首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myofibroblast transdifferentiation plays a crucial role in the development and progression of renal tubulointerstitial fibrosis. However, the significance of α-smooth muscle actin (α-SMA) expression, which is the major morphological characteristic of myofibroblasts, remains to be determined in detail. The effect of α-SMA expression on fibrosis tissue was examined by using a fibrosis model (collagen gel) in vitro. The transdifferentiation of fibroblasts into myofibroblasts was triggered in the culture medium with 0.5% fetal bovine serum (FBS)+transforming growth factor (TGF)-β1, but not with 10% FBS+TGF-β1. The TGF-β1-induced gel contraction caused by myofibroblasts was greater than that by fibroblasts. Gel contraction by myofibroblasts involved the Ca2+-dependent myosin light chain kinase pathway, as well as the activation of Rho kinase and p38 mitogen-activated protein kinase (MAPK). Taken together, these findings suggest that α-SMA expression in renal interstitial fibroblasts, i.e., myofibroblast transdifferentiation, accelerates the contraction of the tubulointerstitial fibrosis tissue via the Ca2+-dependent pathway, in addition to the pathways involved in fibroblast contraction; this event may lead to renal atrophy and renal failure.  相似文献   

2.
Systemic sclerosis (SSc) is a complex disease characterized by vascular alterations, activation of the immune system and tissue fibrosis. Previous studies have implicated activation of the interferon pathways in the pathogenesis of SSc. The goal of this study was to determine whether interferon type I and/or type II could play a pathogenic role in SSc vasculopathy. Human dermal microvascular endothelial cells (HDMVECs) and fibroblasts were obtained from foreskins of healthy newborns. The RT Profiler PCR Array System was utilized to screen for EndoMT genes. Treatment with IFN‐α or IFN‐γ downregulated Fli1 and VE‐cadherin. In contrast, IFN‐α and IFN‐γ exerted opposite effects on the expression of α‐SMA, CTGF, ET‐1, and TGFβ2, with IFN‐α downregulating and IFN‐γ upregulating this set of genes. Blockade of TGFβ signaling normalized IFN‐γ‐mediated changes in Fli1, VE‐cadherin, CTGF, and ET‐1 levels, whereas upregulation of α‐SMA and TGFβ2 was not affected. Bosentan treatment was more effective than TGFβ blockade in reversing the actions of IFN‐γ, including downregulation of α‐SMA and TGFβ2, suggesting that activation of the ET‐1 pathway plays a main role in the IFN‐γ responses in HDMECs. IFN‐γ induced expression of selected genes related to endothelial‐to‐mesenchymal transition (EndoMT), including Snail1, FN1, PAI1, TWIST1, STAT3, RGS2, and components of the WNT pathway. The effect of IFN‐γ on EndoMT was mediated via TGFβ2 and ET‐1 signaling pathways. This study demonstrates distinct effects of IFN‐α and IFN‐γ on the biology of vascular endothelial cells. IFN‐γ may contribute to abnormal vascular remodeling and fibrogenesis in SSc, partially via induction of EndoMT. J. Cell. Physiol. 228: 1774–1783, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Collaborative role of various fibronectin-binding integrins (α5β1, αvβ1 and αvβ6) as mediators of cell adhesion and migration on fibronectin was studied using cultured HaCaT keratinocytes. This cell line spontaneously expressed all three fibronectin-binding integrins. In addition, the expression of αvβ6 integrin was strongly and specifically upregulated by transforming growth factor-β1 (TGFβ1) whereas the amount of other integrins remained practically unchanged on the cell surface. Adhesion, spreading and motility of HaCaT keratinocytes on fibronectin were promoted by TGFβ1. Based on antibody blocking experiments, both untreated and TGFβ1-treated HaCaT cells used αvβ6 integrin as their main fibronectin receptor for cell spreading. In contrast to TGFβ1-treated cells, the untreated cells also needed α5β1 integrin for maximal cell spreading on fibronectin. Combinations of antibodies blocking both of these receptors totally prevented spreading of both untreated and TGFβ1-treated cells. Haptotactic motility of individual HaCaT cells through fibronectin-coated membranes was again mainly dependent on αvβ6 integrin, while αvβ1 and α5β1 integrins played a lesser role both in untreated and TGFβ1-treated HaCaT cells. However, unlike haptotaxis, lateral migration of HaCaT cell sheet was mainly mediated by β1 integrins, and αvβ6 integrin showed a minor role. The migration process appeared to involve a number of β1 integrins that could adaptively replace each other when blocking antibodies were present. Thus, keratinocytes appear to use different fibronectin receptors for different functions, such as cell spreading, haptotaxis and lateral migration. The cells can also adapt to a situation where one receptor is unfunctional by switching to another receptor of the same ligand.  相似文献   

4.
5.
Cell-mediated activation of latent TGF-β1 is intimately involved with tissue repair and fibrosis in all organs. Previously, it was shown that the integrin β1 subunit was required for activation of latent TGF-β1 and skin fibrosis. A recent study by Henderson and colleagues (Nature Medicine 19,1617–1624, 2013) used three different in vivo models of fibrosis to show that integrin αv subunit was required for fibrogenesis. Through a process of elimination, the authors conclude that in vivo, the little-studied αvβ1 could be the major integrin responsible for TGF-β activation by myofibroblasts. Thus targeting this integrin might be a useful therapy for fibrosis.  相似文献   

6.
Myofibroblasts are key fibrogenic cells responsible for excessive extracellular matrix synthesis characterizing the fibrotic lesion. In liver fibrosis, myofibroblasts derive either from activation of hepatic stellate cells (HSC) and portal fibroblasts (PF), or from the activation of fibroblasts that originate from ductular epithelial cells undergoing epithelial–mesenchymal transition. Ductular cells can also indirectly promote myofibroblast generation by activating TGF‐β, the main fibrogenic growth factor, through αvβ6 integrin. In addition, after liver injury, liver sinusoidal cells can lose their ability to maintain HSC quiescence, thus favouring HSC differentiation towards myofibroblasts. The amniotic membrane and epithelial cells (hAEC) derived thereof have been shown to decrease hepatic myofibroblast levels in rodents with liver fibrosis. In this study, in a rat model of liver fibrosis, we investigated the effects of hAEC on resident hepatic cells contributing to myofibroblast generation. Our data show that hAEC reduce myofibroblast numbers with a consequent reduction in fibronectin and collagen deposition. Interestingly, we show that hAEC strongly act on specific myofibroblast precursors. Specifically, hAEC reduce the activation of PF rather than HSC. In addition, hAEC target reactive ductular cells by inhibiting their proliferation and αvβ6 integrin expression, with a consequent decrease in TGF‐β activation. Moreover, hAEC counteract the transition of ductular cells towards fibroblasts, while it does not affect injury‐induced and fibrosis‐promoting sinusoidal alterations. In conclusion, among the emerging therapeutic applications of hAEC in liver diseases, their specific action on PF and ductular cells strongly suggests their application in liver injuries involving the expansion and activation of the portal compartment.  相似文献   

7.
Members of the αv family of integrins regulate activation of transforming growth factor beta (TGFβ) and are directly involved in pro-tumorigenic phenotypes. Thus, αv integrins may be therapeutic targets for fibrosis and cancer, yet the isolation of selective inhibitors is currently a challenge. We generated synthetic antibodies selective for αv integrins by phage display selections on cell lines that displayed integrin heterodimers. We identified antibodies that targeted two distinct epitopes on cell-surface αv integrins and partially inhibited cell adhesion mediated by interactions between integrins and the latency-associated peptide, part of the pro-form of TGFβ. Using the isolated antibody paratope sequences we engineered a bispecific antibody capable of binding to both epitopes simultaneously; this antibody potently and completely inhibited cell adhesion mediated by integrins αvβ1, αvβ3 and αvβ5. In addition, the bispecific antibody inhibited proliferation and migration of lung carcinoma lines, where the highest and lowest potencies observed correlated with integrin-αv cell surface expression levels. Taken together, our results demonstrate that phage display selections with live cells can yield high quality anti-integrin antibodies, which we used as biparatopic building blocks to construct a bispecific antibody that strongly inhibited integrin function and may be a therapeutic candidate for cancer and fibrosis.  相似文献   

8.
Heparin/heparan sulfate interact with growth factors, chemokines, extracellular proteins, and receptors. Integrins are αβ heterodimers that serve as receptors for extracellular proteins, regulate cell behavior, and participate in extracellular matrix assembly. Heparin binds to RGD‐dependent integrins (αIIbβ3, α5β1, αvβ3, and αvβ5) and to RGD‐independent integrins (α4β1, αXβ2, and αMβ2), but their binding sites have not been located on integrins. We report the mapping of heparin binding sites on the ectodomain of αvβ3 integrin by molecular modeling. The surface of the ectodomain was scanned with small rigid probes mimicking the sulfated domains of heparan sulfate. Docking results were clustered into binding spots. The best results were selected for further docking simulations with heparin hexasaccharide. Six potential binding spots containing lysine and/or arginine residues were identified on the ectodomain of αvβ3 integrin. Heparin would mostly bind to the top of the genu domain, the Calf‐I domain of the α subunit, and the top of the β subunit of RGD‐dependent integrins. Three spots were close enough from each other on the integrin surface to form an extended binding site that could interact with heparin/heparan sulfate chains. Because heparin does not bind to the same integrin site as protein ligands, no steric hindrance prevents the formation of ternary complexes comprising the integrin, its protein ligand, and heparin/heparan sulfate. The basic amino acid residues predicted to interact with heparin are conserved in the sequences of RGD‐dependent but not of RGD‐independent integrins suggesting that heparin/heparan sulfate could bind to different sites on these two integrin subfamilies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
We propose a new cadherin family classification comprising epithelial cadherins (cadherin 17 [CDH17], cadherin 16, VE-cadherin, cadherin 6 and cadherin 20) containing RGD motifs within their sequences. Expression of some RGD cadherins is associated with aggressive forms of cancer during the late stages of metastasis, and CDH17 and VE-cadherin have emerged as critical actors in cancer metastasis. After binding to α2β1 integrin, these cadherins promote integrin β1 activation, and thereby cell adhesion, invasion and proliferation, in liver and lung metastasis. Activation of α2β1 integrin provokes an affinity increase for type IV collagen, a major component of the basement membrane and a critical partner for cell anchoring in liver and other metastatic organs. Activation of α2β1 integrin by RGD motifs breaks an old paradigm of integrin classification and supports an important role of this integrin in cancer metastasis. Recently, synthetic peptides containing the RGD motif of CDH17 elicited highly specific and selective antibodies that block the ability of CDH17 RGD to activate α2β1 integrin. These monoclonal antibodies inhibit metastatic colonization in orthotopic mouse models of liver and lung metastasis for colorectal cancer and melanoma, respectively. Hopefully, blocking the cadherin RGD ligand capacity will give us control over the integrin activity in solid tumors metastasis, paving the way for development of new agents of cancer treatment.  相似文献   

10.
Hepatic stellate cells (HSC), the key fibrogenic cells of the liver, transdifferentiate into myofibroblasts upon phagocytosis of apoptotic hepatocytes. Galectin-3, a β-galactoside-binding lectin, is a regulator of the phagocytic process. In this study, our aim was to study the mechanism by which extracellular galectin-3 modulates HSC phagocytosis and activation. The role of galectin-3 in engulfment was evaluated by phagocytosis and integrin binding assays in primary HSC. Galectin-3 expression was studied by real-time PCR and enzyme-linked immunosorbent assay, and in vivo studies were done in wild-type and galectin-3(-/-) mice. We found that HSC from galectin-3(-/-) mice displayed decreased phagocytic activity, expression of transforming growth factor-β1, and procollagen α1(I). Recombinant galectin-3 reversed this defect, suggesting that extracellular galectin-3 is required for HSC activation. Galectin-3 facilitated the α(v)β(3) heterodimer-dependent binding, indicating that galectin-3 modulates HSC phagocytosis via cross-linking this integrin and enhancing the tethering of apoptotic cells. Blocking integrin α(v)β(3) resulted in decreased phagocytosis. Galectin-3 expression and release were induced in active HSC engulfing apoptotic cells, and this was mediated by the nuclear factor-κB signaling. The upregulation of galectin-3 in active HSC was further confirmed in vivo in bile duct-ligated (BDL) rats. Galectin-3(-/-) mice displayed significantly decreased fibrosis, with reduced expression of α-smooth muscle actin and procollagen α1(I) following BDL. In summary, extracellular galectin-3 plays a key role in liver fibrosis by mediating HSC phagocytosis, activation, and subsequent autocrine and paracrine signaling by a feedforward mechanism.  相似文献   

11.
Bone sialoprotein (BSP), a secreted glycoprotein found in bone matrix, has been implicated in the formation of mammary microcalcifications and osteotropic metastasis of human breast cancer (HBC). BSP possesses an integrin-binding RGD (Arg-Gly-Asp) domain, which may promote interactions between HBC cells and bone extracellular matrix. Purified BSP, recombinant human BSP fragments and BSP-derived RGD peptides are shown to elicit migratory, adhesive, and proliferative responses in the MDA-MB-231 HBC cell line. Recombinant BSP fragment analysis localized a significant component of these activities to the RGD domain of the protein, and synthetic RGD peptides with BSP flanking sequences (BSP-RGD) also conferred these responses. The fibronectin-derived RGD counterpart, GRGDSP (Gly-Arg-Gly-Asp-Ser-Pro), could not support these cellular responses, emphasizing specificity of the BSP configuration. Although most of the proliferative and adhesive responses could be attributed to RGD interactions, these interactions were only partly responsible for the migrational responses. Experiments with integrin-blocking antibodies demonstrated that BSP-RGD-induced migration utilizes the αvβ3 vitronectin receptor, whereas adhesion and proliferation responses were αvβ5-mediated. Using fluorescence activated cell sorting, we selected two separate subpopulations of MDA-MB-231 cells enriched for αvβ3 or αvβ5 respectively. Although some expression of the alternate αv integrin was still retained, the αvβ5-enriched MDA-MB-231 cells showed enhanced proliferative and adhesive responses, whereas the αvβ3-enriched subpopulation was suppressed for proliferation and adhesion, but showed enhanced migratory responses to BSP-RGD. In addition, similar analysis of two other HBC cell lines showed less marked, but similar RGD-dependent trends in adhesion and proliferation to the BSP fragments. Collectively, these data demonstrate BSP effects on proliferative, migratory, and adhesive functions in HBC cells and that the RGD-mediated component differentially employs αvβ3 and αvβ5 integrin receptors. J. Cell. Physiol. 176:482–494, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
13.
A functional proteomic technology using protein chip and molecular simulation was used to demonstrate a novel biomolecular interaction between P11, a peptide containing the Ser‐Asp‐Val (SDV) sequence and integrin αvβ3. P11 (HSDVHK) is a novel antagonistic peptide of integrin αvβ3 screened from hexapeptide library through protein chip system. An in silico docking study and competitive protein chip assay revealed that the SDV sequence of P11 is able to create a stable inhibitory complex onto the vitronectin‐binding site of integrin αvβ3. The Arg‐Gly‐Asp (RGD)‐binding site recognition by P11 was site specific because the P11 was inactive for the complex formation of a denatured form of integrin–vitronectin. P11 showed a strong antagonism against αvβ3‐GRGDSP interaction with an IC50 value of 25.72±3.34 nM, whereas the value of GRGDSP peptide was 1968.73±444.32 nM. The binding‐free energies calculated from the docking simulations for each P11 and RGD peptide were ?3.99 and ?3.10 kcal/mol, respectively. The free energy difference between P11 and RGD corresponds to approximately a 4.5‐fold lower Ki value for the P11 than the RGD peptide. The binding orientation of the docked P11 was similar to the crystal structure of the RGD in αvβ3. The analyzed docked poses suggest that a divalent metal–ion coordination was a common driving force for the formation of both SDV/αvβ3 and RGD/αvβ3 complexes. This is the first report on the specific recognition of the RGD‐binding site of αvβ3 by a non‐RGD containing peptide using a computer‐assisted proteomic approach.  相似文献   

14.
At least 10 different members of the integrin family have been reported to bind to fibronectin, and eight of these interact with the arginine-glycine-aspartic acid (RGD) site in the tenth type III repeat. However, studies utilizing recombinant fibronectin fragments have shown that for three of these, α5β1, αIIbβ3, and αvβ3, the structural requirements for binding to fibronectin differ. In the present study. we report that two additional integrins, αvβ6. and αvβ5 also demonstrate unique requirements for interaction with recombinant fibronectin fragments. αvβ5, like αvβ3, can support cell adhesion to the RGD-containing tenth repeat alone, and does not require the presence of a synergy site in the adjacent ninth repeat. In the cells used in this study. αvβ5 only minimally supported adhesion to intact fibronectin. but did support adhesion to fragments composed of the eighth, ninth and tenth repeats or the tenth repeat. alone. Mutant fragments in which the eighth and tenth repeats were adjacent to one another enhanced adhesion mediated by αvβ5, as well as adhesion mediated by αvβ6. αvβ5 and αvβ6-mediated adhesion to all fibronectin fragments required interaction with the RGD site, as inferred by inhibition of adhesion with an RGD-containing peptide. These data suggest that each integrin that interacts with the RGD site in fibronectin has unique structural requirements for this interaction.  相似文献   

15.
16.
Integrins αvβ3 and αvβ6 are highly expressed on tumor cells and/or by the tumor vasculature of many human cancers, and represent promising targets for anticancer therapy. Novel chemically programmed antibodies (cpAbs) targeting these integrins were prepared using the catalytic aldolase Antibody (Ab) programming strategy. The effects of the cpAbs on cellular functions related to tumor progression were examined in vitro using tumor cell lines and their cognate integrin ligands, fibronectin and osteopontin. The inhibitory functions of the conjugates and their specificity were examined based on interference with cell-cell and cell-ligand interactions related to tumor progression. Cell binding analyses of the anti-integrin cpAbs revealed high affinity for tumor cells that overexpressed αvβ3 and αvβ6 integrins, and weak interactions with αvβ1 and αvβ8 integrins, in vitro. Functional analyses demonstrated that the cpAbs strongly inhibited cell-cell interactions through osteopontin binding, and they had little or no immediate effects on cell viability and proliferation. On the basis of these characteristics, the cpAbs are likely to have a broad range of activities in vivo, as they can target and antagonize one or multiple αv integrins expressed on tumors and tumor vasculatures. Presumably, these conjugates may inhibit the establishment of metastastatic tumors in distant organs through interfering with cell adhesion more effectively than antibodies or compounds targeting one integrin only. These anti-integrin cpAbs may also provide useful reagents to study combined effect of multiple αv integrins on cellular functions in vitro, on pathologies, including tumor angiogenesis, fibrosis, and epithelial cancers, in vivo.  相似文献   

17.
Entactin is an extracellular matrix glycoprotein which binds to laminin and is found in most renal basement membranes and in the glomerular mesangial matrix. In the present study, we have characterized specific integrin receptors on cultured human mesangial cells (CHMC) responsible for adhesion to native entactin. The integrin receptors α2,β1, α3,β1, α5,β1, αv,β3, αv,β5, and α6 complexed with either β1 or β4 could be immune precipitated from detergent extracts of metabolically labeled CHMC. Adhesion assays with inhibitory anti integrin monoclonal antibodies (mab) demonstrated that CHMC use both αv,β3 and a β1-containing integrin to bind surfaces coated with native entactin. Optimal binding of CHMC to native entactin required the participation of cations. Using wild type and mutant recombinant entactin fragments, the binding site for the αv,β3 receptor was localized to the RGD sequence on the rod or E domain of entactin. CHMC adhesion to mutant full length recombinant entactin ligands lacking the E domain RGD sequence confirmed the presence of ligand binding site(s) for β1 integrin receptor(s). Differences in CHMC binding characteristics to recombinant and full length entactin compared to native bovine basement membrane entactin were observed. This suggests that tertiary molecular structure may contribute to entactin ligand binding properties. Primary amino acid residue sequences and tertiary structure of entactin may play roles in forming functional cell attachment sites in native basement membrane entactin.  相似文献   

18.
Ras is activated by transforming growth factor beta (TGFβ) in several cell types, but the biological consequences of this activation are largely unknown. We now show that ras mediates two stages in integrin β1-chain maturation: 1) glycosylation of the 86-kD core peptide, which is a TGFβ1-independent process, and 2) TGFβ1-mediated conversion of the 115-kD β1 integrin precursor into the mature 130-kD form. HD3 colon epithelial cells maintain elevated levels of integrin α2β1 heterodimers, strong binding to collagen I, and autocrine regulation by TGFβ1, which converts β1 integrin into the mature cell surface form. Each of three HD3 cell clones that stably express dominant negative ras (N17ras) exhibited abnormal glycosylation of the integrin β1-chain, decreased cell surface expression of the mature integrin β1, and impaired binding to collagen and laminin. Autocrine levels of TGFβ were not altered by expression of N17ras. The aberrant glycosylation of the integrin β1-chain was reversed by antisense oligonucleotides specific to the DNA sequence encoding the rasS17N mutation. Glycosylation of the 86-kD core peptide was delayed in the N17ras transfectants, but was not altered by either the addition of TGFβ1 or inhibition of autocrine TGFβ1. In contrast, conversion of the partially glycosylated β1 integrin precursor into the mature 130-kD isoform was accelerated by exogenous TGFβ1 and blocked by neutralizing antibody to autocrine TGFβ1 in control cell lines. Neither effect was seen in the N17ras transfectants, indicating that TGFβ1 modulates integrin β1-chain maturation by activating ras proteins. Cell fractionation studies demonstrated that this conversion takes place within the Golgi. J. Cell. Physiol. 181:33–44, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

19.
The differentiation of fibroblasts into pathological myofibroblasts during wound healing is characterized by increased cell surface expression of αv-integrins. Our previous studies found that the deubiquitinase (DUB) USP10 removes ubiquitin from αv-integrins, leading to cell surface integrin accumulation, subsequent TGFβ1 activation, and pathological myofibroblast differentiation. In this study, a yeast two-hybrid screen revealed a novel binding partner for USP10, the formin, DAAM1. We found that DAAM1 binds to and inhibits USP10’s DUB activity through the FH2 domain of DAAM1 independent of its actin functions. The USP10/DAAM1 interaction was also supported by proximity ligation assay (PLA) in primary human corneal fibroblasts. Treatment with TGFβ1 significantly increased USP10 and DAAM1 protein expression, PLA signal, and co-localization to actin stress fibers. DAAM1 siRNA knockdown significantly reduced co-precipitation of USP10 and DAAM1 on purified actin stress fibers, and β1- and β5-integrin ubiquitination. This resulted in increased αv-, β1-, and β5-integrin total protein levels, αv-integrin recycling, and extracellular fibronectin (FN) deposition. Together, our data demonstrate that DAAM1 inhibits USP10’s DUB activity on integrins subsequently regulating cell surface αv-integrin localization and FN accumulation.  相似文献   

20.
Osteopontin (OPN) is an integrin-binding secreted protein that contains an Arg-Gly-Asp (RGD) amino acid sequence and binds to various cell types via RGD-mediated interaction with the αvβ3 integrin. We have identified a cell line whose binding to OPN does not require RGD or αv interactions. We compared the ability of two murine cell lines, L929 fibroblastic cells and B16-BL6 melanoma cells, to interact with OPN (from human milk, and recombinant human and mouse OPN) as well as recombinant OPN prepared to include either the N-terminal or C-terminal halves but lacking the RGD sequence. Both cell lines adhered to GRGDS peptides coupled to BSA, and these interactions were inhibited by addition of GRGDS (but not GRGES) peptides or a monoclonal antibody specific to the αv integrin subunit. Adhesion of L929 cells to OPN was also dependent on the RGD sequence and the αv integrin subunit. However, the binding of B16-BL6 cells was not inhibited by either GRGDS peptides or the anti-αv antibody. B16-BL6 (but not L929) cells were also able to adhere to and spread on both N-terminal and C-terminal OPN proteins that lack the RGD sequence, and these interactions were not inhibited by either GRGDS peptides or anti-αv antibody. Together these results indicate that B16-BL6 cells can adhere to OPN by interactions that are independent of either the RGD sequence or the αv integrin subunit, and suggest that some cells can interact with additional, non-RGD binding sites in OPN. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号