首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The appropriate animal model of diabetes mellitus type 2 is Zucker diabetic fatty (ZDF) rats. The goal of this study was to analyse the effect of chronic high-energy diet on diabetes mellitus (DM) complications in ZDF rats. Male ZDF rats (n?=?20) and their lean controls (non-diabetic, n?=?10) in the age of 3 months were involved in the experiment. Rats were provided with water and diet on ad libitum base. Animals were divided into three groups as follows: lean untreated rats (C) fed by KKZ-P/M (10 MJ/kg), obese rats fed by KKZ-P/M (10 MJ/kg, E1) and obese rats fed by enriched high energy diet (E2, enriched KKZ-P/M, 20 MJ/kg). Glucose, ketones levels, the consumption of feed, water and the live weight was measured weekly during the whole experiment. At the end of the experiment rats were anesthetized and selected haematological parameters were measured. ZDF rats in E1 and E2 group developed obesity, hyperglycaemia, non-insulin dependent diabetes, aggravations in haematological parameters and accumulation of sorbitol in sciatic nerve and lens of rats. High-energy diet immediately induced hyperglycaemia followed by accelerating the secondary symptoms of diabetes complications expressed by disturbed haematology parameters. High-energy diet caused ketoacidosis what meant two cases of death. Extended research on diabetes is needed.  相似文献   

2.
The present study aimed to investigate the potential effects of vitamins (C and E)/melatonin co-administration on the hematologic and hepatic functions and oxidative stress in alloxan-induced diabetic rats. The intraperitoneal injection of alloxan (120 mg/kg b.w. for 2 days) induced a significant increase of blood glucose levels (hyperglycemia) associated with serious hematologic disorders (P?<?0.01) evidenced by the decrease in the levels of red blood cell count (RBC) (?18 %), hematocrit (Ht) (?18 %), hemoglobin content (Hb) (?36 %), mean corpuscular hemoglobin (MCH) (?17 %), and mean corpuscular hemoglobin concentration (MCHC) (?16 %). The activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and the plasmatic levels of total cholesterol and triglyceride contents of diabetic rats were, however, noted to undergo significant increases by 42 % (P?<?0.01), 134 % (P?<?0.001), 27.5 % (P?<?0.01), 147 % (P?<?0.001), and 67 % (P?<?0.01), respectively, as compared to the control animals. Furthermore, a significant increase in malondialdehyde (MDA) content and a significant decrease in superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were observed in the plasma and hepatic tissues of diabetic rats when compared to the controls. Interestingly, the treatment with vitamins (C, E) in combination with melatonin was noted to reduce the plasma levels of glucose, lower the MDA levels, and restore the hematologic parameters and biochemical and antioxidant levels of diabetic rats back to normal values, alleviating diabetes metabolic disorders in rats.  相似文献   

3.
We hypothesize that diabetes-induced impaired collateral formation after a hindlimb ligation in rats is in part caused by intracellular glycation and that overexpression of glyoxalase-I (GLO-I), i.e. the major detoxifying enzyme for advanced-glycation-endproduct (AGE) precursors, can prevent this. Wild-type and GLO-I transgenic rats with or without diabetes (induced by 55 mg/kg streptozotocin) were subjected to ligation of the right femoral artery. Laser Doppler perfusion imaging showed a significantly decreased blood perfusion recovery after 6 days in the diabetic animals compared with control animals, without any effect of Glo1 overexpression. In vivo time-of-flight magnetic resonance angiography at 7-Tesla showed a significant decrease in the number and volume of collaterals in the wild-type diabetic animals compared with the control animals. Glo1 overexpression partially prevented this decrease in the diabetic animals. Diabetes-induced impairment of arteriogenic adaptation can be partially rescued by overexpressing of GLO-I, indicating a role of AGEs in diabetes-induced impaired collateral formation.  相似文献   

4.
Taurine, a ß-aminosulfonic acid, has been reported to reduce the risk of a number of diseases, including cardiovascular disease, diabetes, and also perhaps to reduce neurodegeneration in the elderly. The transport of taurine is known to be mediated by taurine transporter (TauT). The purpose of this study is to examine the effects of taurine on glial cells apoptosis and on TauT expression in retina of diabetic rats and retinal glial cells cultured with high glucose. TdT-mediated dUTP-biotin nick-end labeling (TUNEL) staining analysis showed that the number of TUNEL-positive cells in taurine treated diabetic rats was significantly lower than those of untreated diabetic rats over the 8-, and 12-week time courses, respectively (all P < 0.001). No TUNEL-positive cells were observed in retina of control groups and taurine treated control groups. In cultured retinal glial cells, the apoptosis in high glucose-treated cells was significantly increased vs the control. When the cells were incubated with high glucose and taurine at 0.1, 1.0 and 10 mmol/l, the percentage of apoptosis was significantly decreased to 16.4, 5.7 and 7.6% respectively (all P < 0.05). With supplementation of taurine in diet and culture medium, higher expression of TauT in retina of diabetic rats and cultured retinal glial cells under diabetic conditions were detected by western-blotting (P < 0.05). Taken together, our data suggest that diabetes or high glucose induced retinal glial cells apoptosis can be inhibited by taurine, and that taurine reverses the diabetes-induced or high glucose-induced decrease in TauT expression.  相似文献   

5.
Worldwide prevalence of diabetes mellitus motivates a number of association studies to be conducted throughout the world. Eleven polymorphisms from nine candidate genes in oxidative stress pathway have been analyzed in eastern Indian type 2 diabetic patients (n = 145) and healthy controls (n = 100). Different biochemical parameters were also analyzed for their association with the disease. Significant associations were observed for rs2070424 A>G SOD1 (OR 3.91, 95% CI 2.265–8.142, P < 0.001), rs854573 A>G PON1 (OR 3.415, 95% CI 2.116–5.512, P < 0.001), rs6954345 G>C PON2 (OR 3.208, 95% CI 2.071–4.969, P < 0.001), RAGE rs1800624 ?374 T>A (OR 3.58, 95% CI 2.218–5.766, P < 0.001), and NOS3 ?786 T>C (OR 3.75, 95% CI 2.225–6.666, P < 0.001). Haplotype containing two risk alleles of PON1 and PON2 genes was significantly associated with disease (OR 8.34, 95% CI 1.554–44.804, P < 0.002). Our results suggest that carriers of major and efficient alleles of oxidative stress genes are more likely to survive the comorbid complications and single copy of risk allele is sufficient for developing the disease.  相似文献   

6.
Copper (Cu) is an important trace element involved in oxidative stress, which is associated with the onset and progression of diabetes mellitus (DM). However, clinical studies comparing plasma or serum Cu levels in patients with DM and in healthy individuals report conflicting findings. Therefore, in this meta-analysis, we analyzed the circulating levels of Cu associated with DM (including type 1 diabetes mellitus [T1DM] and type 2 diabetes mellitus [T2DM]). We searched the articles indexed in PubMed, OVID, and Cochrane databases, published through January 2016 and meeting our predefined criteria. Requisite data were extracted, and a random-effect model or a fixed-effect model was used to conduct the meta-analysis. Fifteen eligible studies involving a total of 1079 DM patients and 561 healthy controls were identified. Overall, the DM patients showed higher Cu levels than the healthy controls (plasma Cu mean difference [MD] = 1.69 μmol/L, p < 0.0001; serum Cu MD = 4.06 μmol/L, p = 0.005; plasma and serum Cu MD = 2.67 μmol/L, p = 0.006). Stratification based on the type of diabetes also indicated higher levels of Cu in the plasma and serum of DM patients than in healthy controls, respectively. Stratification of DM patients associated with and without complications also revealed similar results. This meta-analysis suggests that DM patients carried higher levels of Cu than healthy individuals. However, international cohort studies are needed to corroborate our findings.  相似文献   

7.
Previous studies have demonstrated that the c-Jun N-terminal kinase (JNK) pathway plays an important role in inducing neuronal apoptosis following cerebral ischemic injury. JNK signaling pathway in activated during cerebral ischemic injury. It participates in ischemia-induced neuronal apoptosis. However, whether JNK signaling is involved in the process of neuronal apoptosis of diabetes-induced cerebral ischemia is largely unknown. This study was undertaken to evaluate the influence of cerebral ischemia–reperfusion injury on phosphorylation of JNK in diabetic rats. Twenty-four adult streptozotocin induced diabetic and 24 adult non-diabetic rats were randomly subjected to 15 min of forebrain ischemia followed by reperfusion for 0, 1, 3, and 6 h. Sixteen sham-operated diabetic and non-diabetic rats were used as controls. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL). Protein expression of phospho-JNK was examined by immunohistochemistry and Western blot. The numbers of TUNEL-positive cells and phospho-JNK protein expression in the cerebral cortices after 1, 3 and 6 h reperfusion was significantly higher in diabetic rats compared to non-diabetic animals subjected to ischemia and reperfusion (p < 0.05). Western blot analysis showed significantly higher phospho-JNK protein expression in the cerebral cortices of the diabetic rats after 1 and 3 h reperfusion than that was presented in non-diabetic animals subjected to ischemia and reperfusion (p < 0.05). These findings suggest that increased phosphorylation of JNK may be associated with diabetes-enhanced ischemic brain damage.  相似文献   

8.
Vasoconstriction within the renal medulla contributes to the development of hypertension. This study investigated the role of reactive oxygen species (ROS) in regulating renal medullary and cortical blood perfusion (MBP and CBP respectively) in both stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar rats. CBP and MBP were measured using a laser-Doppler flow meter before and after intra-renal infusion of tempol, the superoxide dismutase (SOD) mimetic or tempol plus catalase, the hydrogen peroxide-degrading enzyme. Tempol infusion significantly elevated blood perfusion within the renal medulla (MBP) in both SHRSP (by 43 ± 7%, P < 0.001) and Wistar rats (by 17 ± 2%, P < 0.05) but the magnitude of the increase was significantly greater in the SHRSP (P < 0.01). When the enzyme catalase and tempol were co-infused, MBP was again significantly increased in SHRSP (by 57 ± 6%, P < 0.001) and Wistar rats (by 33 ± 6%, P < 0.001), with a significantly greater increase in perfusion being induced in the SHRSP relative to the Wistar rats (P < 0.01). Notably, this increase was significantly greater than in those animals infused with tempol alone (P < 0.01). These results suggest that ROS plays a proportionally greater role in reducing renal vascular compliance, particularly within the renal medulla, in normotensive and hypertensive animals, with effects being greater in the hypertensive animals. This supports the hypothesis that SHRSP renal vasculature might be subjected to elevated level of oxidative stress relative to normotensive animals.  相似文献   

9.
Probiotic therapies are going to be an effective alternative therapeutic strategy in the treatment and management of diabetes. The mechanism behind the essential effects of probiotic therapies in diabetic patients was not fully understood. The objective of this study was to evaluate the effects of probiotic soy milk containing Lactobacillus planetarum A7 on inflammation, lipid profile, fasting blood glucose, and serum adiponectin among patients with type 2 diabetes mellitus. Forty patients with type 2 diabetes, at the age of 35–68 years old, were assigned to two groups in this randomized, double-blind, controlled clinical trial. The patients in the intervention group consumed 200 ml/day of probiotic soy milk containing L. planetarum A7 and those in control group consumed 200 ml/day of pure soy milk for 8 weeks. Serum TNF-α, C reactive protein, adiponectin, lipid profile, and fasting blood glucose were determined before and after intervention. In intervention group, serum adiponectin in pre- and post-treatment did not show any significant changes (2.52 ± 0.74 vs 2.84 ± 0.61, P = 0.658), as well as changes in serum TNF-α and C reactive protein (172.44 ± 5.7 vs 172.83 ± 7.6, P = 0.278, 4.2 ± 1.4 vs 4.5 ± 1.9, P = 0.765, respectively). Low-density cholesterol and high-density cholesterol changed significantly (P = 0.023, P = 0.017, respectively), but fasting blood glucose did not show any significant changes. The results of this study showed that consumption of probiotic soy milk and soy milk has no effect on serum adiponectin and inflammation, but it can change lipid profile among type 2 diabetic patients.  相似文献   

10.
Mucormycosis is an invasive infection caused by opportunistic fungi. Rhizopus, Lichtheimia, Mucor and Rhizomucor are the most common isolated genera. Primary cutaneous mucormycosis is usually related to traumatic injuries, but immunocompromised cases are associated with underlying conditions such as diabetes mellitus and malignancies. The treatment of choice is surgical debridement and liposomal amphotericin B. We present a 40-year-old male with fever and a painful necrotic lesion on the middle back and history of poorly controlled diabetes mellitus. Rhizopus oryzae was isolated and identified using an internal transcribed spacer regions ITS1 and ITS2. An initial good response to treatment was observed; however, 7 days later a diabetic ketoacidosis due to poor adherence to treatment caused a lethal outcome.  相似文献   

11.
Sleep deprivation (SD) is associated with cognitive deficits. It was found to affect the hippocampus region of the brain by impairing memory formation. This impairment is suggested to be caused by elevation in oxidative stress in the body, including the brain during SD. It was hypothesized that the methanolic extract of the fruits of Arbutus andrachne L. (Ericaceae) will prevent chronic SD-induced impairment of hippocampal memory via its antioxidative properties. The methanolic extract of the fruits of A. andrachne was evaluated for its beneficial properties to reverse SD-induced cognitive impairment in rats. Animals were sleep deprived for 8 weeks using a multiple platform model. The extract was administered i.p. at three doses (50, 200, and 500 mg/kg). Behavioral studies were conducted to test the spatial learning and memory using radial arm water maze (RAWM). In addition, the hippocampus was dissected to analyze the following oxidative stress markers: glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG, glutathione peroxidase (GPx), and catalase. Chronic SD impaired short- and long-term memories (P < 0.05). Treatment of animals with A. andrachne fruit extract at all doses prevented long-term memory impairment induced by SD while such treatment prevented short-term memory impairment only at 200 and 500 mg/kg dose levels. Moreover, A. andrachne fruit extract normalized the reduction in the hippocampus GSH/GSSG ratio and activity of GPx, and catalase (P < 0.05) induced by chronic sleep deprivation. Chronic sleep deprivation impaired both short- and long-term memory formation, while methanolic extract of A. andrachne fruits reversed this impairment, probably through normalizing oxidative stress in the hippocampus.  相似文献   

12.
This study was carried out to determine the effect of zinc on oxidative DNA damage in rats with experimental acute and chronic kidney deficiency. Six groups of five Wistar-Albino rats each were assigned as controls (C), acute kidney deficiency (AKD), zinc-supplemented (+Zn), acute kidney deficiency, zinc-supplemented (AKD + Zn), chronic kidney deficiency (CKD) and zinc-supplemented chronic kidney deficiency (CKD + Zn). The levels of 8-Oxo-2′-deoxyguanosine (8-OHdG) were determined, being the lowest in the CKD group (p < 0.05), higher in the C group than those of rats with CKD but lower than that of all the other groups (p < 0.05). There were no significant differences between the controls and the CKD + Zn group, or between the AKD and the +Zn groups. Among all groups, the highest 8-OHdG level was found in the AKD + Zn group (p < 0.05). DNA damage was greater in acute renal failure than in rats with chronic renal failure. The DNA damage in the zinc group was significantly higher than in the controls.  相似文献   

13.
Heat shock proteins (HSPs) play an important role in insulin resistance and improve the cellular stress response via HSP induction by exercise to treat type 2 diabetes. In this study, the effects of exercise-induced HSP72 expression levels on whole-body insulin resistance in type 2 diabetic rats were investigated. Male 25-week-old Otsuka Long-Evans Tokushima Fatty rats were divided into three groups: sedentary (Sed), trained in a thermal-neutral environment (NTr: 25 °C), and trained in a cold environment (CTr: 4 °C). Exercise training was conducted 5 days/week for 10 weeks. Rectal temperature was measured following each bout of exercise. An intraperitoneal glucose tolerance test (IPGTT) was performed after the training sessions. The serum, gastrocnemius muscle, and liver were sampled 48 h after the final exercise session. HSP72 and heat shock cognate protein 73 expression levels were analyzed by Western blot, and serum total cholesterol, triglyceride (TG), and free fatty acid (FFA) levels were measured. NTr animals exhibited significantly higher body temperatures following exercise, whereas, CTr animals did not. Exercise training increased HSP72 levels in the gastrocnemius muscle and liver, whereas, HSP72 expression was significantly lower in the CTr group than that in the NTr group (p < 0.05). Glucose tolerance improved equally in both trained animals; however, insulin levels during the IPGTT were higher in CTr animals than those in NTr animals (p < 0.05). In addition, the TG and FFA levels decreased significantly only in NTr animals compared with those in Sed animals. These results suggest that attenuation of exercise-induced HSP72 expression partially blunts improvement in whole-body insulin resistance and lipid metabolism in type 2 diabetic rats.  相似文献   

14.
Mitogen-activated protein kinases (MAPKs) (ERK1/2, JNK, and p38) are upregulated in diabetic cardiomyopathy (DCM). Dual-specific phosphatase-1 (DUSP-1) has been reported to regulate the activity of MAPKs in cardiac hypertrophy; however, the role of DUSP-1 in regulating MAPKs activity in DCM is not known. MicroRNAs have been reported to regulate the expression of several genes in hypertrophied failing hearts. However, little is known about the microRNAs regulating DUSP-1 expression in diabetes-related cardiac hypertrophy. In the present study, we investigated the role of DUSP-1 and miR-200c in diabetes-induced cardiac hypertrophy. DCM was induced in Wistar rats by low-dose Streptozotocin high-fat diet for 12 weeks. Cardiac expression of ERK, p-38, JNK, DUSP-1, miR-200c, and hypertrophy markers (ANP and β-MHC) was studied in DCM in control rats and in high-glucose (HG)-treated rat neonatal cardiomyocytes. miR-200c inhibition was performed to validate DUSP-1 as target. A significant increase in phosphorylated ERK, p38, and JNK was observed in DCM model and in HG-treated cardiomyocytes (p < 0.05). Expression of DUSP-1 was significantly decreased in diabetes group and in HG-treated cardiomyocytes (p < 0.05). Increased expression of miR-200c was observed in DCM model and in HG-treated cardiomyocytes (p < 0.05). Inhibition of miR-200c induces the expression of the DUSP-1 causing decreased expression of phosphorylated ERK, p38, and JNK and attenuated cardiomyocyte hypertrophy in HG-treated cardiomyocytes. miR-200c plays a role in diabetes-associated cardiac hypertrophy by modulating expression of DUSP-1.  相似文献   

15.
This study aims to research the effect of streptozotocin (STZ) at different doses on the serum micronutrients and oxidative stress status in diabetic rat models. Twenty male rats averaged 250 g and 3–4 months old were used as experimental models. They were put in four groups composed of five rats each. Diabetic was induced by administering STZ 55 and 65 mg/kg intraperitonally. The serum micronutrients including minerals and vitamins (Cu, Zn, Mg, Fe, vitamins D, E, and C) and oxidative stress (malondialdehyde, MDA) were determined. Cu, Zn, and Vitamin D3 levels were found to increase significantly in STZ groups (p < 0.005). Retinol levels decreased significantly in STZ groups (p < 0.005). In the groups administered 55 mg/kg STZ ferrum and vitamin C levels were found significantly lower than the other groups (p < 0.005). In the group given 65 mg/kg STZ α-tocopherol levels were highest (p < 0.005) among other groups. There was not any difference between the groups for MDA, Cu/Zn, and Mg. For both doses, oxidative stress status was not significantly affected within 48 h of the application, however, some micronutritents were affected significantly.  相似文献   

16.
The present study was oriented to gender specificity of Na,K-ATPase in cerebellum, the crucial enzyme maintaining the intracellular homeostasis of Na ions in healthy and diabetic Wistar rats. The effects of diabetes on properties of the Na,K-ATPase in cerebellum derived from normal and streptozotocin (STZ)-diabetic rats of both genders were investigated. The samples were excised at different time intervals of diabetes induced by STZ (65 mg kg?1) for 8 days and 16 weeks. In acute 8-day-lasting model of diabetes, Western blot analysis showed significant depression of α1 isoform of Na,K-ATPase in males only. On the other hand, concerning the activity, the enzyme seems to be resistant to the acute model of diabetes in both genders. Prolongation of diabetes to 16 weeks was followed by increasing the number of active molecules of Na,K-ATPase exclusively in females as indicated by enzyme kinetic studies. Gender specificity was observed also in nondiabetic animals revealing higher Na,K-ATPase activity in control males probably caused by higher number of active enzyme molecules as indicated by increased value of V max when comparing to control female group. This difference seems to be age dependent: at the age of 16 weeks, the V max value in females was higher by more than 90%, whereas at the age of 24 weeks, this difference amounted to only 28%. These data indicate that the properties of Na,K-ATPase in cerebellum, playing crucial role in maintaining the Na+ and K+ gradients, depend on gender, age, and duration of diabetic impact.  相似文献   

17.
The mycotoxin citrinin, is produced by several species of Penicillium, Aspergillus and Monascus, and is capable of inducing cytotoxicity, oxidative stress and apoptosis. The aim of the present study was to investigate the effect of citrinin in mouse skeletal muscle cells (C2C12) and to overcome the cellular adverse effects by supplementing green tea extract (GTE) rich in polyphenols. C2C12 myoblasts were differentiated to myotubes and were exposed to citrinin in a dose dependent manner (0–100 µM) for 24 h and IC50 value was found to be 100 µM that resulted in decreased cell viability, increased LDH leakage and compromised membrane integrity. Mitochondrial membrane potential loss, increased accumulation of intracellular ROS and sub G1 phase of cell cycle was observed. To ameliorate the cytotoxic effects of CTN, C2C12 cells were pretreated with GTE (20, 40, 80 µg/ml) for 2 h followed by citrinin (100 µM) treatment for 24 h. GTE pretreatment combated citrinin-induced cytotoxicity and oxidative stress. GTE at 40 and 80 µg/ml significantly promoted cell survival and upregulated antioxidant enzyme activities (CAT, SOD, GPx) and endogenous antioxidant GSH, while the gene and protein expression levels were significantly restored through its effective antioxidant mechanism. Present study results suggested the antioxidant properties of GTE as a herbal source in ameliorating the citrinin-induced oxidative stress.  相似文献   

18.
Diabetes mellitus (DM) is a multi-factorial disease which is characterized by hyperglycaemia, lipoprotein abnormalities and oxidative stress. This study evaluated effect of oral vitamin C administration on basal metabolic rate and lipid profile of alloxan-induced diabetic rats. Vitamin C was administered at 200 mg/kg body wt. by gavage for four weeks to diabetic rats after which the resting metabolic rate and plasma lipid profile was determined. The results showed that vitamin C administration significantly (P<0.01) reduced the resting metabolic rate in diabetic rats; and also lowered plasma triglyceride, total cholesterol and low-density lipoprotein cholesterol. These results suggest that the administration of vitamin C in this model of established diabetes mellitus might be beneficial for the restoration of basal metabolic rate and improvement of lipid profile. This may at least in part reduce the risk of cardiovascular events seen in diabetes mellitus.  相似文献   

19.
Considering the well-known antioxidant properties of statins, it seems important to assess their impact on major markers of oxidative stress (superoxide anion radical, nitric oxide, and index of lipid peroxidation) to compare the antioxidative potentials of atorvastatin and simvastatin during the different degrees of hyperhomocysteinemia (HHcy) in rats. This study was conducted on adult male Wistar albino rats (n = 90; 4 weeks old; 100 ± 15 g body mass) in which HHcy was achieved by dietary manipulation. For 4 weeks, the animals were fed with one of the following diets: standard rodent chow, diet enriched in methionine with no deficiency in B vitamins (folic acid, B6, and B12), or diet enriched in methionine and deficient in B vitamins (folic acid, B6, and B12). At the same time, animals were treated with atorvastatin at doses of 3 mg/kg/day i.p. or simvastatin at doses of 5 mg/kg/day i.p. Levels of superoxide anion radical and TBARS were significantly decreased by administration of simvastatin in normal and high-homocysteine (Hcy) groups (p < 0.05). At 4 weeks after feeding with purified diets, the concentrations of the GSH, CAT, and SOD antioxidants were significantly affected among all groups (p < 0.05). Our results indicated that statin therapy had variable effects on the redox status in hyperhomocysteinemic rats, and simvastatin demonstrated stronger antioxidant effects than did atorvastatin.  相似文献   

20.
A new coccidian species of the genus Caryospora Léger, 1904 (Apicomplexa, Eimeriidae) is described based on material from the Guanabara spotted night snake Siphlophis pulcher (Raddi) (Reptilia: Dipsadidae) in a coastal area of the Atlantic Forest in Ilha Grande Island, state of Rio de Janeiro, southeastern Brazil. Caryospora ceadsensis n. sp. possesses spheroidal to slightly subspheroidal oöcysts measuring 17–24 × 17–24 (22.1 × 22.0) µm, with a c.1.3 µm thick bi-layered wall (inner layer smooth, outer layer slightly striated), length/width (L/W) ratio of 1.0–1.1 (1.0) and a highly refractive polar granule. Sporocysts are ellipsoidal, 11–17 × 10–13 (14.7 × 11.2) µm, with a L/W ratio of 1.0–1.5 (1.3), with a nipple-like Stieda body (1.1 µm high and 2.9 µm wide) and a large, bubble-shaped sub-Stieda body 1.7 µm high and 3.8 µm wide (1.0–2.0 × 3.0–4.5 µm). Sporocyst residuum composed of granules of differing sizes. Sporozoites with striations. This is the sixth record of a species of Caryospora in snakes of the family Dipsadidae in Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号