首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We successfully engineered a new enzyme that catalyzes the formation of d-Ala amide (d-AlaNH2) from d-Ala by modifying ATP-dependent d-Ala:d-Ala ligase (EC 6.3.2.4) from Thermus thermophilus, which catalyzes the formation of d-Ala-d-Ala from two molecules of d-Ala. The new enzyme was created by the replacement of the Ser293 residue with acidic amino acids, as it was speculated to bind to the second d-Ala of d-Ala-d-Ala. In addition, a replacement of the position with Glu performed better than that with Asp with regards to specificity for d-AlaNH2 production. The S293E variant, which was selected as the best enzyme for d-AlaNH2 production, exhibited an optimal activity at pH 9.0 and 40 °C for d-AlaNH2 production. The apparent K m values of this variant for d-Ala and NH3 were 7.35 mM and 1.58 M, respectively. The S293E variant could catalyze the synthesis of 9.3 and 35.7 mM of d-AlaNH2 from 10 and 50 mM d-Ala and 3 M NH4Cl with conversion yields of 93 and 71.4 %, respectively. This is the first report showing the enzymatic formation of amino acid amides from amino acids.  相似文献   

2.
d-Stereospecific amidohydrolase (DAH) from Streptomyces sp. 82F2 has potential utility for the synthesis of d/l configuration dipeptides by an aminolysis reaction. Structural comparison of DAH with substrate-bound d-amino acid amidase revealed that three residues located in the active site pocket of DAH (Thr145, Ala267, and Gly271) might be involved in interactions with d-phenylalanine substrate. We substituted Ala267 and Gly271, which are located at the bottom of the hydrophobic pocket of DAH, with Phe and observed changes in the stereoselectivity and specific activity toward the free and acetylated forms of d/l-Phe-methyl esters. In contrast, the mutation of Thr145, which likely supplies negative charge for recognition of the amino group of the substrate, hardly affected the stereoselectivity of the enzyme. A similar effect was observed in an investigation of hydrolysis and aminolysis reactions using the acetylated forms of d/l-Phe-methyl esters and 1,8-diaminooctane as an acyl-donor and acyl-acceptor, respectively. Substrate binding by DAH was disrupted by the mutation of Ala267 to Val or Trp and kinetic analysis showed that the hydrophobicity of the bottom of the active site pocket (Ala267 and Gly271) is important for both stereoselectivity and recognition of hydrophobic substrates.  相似文献   

3.
In order to investigate chemical evolution in interstellar molecular clouds, enantiomer-selective photo-induced chemical reactions between an amino acid and disaccharides in the gas phase were examined using a tandem mass spectrometer containing an electrospray ionization source and a cold ion trap. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of protonated tryptophan (Trp) enantiomers with disaccharides consisting of two d-glucose units, such as d-maltose or d-cellobiose, were obtained by photoexcitation of the indole ring of Trp. NH2CHCOOH loss via cleavage of the Cα–Cβ bond in Trp induced by hydrogen atom transfer from the NH3 + group of a protonated Trp was observed in a noncovalent heterochiral H+(l-Trp)(d-maltose) complex. In contrast, a photo-induced chemical reaction forming the product ion with m/z 282 occurs in homochiral H+(d-Trp)(d-maltose). For d-cellobiose, both NH2CHCOOH elimination and the m/z 282 product ion were observed, and no enantiomer-selective phenomena occurred. The m/z 282 product ion indicates that the photo-induced C-glycosylation, which links d-glucose residues to the indole moiety of Trp via a C–C bond, can occur in cold gas-phase noncovalent complexes, and its enantiomer-selectivity depends on the structure of the disaccharide.  相似文献   

4.
This article presents changes in concentrations of d-pinitol (and other cyclitols as well as low molecular weight carbohydrates) in vegetative and reproductive organs of fenugreek (Trigonella foenumgraecum L.) during an entire plant growing period. d-Pinitol was the major cyclitol in all tested organs, representing 43–94% of total cyclitols and 2–77% of total soluble carbohydrates. The highest concentration of d-pinitol was found in pods (14–23 mg g?1 of dry weight, DW), lower in leaves and stems (5–20 and 9–10 mg g?1 DW, respectively), and the lowest in maturing seeds (2–5 mg g?1 DW). Although maturing seeds accumulate α-d-galactosides of d-pinitol (galactosyl pinitols, up to 6.6 mg g?1 DW), the major storage sugars were raffinose family oligosaccharides (RFOs, 65.37 mg g?1 DW). Both RFOs and galactosyl pinitols are hydrolyzed during seed germination, releasing sucrose and d-pinitol, respectively. Accumulation of free galactose was not detected. Owing to the high concentration of d-pinitol (up to 23.70 mg g?1 DW) and low concentration of soluble sugars, developing pods seem to be the best source of d-pinitol.  相似文献   

5.
Diameter and wall thickness of self-assembled peptide nanotube of cyclo[(-d-Ala-l-Ala)4-] were characterised by molecular simulation. In order to verify the existence of peptide nanotube of cyclo[(-d-Ala-l-Ala)4-], cyclo[(-d-Ala-l-Ala)4-] was firstly synthesised through Fmoc solid-phase synthesis method and then self-assembled in trifluoroacetic acid. Based on the results of experiment, the single nanotube structure was further characterised by molecular dynamics (MD) employing the COMPASS force field. The results indicate that cyclo[(-d-Ala-l-Ala)4-] is self-assembled into nanotube bundles of about 0.5 μm in diameter and 10 μm in length; the inner and outer diameter of the single nanotube is 8.5 and 15.9 Å, respectively, and the nanotube wall thickness is 3.3 Å.  相似文献   

6.
We performed sensory evaluations on 141 bottles of sake and analyzed the relationship between the d-amino acid concentrations, and the taste of the sake using principal component analysis, which yielded seven principal components (PC1–7) that explained 100 % of the total variance in the data. PC1, which explains 33.6 % of the total variance, correlates most positively with strong taste and most negatively with balanced tastes. PC2, which explains 54.4 % of the total variance, correlates most positively with a sweet taste and most negatively with bitter and sour tastes. Sakes brewed with “Kimoto yeast starter” and “Yamahaimoto” had high scores for PC1 and PC2, and had strong taste in comparison with sakes brewed with “Sokujo-moto”. When present at concentrations below 50 μM, d-Ala did not affect the PC1 score, but all the sakes showed a high PC1 score, when the d-Ala was above 100 μM. Similar observations were found for the d-Asp and d-Glu concentrations with regard to PC1, and the threshold concentrations of d-Asp and d-Glu that affected the taste were 33.8 and 33.3 μM, respectively. Certain bacteria present in sake, especially lactic acid bacteria, produce d-Ala, d-Asp and d-Glu during storage, and these d-amino acids increased the PC1 score and produced a strong taste (Nojun). When d- and l-Ala were added to the sakes, the value for the umami taste in the sensory evaluation increased, with the effect of d-Ala being much stronger than that of l-Ala. The addition of 50–5,000 μM dl-Ala did not effect on the aroma of the sakes at all.  相似文献   

7.
A specific endo-1,3-β-d-glucanase (GFA) gene was found in genome of marine bacterium Formosa algae KMM 3553. For today this is the only characterized endo-1,3-β-d-glucanase (EC 3.2.1.39) in Formosa genus and the only bacterial EC 3.2.1.39 GH16 endo-1,3-β-d-glucanase with described transglycosylation activity. It was expressed in E. coli and isolated in homogeneous state. Investigating the products of polysaccharides digestion with GFA allowed to establish it’s substrate specificity and classify this enzyme as glucan endo-1,3-β-d-glucosidase (EC 3.2.1.39). The amino-acid sequence of GFA consists of 556 residues and shows sequence similarity of 45–85% to β-1,3-glucanases of bacteria belonging to the CAZy 16th structural family of glycoside hydrolases GH16. Enzyme has molecular weight 61 kDa, exhibits maximum of catalytic activity at 45?°C, pH 5.5. Half-life period at 45 °С is 20 min, complete inactivation happens at 55?°C within 10 min. Km for hydrolysis of laminarin is 0.388 mM. GFA glucanase from marine bacteria F. algae is one of rare enzymes capable to catalyze reactions of transglycosylation. It catalyzed transfer of glyconic part of substrate molecule on methyl-β-d-xylopyranoside, glycerol and methyl-α-d-glucopyranoside. The enzyme can be used in structure determination of β-1,3-glucans (or mixed 1,3;1,4- and 1,3;1,6-β-d-glucans) and enzymatic synthesis of new carbohydrate-containing compounds.  相似文献   

8.
Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of d-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for d-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of d-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest d-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of d-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of d-lactic acid production from inulin by SSF represents a high-yield method for d-lactic acid production from non-food grains.  相似文献   

9.
Immobilized cells of Bacillus subtilis HLZ-68 were used to produce d-alanine from dl-alanine by asymmetric degradation. Different compounds such as polyvinyl alcohol and calcium alginate were employed for immobilizing the B. subtilis HLZ-68 cells, and the results showed that cells immobilized using a mixture of these two compounds presented higher l-alanine degradation activity, when compared with free cells. Subsequently, the effects of different concentrations of polyvinyl alcohol and calcium alginate on l-alanine consumption were examined. Maximum l-alanine degradation was exhibited by cells immobilized with 8% (w/v) polyvinyl alcohol and 2% (w/v) calcium alginate. Addition of 400 g of dl-alanine (200 g at the beginning of the reaction and 200 g after 30 h of incubation) into the reaction solution at 30 °C, pH 6.0, aeration of 1.0 vvm, and agitation of 400 rpm resulted in complete l-alanine degradation within 60 h, leaving 185 g of d-alanine in the reaction solution. The immobilized cells were applied for more than 15 cycles of degradation and a maximum utilization rate was achieved at the third cycle. d-alanine was easily extracted from the reaction solution using cation-exchange resin, and the chemical and optical purity of the extracted d-alanine was 99.1 and 99.6%, respectively.  相似文献   

10.
We investigated the pharmacological actions of a slow-releasing H2S donor, GYY 4137; a substrate for the biosynthesis of H2S, l-cysteine and its precursor, N-acetylcysteine on potassium (K+; 50 mM)-evoked [3H]D-aspartate release from bovine isolated retinae using the Superfusion Method. GYY 4137 (10 nM–10 µM), l-cysteine (100 nM–10 µM) and N-acetylcysteine (10 µM–1 mM) elicited a concentration-dependent decrease in K+-evoked [3H]D-aspartate release from isolated bovine retinae without affecting basal tritium efflux. At equimolar concentration of 10 µM, the rank order of activity was as follows: l-cysteine?>?GYY 4137?>?N-acetylcysteine. A dual inhibitor of the biosynthetic enzymes for H2S, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), amino-oxyacetic acid (AOA; 3 mM) reversed the inhibitory responses caused by GYY 4137, l-cysteine and N-acetylcysteine on K+-evoked [3H]D-aspartate release. Glibenclamide (300 µM), an inhibitor of KATP channels blocked the inhibitory action of GYY 4137 and l-cysteine but not that elicited by N-acetylcysteine on K+-induced [3H]D-aspartate release. The inhibitory effect of GYY 4137 and l-cysteine on K+-evoked [3H]D-aspartate release was reversed by the non-specific inhibitor of nitric oxide synthase (NOS), l-NAME (300 µM). Furthermore, a specific inhibitor of inducible NOS (iNOS), aminoguanidine (10 µM) blocked the inhibitory action of l-cysteine on K+-evoked [3H]D-aspartate release. We conclude that both donors and substrates for H2S production can inhibit amino acid neurotransmission in bovine isolated retinae, an effect that is dependent, at least in part, upon the intramural biosynthesis of this gas, and on the activity of KATP channels and NO synthase.  相似文献   

11.
S-11C-methyl-l-cysteine (LMCYS) is an attractive amino acid tracer for clinical tumor positron emission tomography (PET) imaging. d-isomers of some radiolabeled amino acids are potential PET tracers for tumor imaging. In this work, S-11C-methyl-d-cysteine (DMCYS), a d-amino acid isomer of S-11C-methyl-cysteine for tumor imaging was developed and evaluated. DMCYS was prepared by 11C-methylation of the precursor d-cysteine, with an uncorrected radiochemical yield over 50 % from 11CH3I within a total synthesis time from 11CO2 about 12 min. In vitro competitive inhibition studies showed that DMCYS uptake was primarily transported through the Na+-independent system L, and also the Na+-dependent system B0,+ and system ASC, with almost no system A. In vitro incorporation experiments indicated that almost no protein incorporation was found in Hepa 1–6 hepatoma cell lines. Biodistribution studies demonstrated higher uptake of DMCYS in pancreas and liver at 5 min post-injection, relatively lower uptake in brain and muscle, and faster radioactivity clearance from most tissues than those of l-isomer during the entire observation time. In the PET imaging of S180 fibrosarcoma–bearing mice and turpentine-induced inflammatory model mice, 2-18F-fluoro-2-deoxy-d-glucose (FDG) exhibited significantly high accumulation in both tumor and inflammatory lesion with low tumor-to-inflammation ratio of 1.40, and LMCYS showed low tumor-to-inflammation ratio of 1.64 at 60 min post-injection. By contrast, DMCYS showed moderate accumulation in tumor and very low uptake in inflammatory lesion, leading to relatively higher tumor-to-inflammation ratio of 2.25 than 11C-methyl-l-methionine (MET) (1.85) at 60 min post-injection. Also, PET images of orthotopic transplanted glioma models demonstrated that low uptake of DMCYS in normal brain tissue and high uptake in brain glioma tissue were observed. The results suggest that DMCYS is a little better than the corresponding l-isomers as a potential PET tumor-detecting agent and is superior to MET and FDG in the differentiation of tumor from inflammation.  相似文献   

12.
d(?)-lactic acid is needed for manufacturing of stereo-complex poly-lactic acid polymer. Large scale d-lactic acid fermentation, however, has yet to be demonstrated. A genetically engineered Escherichia coli strain, HBUT-D, was adaptively evolved in a 15% calcium lactate medium for improved lactate tolerance. The resulting strain, HBUT-D15, was tested at a lab scale (7 L) by fed-batch fermentation with up to 200 g L?1 of glucose, producing 184–191 g L?1 of d-lactic acid, with a volumetric productivity of 4.38 g L?1 h?1, a yield of 92%, and an optical purity of 99.9%. The HBUT-D15 was then evaluated at a semi-industrial scale (30 m3) via fed-batch fermentation with up to 160 g L?1 of glucose, producing 146–150 g L?1 of d-lactic acid, with a volumetric productivity of 3.95–4.29 g L?1 h?1, a yield of 91–94%, and an optical purity of 99.8%. These results are comparable to that of current industrial scale l(+)-lactic acid fermentation.  相似文献   

13.
Tripeptides of the general X-SO2-d-Ser-AA-Arg-CO-Y formula, where X = α-tolyl, p-tolyl, 2,4,6-triisopropylphenyl; AA = alanine, glycine, norvaline and Y = OH, NH-(CH2)5NH2 were obtained and tested for their effect on the amidolytic activities of urokinase, thrombin, trypsin, plasmin, t-PA and kallikrein. The most active compound towards urokinase was PhCH2SO2-d-Ser-Gly-Arg-OH with Ki value 5.4 μM and the most active compound toward thrombin was PhCH2SO2-d-Ser-NVa-Arg-OH with Ki value 0.82 μM. The peptides were nontoxic against porcine erythrocytes in vitro. PhCH2SO2-d-Ser-Gly-Arg-OH showed cytotoxic effect against DLD cell lines with IC50 values of 5 μM. For the highly selective determination of the interaction of some of the synthesised acids of tripeptides with urokinase and plasmin the Surface Plasmon Resonance Imaging sensor has been applied. These compounds bind to urokinase and plasmin in 0.05 mM concentration.  相似文献   

14.
dl-Alanine (Ala) was heated with/without powdered olivine and water at 120 °C for 8 days to investigate the formation of the diastereoisomers of piperazine-2,5-dione (diketopiperazine, DKP). When only dl-Ala was heated with a small amount of water, 3.0 % of dl-Ala changed to cis- and trans-DKP after 8 days. DKPs were not detected after heating when no water was added. The presence of a small amount of water is important factor controlling peptide production rates under thermal conditions. When DL-Ala was heated with olivine powder for 8 days, the yields of cis- and trans-DKP were 6.8 and 4.9 %, respectively. The high yield of cis-DKP compared with trans-DKP was attributed to greater thermal stability of cis-DKP. After heating for 8 days, the diastereoisomeric excess of cis-DKP without olivine was 7.3 %, whereas a much higher value of 16.3 % was obtained in the presence of olivine. Taken together, these results show that olivine is not only an efficient catalyst for the formation of DKPs but that it also play a significant role in determining the diastereoisomer selectivity of these cyclic dipeptides.  相似文献   

15.
Some anticonvulsant drugs are associated with cognitive ability in patients; Topiramate (TPM) is well known as an effective anticonvulsant agent applied in clinical settings. However, the effect of TPM on the cognitive function is rarely studied. In this study, we aimed to observe the effects of TPM on cell proliferation and neuronal differentiation in the dentate gyrus (DG) of the d-galactose-induced aging mice by Ki-67 and doublecortin (DCX) immunohistochemistry. The study is divided into four groups including control, d-galactose-treated group, 25 and 50 mg/kg TPM-treated plus d-galactose-treated groups. We found, 50 mg/kg (not 25 mg/kg) TPM treatment significantly increased the numbers of Ki-67+ cells and DCX immunoreactivity, and improved neuroblast injury induced by d-galactose treatment. In addition, we also found that decreased immunoreactivities and protein levels of antioxidants including superoxide dismutase and catalase induced by d-galactose treatment were significantly recovered by 50 mg/kg TPM treatment in the mice hippocampal DG (P < 0.05). In conclusion, our present results indicate that TPM can ameliorate neuroblast damage and promote cell proliferation and neuroblast differentiation in the hippocampal DG via increasing SODs and catalase levels in the d-galactose mice.  相似文献   

16.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the key catalyst of CO2 fixation in nature. RuBisCO forms I, II, and III catalyze CO2 fixation reactions, whereas form IV, also called the RuBisCO-like protein (RLP), is known to have no carboxylase or oxygenase activities. Here, we describe an RLP in Ochrobactrum anthropi ATCC 49188 (Oant_3067; HamA) that functions as an oxygenase in the metabolism of d-hamamelose, a branched-chain hexose found in most higher plants. The d-hamamelose pathway is comprised of five previously unknown enzymes: d-hamamelose dehydrogenase, d-hamamelono-lactonase, d-hamamelonate kinase, d-hamamelonate-2′,5-bisphosphate dehydrogenase (decarboxylating), and the RLP 3-keto-d-ribitol-1,5-bisphosphate (KRBP) oxygenase, which converts KRBP to 3-d-phosphoglycerate and phosphoglycolate. HamA represents the first RLP catalyzing the O2-dependent oxidative C–C bond cleavage reaction, and our findings may provide insights into its applications in oxidative cleavage of organic molecules.  相似文献   

17.

Objectives

To characterize a novel membrane-bound d -amino acid dehydrogenase from Proteus mirabilis JN458 (PmDAD).

Results

The recombinant PmDAD protein, encoding a peptide of 434 amino acids with a MW of 47.7 kDa, exhibited broad substrate specificity with d -alanine the most preferred substrate. The K m and V max values for d -alanine were 9 mM and 20 μmol min?1 mg?1, respectively. Optimal activity was at pH 8 and 45 °C. Additionally, this PmDAD generated H2O2 and exhibited 68 and 60% similarity with E. coli K12 DAD and Pseudomonas aeruginosa DAD, respectively, with low degrees of sequence similarity with other bacterial DADs.

Conclusions

d-Amino acid dehydrogenase from Proteus mirabilis JN458 was expressed and characterized for the first time, DAD was confirmed to be an alanine dehydrogenase.
  相似文献   

18.
Cerebralcare granule® (CG) is a preparation of Traditional Chinese Medicine that widely used in China. It was approved by the China State Food and Drug Administration for treatment of headache and dizziness associated with cerebrovascular diseases. In the present study, we aimed to investigate whether CG had protective effect against d-galactose (gal)-induced memory impairment and to explore the mechanism of its action. d-gal was administered (100 mg/kg, subcutaneously) once daily for 8 weeks to induced memory deficit and neurotoxicity in the brain of aging mouse and CG (7.5, 15, and 30 g/kg) were simultaneously administered orally. The present study demonstrates that CG can alleviate aging in the mouse brain induced by d-gal through improving behavioral performance and reducing brain cell damage in the hippocampus. CG prevents aging mainly via suppression of oxidative stress response, such as decreasing NO and MDA levels, renewing activities of SOD, CAT, and GPx, as well as decreasing AChE activity in the brain of d-gal-treated mice. In addition, CG prevents aging through inhibiting NF-κB-mediated inflammatory response and caspase-3-medicated neurodegeneration in the brain of d-gal treated mice. Taken together, these data clearly demonstrates that subcutaneous injection of d-gal produced memory deficit, meanwhile CG can protect neuron from d-gal insults and improve memory ability.  相似文献   

19.
As an important feedstock monomer for the production of biodegradable stereo-complex poly-lactic acid polymer, d-lactate has attracted much attention. To improve d-lactate production by microorganisms such as Lactobacillus delbrueckii, various fermentation conditions were performed, such as the employment of anaerobic fermentation, the utilization of more suitable neutralizing agents, and exploitation of alternative nitrogen sources. The highest d-lactate titer could reach 133 g/L under the optimally combined fermentation condition, increased by 70.5% compared with the control. To decipher the potential mechanisms of d-lactate overproduction, the time-series response of intracellular metabolism to different fermentation conditions was investigated by GC–MS and LC–MS/MS-based metabolomic analysis. Then the metabolomic datasets were subjected to weighted correlation network analysis (WGCNA), and nine distinct metabolic modules and eight hub metabolites were identified to be specifically associated with d-lactate production. Moreover, a quantitative iTRAQ–LC–MS/MS proteomic approach was employed to further analyze the change of intracellular metabolism under the combined fermentation condition, identifying 97 up-regulated and 42 down-regulated proteins compared with the control. The in-depth analysis elucidated how the key factors exerted influence on d-lactate biosynthesis. The results revealed that glycolysis and pentose phosphate pathways, transport of glucose, amino acids and peptides, amino acid metabolism, peptide hydrolysis, synthesis of nucleotides and proteins, and cell division were all strengthened, while ATP consumption for exporting proton, cell damage, metabolic burden caused by stress response, and bypass of pyruvate were decreased under the combined condition. These might be the main reasons for significantly improved d-lactate production. These findings provide the first omics view of cell growth and d-lactate overproduction in L. delbrueckii, which can be a theoretical basis for further improving the production of d-lactate.  相似文献   

20.
Production of l-glutamate using a biotin-deficient strain of Corynebacterium glutamicum has a long history. The process is achieved by controlling biotin at suboptimal dose in the initial fermentation medium, meanwhile feeding NH4OH to adjust pH so that α-ketoglutarate (α-KG) can be converted to l-glutamate. In this study, we deleted glutamate dehydrogenase (gdh1 and gdh2) of C. glutamicum GKG-047, an l-glutamate overproducing strain, to produce α-KG that is the direct precursor of l-glutamate. Based on the method of l-glutamate fermentation, we developed a novel double-phase pH and biotin control strategy for α-KG production. Specifically, NH4OH was added to adjust the pH at the bacterial growth stage and NaOH was used when the cells began to produce acid; besides adding an appropriate amount of biotin in the initial medium, certain amount of additional biotin was supplemented at the middle stage of fermentation to maintain a high cell viability and promote the carbon fixation to the flux of α-KG production. Under this control strategy, 45.6 g/L α-KG accumulated after 30-h fermentation in a 7.5-L fermentor and the productivity and yield achieved were 1.52 g/L/h and 0.42 g/g, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号