus hilgardii 5w, a common spoilage wine bacteria and Oenococcus oeni X2L, an amensalistic growth response of the malolactic bacteria was produced due to a competition for nitrogenous nutrients, mainly peptides. Arginine was fully consumed and peptide concentration diminished 60% with respect to both pure cultures at the end of exponential growth. Histamine release increased 34% with respect to L. hilgardii single culture. Under the poor nutritional conditions present during winemaking, L. hilgardii could increase histamine production and adversely affect malolactic fermentation conducted by O. oeni and hence the quality of the final product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号