首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Key message

Arabidopsis CK2 α4 subunit regulates the primary root and hypocotyl elongation, lateral root formation, cotyledon expansion, rosette leaf initiation and growth, flowering, and anthocyanin biosynthesis.

Abstract

Casein kinase 2 (CK2) is a conserved tetrameric kinase composed of two α and two β subunits. The inhibition of CK2 activity usually results in severe developmental deficiency. Four genes (CKA1CKA4) encode CK2 α subunit in Arabidopsis. Single mutations of CKA1, CKA2, and CKA3 do not affect the normal growth of Arabidopsis, while the cka1 cka2 cka3 triple mutants are defective in cotyledon and hypocotyl growth, lateral root development, and flowering. The inhibition of CKA4 expression in cka1 cka2 cka3 background further reduces the number of lateral roots and delays the flowering time. Here, we report the characterization of a novel knockout mutant of CKA4, which exhibits various developmental defects including reduced primary root and hypocotyl elongation, increased lateral root density, delayed cotyledon expansion, retarded rosette leaf initiation and growth, and late flowering. The examination of the cellular basis for abnormal root development of this mutant revealed reduced root meristem cells with enhanced RETINOBLASTOMA-RELATED (RBR) expression that promotes cell differentiation in root meristem. Moreover, this cka4-2 mutant accumulates higher anthocyanin in the aerial part and shows an increased expression of anthocyanin biosynthetic genes, suggesting a novel role of CK2 in modulating anthocyanin biosynthesis. In addition, the complementation test using primary root elongation assay as a sample confirms that the changed phenotypes of this cka4-2 mutant are due to the lack of CKA4. Taken together, this study reveals an essential role of CK2 α4 subunit in multiple developmental processes in Arabidopsis.
  相似文献   

2.
Certain non-steroidal anti-inflammatory drugs can inhibit fungal growth, fungal prostaglandin E2 production, and enzyme activation. This study aims to investigate the antifungal effect of nimesulide against pathogenic filamentous fungi and yeast. The experiments detailed below were also designed to investigate whether the action is dependent on E2 fungal prostaglandins. Our data showed that nimesulide exhibited potent antifungal activity, mainly against Trichophyton mentagrophytes (ATCC 9533) and Cryptococcus neoformans with MIC values of 2 and 62 μg/mL, respectively. This drug was also able to inhibit the growth of clinic isolates of filamentous fungi, such as Aspergillus fumigatus, and dermatophytes, such as T. rubrum, T. mentagrophytes, Epidermophyton floccosum, Microsporum canis, and M. gypseum, with MIC values ranging from 112 to 770 μg/mL. Our data also showed that the inhibition of fungal growth by nimesulide was mediated by a mechanism dependent on PGE2, which led to the inhibition of essential fungal enzymes. Thus, we concluded that nimesulide exerts a fungicidal effect against pathogenic filamentous fungi and yeast, involving the inhibition of fungal prostaglandins and fungal enzymes important to the fungal growth and colonization.  相似文献   

3.

Background

The involvement of protein kinase CK2 in sustaining cancer cell survival could have implications also in the resistance to conventional and unconventional therapies. Moreover, CK2 role in blood tumors is rapidly emerging and this kinase has been recognized as a potential therapeutic target. Phase I clinical trials with the oral small ATP-competitive CK2 inhibitor CX-4945 are currently ongoing in solid tumors and multiple myeloma.

Methods

We have analyzed the expression of CK2 in acute myeloid leukemia and its function in cell growth and in the response to the chemotherapeutic agent daunorubicin We employed acute myeloid leukemia cell lines and primary blasts from patients grouped according to the European LeukemiaNet risk classification. Cell survival, apoptosis and sensitivity to daunorubicin were assessed by different means. p53-dependent CK2-inhibition-induced apoptosis was investigated in p53 wild-type and mutant cells.

Results

CK2α was found highly expressed in the majority of samples across the different acute myeloid leukemia prognostic subgroups as compared to normal CD34+ hematopoietic and bone marrow cells. Inhibition of CK2 with CX-4945, K27 or siRNAs caused a p53-dependent acute myeloid leukemia cell apoptosis. CK2 inhibition was associated with a synergistic increase of the cytotoxic effects of daunorubicin. Baseline and daunorubicin-induced STAT3 activation was hampered upon CK2 blockade.

Conclusions

These results suggest that CK2 is over expressed across the different acute myeloid leukemia subsets and acts as an important regulator of acute myeloid leukemia cell survival. CK2 negative regulation of the protein levels of tumor suppressor p53 and activation of the STAT3 anti-apoptotic pathway might antagonize apoptosis and could be involved in acute myeloid leukemia cell resistance to daunorubicin.
  相似文献   

4.

Key message

Selenite oppositely modifies cytokinin and nitric oxide metabolism in Arabidopsis organs. A mutually negative interplay between the molecules exists in selenite-exposed roots; and their overproduction causes selenite insensitivity.

Abstract

Selenium-induced phytotoxicity is accompanied by developmental alterations such as primary root (PR) shortening. Growth changes are provoked by the modulation of hormone status and signalling. Cytokinin (CK) cooperates with the nitric oxide (NO) in many aspects of plant development; however, their interaction under abiotic stress has not been examined. Selenite inhibited the growth of Arabidopsis seedlings and reduced root meristem size through cell division arrest. The CK-dependent pARR5::GUS activity revealed the intensification of CK signalling in the PR tip, which may be partly responsible for the root meristem shortening. The selenite-induced alterations in the in situ expressions of cytokinin oxidases (AtCKX4::GUS, AtCKX5::GUS) are associated with selenite-triggered changes of CK signalling. In wild-type (WT) and NO-deficient nia1nia2 root, selenite led to the diminution of NO content, but CK overproducer ipt-161 and -deficient 35S:CKX2 roots did not show NO decrease. Exogenous NO (S-nitroso-N-acetyl-DL-penicillamine, SNAP) reduced the pARR5::GFP and pTCS::GFP expressions. Roots of the 35S:CKX and cyr1 plants suffered more severe selenite-triggered viability loss than the WT, while in ipt-161 and gsnor1-3 no obvious viability decrease was observed. Exogenous NO ameliorated viability loss, but benzyladenine intensified it. Based on the results, selenite impacts development by oppositely modifying CK signalling and NO level. In the root system, CK signalling intensifies which possibly contributes to the nitrate reductase-independent NO diminution. A mutually negative CK-NO interplay exists in selenite-exposed roots; however, overproduction of both molecules worsens selenite sensing. Hereby, we suggest novel regulatory interplay and role for NO and CK in abiotic stress signalling.
  相似文献   

5.

Key message

By measuring the cytokinin content directly and testing the sensitivity to the cytokinin inhibitor lovastatin, we demonstrated that tasg1 cytokinin metabolism is different from wild-type.

Abstract

Our previous studies have indicated that compared with wild-type (WT) plants, a wheat stay-green mutant tasg1 exhibited delayed senescence. In this study, we found that the root development of tasg1 occurred later than that of WT. The number of lateral roots was fewer, but the lateral root length was longer in tasg1 than in WT, which resulted in a lower root to shoot ratio in tasg1 than WT. The levels of cytokinin (CK), CK activity, and expression of CK metabolic genes were measured. We found that the total CK content in the root tips and leaf of tasg1 was greater than in WT. The accumulation of mRNA of the CK synthetic gene (TaIPT) in tasg1 was higher than in WT at 9 and 11 days during seedling growth, but the expression of CK oxidase gene (TaCKX) was significantly lower in tasg1. Furthermore, the CK inhibitor lovastatin was used to inhibit CK activity. When treated with lovastatin, both the chlorophyll content and thylakoid membrane protein stability were significantly lower in tasg1 than WT, consistent with the inhibited expression of senescence-associated genes (TaSAGs) in tasg1. Lovastatin treatment also inhibited the antioxidative capability of wheat seedlings, and tasg1 was more sensitive to lovastatin than WT, as indicated by the MDA content, protein carbonylation, and antioxidant enzyme activity. The decreased antioxidative capability after lovastatin treatment may be related to the down-regulation of some antioxidase genes. These results suggest that the CK metabolism was altered in tasg1, which may play an important role in its ability to delay senescence.
  相似文献   

6.
Cellobiose lipids of yeast fungi Cryptococcus huminola and Pseudozyma fusiformata have similar fungicidal activities against different yeast, including pathogenic Cryptococcus and Candida species. Basidiomycetic yeast reveals maximum sensitivity to these preparations; e.g., cells of cryptococcus Filobasidiella neoformans almost completely die after 30-min incubation in a glycolipid solution at a concentration of 0.02 mg/ml. The same effect toward ascomycetous yeast, including pathogenic Candida species, is achieved only at five to eight times higher concentrations of glycolipids. The cellobiose lipid from P. fusiformata, which, unlike glycolipid from Cr. humicola, has hydroxycaproic acid residue as O-subtituent of cellobiose and additional 15-hydroxy group in aglycone, inhibits the growth of the studied mycelial fungi more efficiently than the cellobiose lipid from Cr. humicola.  相似文献   

7.
The crosstalk between auxin and cytokinin (CK) is important for plant growth and development, although the underlying molecular mechanisms remain unclear. Here, we describe the isolation and characterization of a mutant of Arabidopsis Cytokinin-induced Root Curling 6 (CKRC6), an allele of ANTHRANILATE SYNTHASE ALPHA SUBUNIT 1 (ASA1) that encodes the á-subunit of AS in tryptophan (Trp) biosynthesis. The ckrc6 mutant exhibits root gravitropic defects and insensitivity to both CK and the ethylene precursor 1-aminocyclopropane-1-carboxylicacid (ACC) in primary root growth. These defects can be rescued by exogenous indole-3-acetic acid (IAA) or tryptophan (Trp) supplementation. Furthermore, our results suggest that the ckrc6 mutant has decreased IAA content, differential expression patterns of auxin biosynthesis genes and CK biosynthesis isopentenyl transferase (IPT) genes in comparison to wild type. Collectively, our study shows that auxin controls CK biosynthesis based on that CK sensitivity is altered in most auxin-resistant mutants and that CKs promote auxin biosynthesis but inhibit auxin transport and response. Our results also suggest that CKRC6/ASA1 may be located at an intersection of auxin, CK and ethylene metabolism and/or signaling.  相似文献   

8.
9.
Phosphatidate phosphatases (PAH) play a central role in lipid metabolism and intracellular signaling. Herein, we report the presence of a low-molecular-weight PAH homolog in the single-celled ciliate Tetrahymena thermophila. In vitro phosphatase assay showed that TtPAH2 belongs to the magnesium-dependent phosphatidate phosphatase (PAP1) family. Loss of function of TtPAH2 did not affect the growth of Tetrahymena. Unlike other known PAH homologs, TtPAH2 did not regulate lipid droplet number and ER morphology. TtPAH2 did not rescue growth and ER/nuclear membrane defects of the pah1? yeast cells, suggesting that the phosphatidate phosphatase activity of the protein is not sufficient to perform these cellular functions. Surprisingly, TtPAH2 complemented the respiratory defect in the pah1? yeast cells indicating a specific role of TtPAH2 in respiration. Overall, our results indicate that TtPAH2 possesses the minimal function of PAH protein family in respiration. We suggest that the amino acid sequences absent from TtPAH2 but present in all other known PAH homologs are critical for lipid homeostasis and membrane biogenesis.  相似文献   

10.
Nuclear envelope morphology protein 1 (NEM1) along with a phosphatidate phosphatase (PAH1) regulates lipid homeostasis and membrane biogenesis in yeast and mammals. We investigated four putative NEM1 homologues (TtNEM1A, TtNEM1B, TtNEM1C and TtNEM1D) in the Tetrahymena thermophila genome. Disruption of TtNEM1B, TtNEM1C or TtNEM1D did not compromise normal cell growth. In contrast, we were unable to generate knockout strain of TtNEM1A under the same conditions, indicating that TtNEM1A is essential for Tetrahymena growth. Interestingly, loss of TtNEM1B but not TtNEM1C or TtNEM1D caused a reduction in lipid droplet number. Similar to yeast and mammals, TtNem1B of Tetrahymena exerts its function via Pah1, since we found that PAH1 overexpression rescued loss of Nem1 function. However, unlike NEM1 in other organisms, TtNEM1B does not regulate ER/nuclear morphology. Similarly, neither TtNEM1C nor TtNEM1D is required to maintain normal ER morphology. While Tetrahymena PAH1 was shown to functionally replace yeast PAH1 earlier, we observed that Tetrahymena NEM1 homologues did not functionally replace yeast NEM1. Overall, our results suggest the presence of a conserved cascade for regulation of lipid homeostasis and membrane biogenesis in Tetrahymena. Our results also suggest a Nem1-independent function of Pah1 in the regulation of ER morphology in Tetrahymena.  相似文献   

11.
The genomes of the recently discovered yeast Saccharomyces eubayanus and traditional S. cerevisiae are known to be found in the yeast S. pastorianus (syn. S. carlsbergensis), which are essential for brewing. The cryotolerant yeast S. bayanus var. uvarum is of great importance for production of some wines. Based on ascospore viability and meiotic recombination of the control parental markers in hybrids, we have shown that there is no complete interspecies post-zygotic isolation between the yeasts S. eubayanus, S. bayanus var. bayanus and S. bayanus var. uvarum. The genetic data presented indicate that all of the three taxa belong to the same species.  相似文献   

12.
Casein kinase II (CK2), an evolutionarily well-conserved Ser/Thr kinase, plays critical roles in all higher organisms including plants. CKB1 is a regulatory subunit beta of CK2. In this study, homozygous T-DNA mutants (ckb1-1 and ckb1-2) and over-expression plants (35S:CKB1-1, 35S:CKB1-2) of Arabidopsis thaliana were studied to understand the role of CKB1 in abiotic stress and gibberellic acid (GA) signaling. Histochemical staining showed that although CKB1 was expressed in all organs, it had a relatively higher expression in conducting tissues. The ckb1 mutants showed reduced sensitivity to abscisic acid (ABA) during seed germination and seedling growth. The increased stomatal aperture, leaf water loss and proline accumulation were observed in ckb1 mutants. In contrast, the ckb1 mutant had increased sensitivity to polyaluminum chloride during seed germination and hypocotyl elongation. We obtained opposite results in over-expression plants. The expression levels of a number of genes in the ABA and GA regulatory network had changed. This study demonstrates that CKB1 is an ABA signaling-related gene, which subsequently influences GA metabolism, and may play a positive role in ABA signaling.  相似文献   

13.
Using yeast genome databases and literature data, phylogenetic analysis of pectinase PGU genes from 112 Saccharomyces strains assigned to the biological species S. arboricola, S. bayanus (var. uvarum), S. cariocanus, S. cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus, and the hybrid taxon S. pastorianus (syn. S. carlsbergensis) was carried out. A superfamily of divergent PGU genes was found. Natural interspecies transfer of the PGU gene both from S. cerevisiae to S. bayanus and from S. paradoxus to S. cerevisiae may, however, occur. Within the Saccharomyces species, identity of the PGU nucleotide sequences was 98.8–100% for S. cerevisiae, 86.1–95.7% for S. bayanus (var. uvarum), 94–98.3% for S. kudriavzevii, and 96.8–100% for S. paradoxus/S. cariocanus. For the first time, a family of polymeric PGU1b, PGU2b, PGU3b and PGU4b genes is documented for the yeast S. bayanus var. uvarum, a variety important for winemaking.  相似文献   

14.
Two independent mutant strains of methylotrophic yeast Pichia methanolica (mth1 arg1 and mth2 arg4) from the initial line 616 (ade1 ade5) were investigated. The mutant strains possessed defects in genes MTH1 and MTH2 which resulted in the inability to assimilate methanol as a sole carbon source and the increased activity of alcohol oxidase (AO). The function of the AUG2 gene encoding one of the subunits of AO and CTA1, a probable homolog of peroxisomal catalase of Saccharomyces cereviseae, was investigated by analyses of the molecular forms of isoenzymes. It was shown that optimal conditions for the expression of the AUG2 gene on a medium supplemented with 3% of methanol leads to an increasing synthesis of peroxisomal catalase. The mutant mth1 possessed a dominant formation of AO isoform with electrophoretic mobility which is typical for isogenic form 9, the product of the AUG2 gene, and a decreased level of peroxisomal catalase. The restoration of growth of four spontaneous revertants of the mutant mth1 (Rmth1) on the methanol containing medium was accompanied by an increase in activity of AO isogenic form 9 and peroxisomal catalase. The obtained results confirmed the functional continuity of the structural gene AUG2 in mutant mth1. The correlation of activity of peroxisomal catalase and AO isogenic form 1 in different conditions evidenced the existence of common regulatory elements for genes AUG2 and CTA1 in methilotrophic yeast Pichia methanolica.  相似文献   

15.
Yellow stripe-like (YSL) family transporters, belonging to the oligopeptide transporter family, are significant iron transport proteins. In this study, we provided a genome-wide identification and analysis of the YSL gene family in Pyrus bretschneideri. We found eight YSL gene members in pear, clustered into four main groups in the phylogenetic tree. Segmental duplication has played a key role in the expansion of the pear YSL family. The pollen activity analysis indicated that the low concentration of iron ion was beneficial to both pear pollen germination and pollen tube growth. Among the eight YSL genes, PbrYSL4 had particularly high expression in all pear tissues; it was significantly responsive to change in the external iron ion supply in the pollen cultivation in vitro. Moreover, expression of PbrYSL4 in yeast mutant Δccc1 (Ca 2+ -sensitive cross-complementer 1 mutant) made Δccc1 restore growth in high iron medium. These data together suggest that PbrYSL4 was involved in the movement of iron in the pear pollen tube growth.  相似文献   

16.
L-Lactate cytochrome c oxidoreductase (flavocytochrome b 2, FC b 2) from the thermotolerant methylotrophic yeast Hansenula polymorpha (Pichia angusta) is, unlike the enzyme form baker’s yeast, a thermostable enzyme potentially important for bioanalytical technologies for highly selective assays of L-lactate in biological fluids and foods. This paper describes the construction of flavocytochrome b 2 producers with over-expression of the H. polymorpha CYB2 gene, encoding FC b 2. The HpCYB2 gene under the control of the strong H. polymorpha alcohol oxidase promoter in a plasmid for multicopy integration was transformed into the recipient strain H. polymorpha C-105 (grc1 catX), impaired in glucose repression and devoid of catalase activity. A method was developed for preliminary screening of the transformants with increased FC b 2 activity in permeabilized yeast cells. The optimal cultivation conditions providing for the maximal yield of the target enzyme were found. The constructed strain is a promising FC b 2 producer characterized by a sixfold increased (to 3 μmol min?1 mg?1 protein in cell-free extract) activity of the enzyme.  相似文献   

17.
There are substantial variations in bulbing (bulb formation) efficiency among micropropagated tulip cultivars. The mechanisms involved are poorly understood, but presumably involve cytokinins (CKs) for several reasons. Therefore, we explored CK profiles and dynamics in ‘Blue Parrot’ and ‘Prominence’ cultivars (which have low and high bulbing efficiency, respectively) during the in vitro propagation stages: the last shoot multiplication subculture extended to 14 weeks (S1–S2), the shoot cooling at 5 °C for induction of bulb formation (S3–S4) and the bulb growth initiation after the end of cooling (S5–S6). The CK thidiazuron (TDZ) is routinely used in tulip micropropagation at the shoot multiplication stage, but replacing it with isopentenyladenine (iP) during the last multiplication subculture substantially changed CK dynamics in later stages, and significantly increased bulb formation rates in both cultivars. Generally, the most abundant CKs in both cultivars were the isoprenoid CK types, trans-zeatin (tZ), iP, cis-zeatin and dihydrozeatin. However, ‘Prominence’ shoots had much lower cis- to trans-Z-type CK ratios than ‘Blue Parrot’ shoots, and generally higher levels of physiologically active CKs (free bases tZ, iP and their ribosides) until the last phase of bulb formation, S6 (bulb growth initiation, i.e. swelling of shoot bases), 6 weeks after the end of cold treatment. In this phase total active CK and O-glucoside contents sharply declined in ‘Prominence’ shoots, but not in ‘Blue Parrot’ shoots pretreated with iP. In contrast, the low bulbing ability observed in ‘Prominence’ shoots pretreated with TDZ and ‘Blue Parrot’ shoots pretreated with either TDZ or iP was associated with a gradual rise in active CK and O-glucoside contents after the end of cooling. The results suggest that low bulbing efficiency may be related to down-regulation of tZ biosynthesis, and high bulbing efficiency to a transient increase in active CK forms (mainly tZs) in response to cold treatment during the bulb induction phase, S4 (at the end of cold treatment), followed by a rapid decrease during bulb formation, S6 (6 weeks after the end of cooling).  相似文献   

18.
Two new species, Talaromyces heiheensis from rotten wood and T. mangshanicus isolated from soil, are illustrated and described as new to science in sections Trachyspermi and Talaromyces. The phylogenetic positions of the two new species inferred from the internal transcribed spacer, beta-tubulin, calmodulin and RNA polymerase II second largest subunit regions were carried out. Talaromyces heiheensis is phylogenetically closely related to T. albobiverticillius, T. rubrifaciens, T. solicola and T. erythromellis, and characterised by slow growth on Czapek yeast autolysate agar at 25 °C, orange conidia en masse on malt extract agar at 25 °C, biverticillate and terverticillate conidiophores, acerose phialides and subglobose to ellipsoidal, smooth-walled conidia. Talaromyces mangshanicus is related to T. kendrickii, T. qii and T. thailandensis, and characterised by slow-growing colonies with absent or sparse sporulation on CYA agar at 25 °C, conidia en masse greyish purple, purplish red soluble pigment on yeast extract agar (YES) at 25 °C, biverticillate conidiophores, ampulliform phialides and subglobose to ellipsoidal conidia with echinulate walls. They are distinguished from the known species in culture characteristics on four standard media, microscopic features and sequence data.  相似文献   

19.
Using yeast genome databases and literature data, we have conducted a phylogenetic analysis of pectinase PGU genes from Saccharomyces strains assigned to the biological species S. arboricola, S. bayanus (var. uvarum), S. cariocanus, S. cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus, and hybrid taxon S. pastorianus (syn. S. carlsbergensis). Single PGU genes were observed in all Saccharomyces species, except S. bayanus. The superfamily of divergent PGU genes has been documented in S. bayanus var. uvarum for the first time. Chromosomal localization of new PGU1b, PGU2b, and PGU3b genes in the yeast S. bayanus var. uvarum has been determined by molecular karyotyping and Southern hybridization.  相似文献   

20.

Objectives

To develop a new vector for constitutive expression in Pichia pastoris based on the endogenous glycolytic PGK1 promoter.

Results

P. pastoris plasmids bearing at least 415 bp of PGK1 promoter sequences can be used to drive plasmid integration by addition at this locus without affecting cell growth. Based on this result, a new P. pastoris integrative vector, pPICK2, was constructed bearing some features that facilitate protein production in this yeast: a ~620 bp PGK1 promoter fragment with three options of restriction sites for plasmid linearization prior to yeast transformation: a codon-optimized α-factor secretion signal, a new polylinker, and the kan marker for vector propagation in bacteria and selection of yeast transformants.

Conclusions

A new constitutive vector for P. pastoris represents an alternative platform for recombinant protein production and metabolic engineering purposes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号