首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The screening of diverse libraries of small molecules created by combinatorial synthetic methods is a recent development which has the potential to accelerate the identification of lead compounds in drug discovery. We have developed a direct and rapid method to identify lead compounds in libraries involving affinity selection and mass spectrometry. In our strategy, the receptor or target molecule of interest is used to isolate the active components from the library physically, followed by direct structural identification of the active compounds bound to the target molecule by mass spectrometry. In a drug design strategy, structurally diverse libraries can be used for the initial identification of lead compounds. Once lead compounds have been identified, libraries containing compounds chemically similar to the lead compound can be generated and used to optimize the binding characteristics. These strategies have also been adopted for more detailed studies of protein–ligand interactions.  相似文献   

2.
The lack of efficient identification and isolation methods for specific molecular binders has fundamentally limited drug discovery. Here, we have developed a method to select peptide nucleic acid (PNA) encoded molecules with specific functional properties from combinatorially generated libraries. This method consists of three essential stages: (1) creation of a Lab‐on‐Bead? library, a one‐bead, one‐sequence library that, in turn, displays a library of candidate molecules, (2) fluorescence microscopy‐aided identification of single target‐bound beads and the extraction – wet or dry – of these beads and their attached candidate molecules by a micropipette manipulator, and (3) identification of the target‐binding candidate molecules via amplification and sequencing. This novel integration of techniques harnesses the sensitivity of DNA detection methods and the multiplexed and miniaturized nature of molecule screening to efficiently select and identify target‐binding molecules from large nucleic acid encoded chemical libraries. Beyond its potential to accelerate assays currently used for the discovery of new drug candidates, its simple bead‐based design allows for easy screening over a variety of prepared surfaces that can extend this technique's application to the discovery of diagnostic reagents and disease markers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Diversity-oriented synthesis (DOS) is an emerging field involving the synthesis of combinatorial libraries of diverse small molecules for biological screening. Rather than being directed toward a single biological target, DOS libraries can be used to identify new ligands for a variety of targets. Several different strategies for library design have been developed to target the biologically relevant regions of chemical structure space. DOS has provided powerful probes to investigate biological mechanisms and also served as a new driving force for advancing synthetic organic chemistry.  相似文献   

4.
The advent of combinatorial and parallel synthesis methodologies in drug discovery have necessitated the development of analytical techniques which permit high throughput quantitative analysis of mixtures of small organic molecules. High pressure liquid chromatography with evaporative light scattering detection has become the major tool for this task. In this article we briefly review the theory of evaporative light scattering detection and the design of commercial instruments, as well as discuss the operational constraints imposed by the exigency of analyzing en masse the product libraries generated by these new drug discovery methods. The application of evaporative light scattering detection to library analysis is illustrated using examples from our library synthesis program. Complemented by ultraviolet absorbance detection for purity assessment and mass spectrometry for product identification, evaporative light scattering detection is the only technique affording sufficient accuracy and sensitivity for high throughput library analysis.  相似文献   

5.
An important step in the postgenomic drug discovery is the construction of high quality chemical libraries that generate bioactive molecules at high rates. Here we report a cell-based approach to composing a focused library of biologically active compounds. A collection of bioactive non-cytotoxic chemicals was identified from a divergent library through the effects on the insulin-induced adipogenesis of 3T3-L1 cells, one of the most drastic and sensitive morphological alterations in cultured mammalian cells. The resulting focused library amply contained unique compounds with a broad range of pharmacological effects, including glucose-uptake enhancement, cytokine inhibition, osteogenesis stimulation, and selective suppression of cancer cells. Adipogenesis profiling of organic compounds generates a focused chemical library for multiple biological effects that are seemingly unrelated to adipogenesis, just as genetic screens with the morphology of fly eyes identify oncogenes and neurodegenerative genes.  相似文献   

6.
A new approach to the design of compound libraries, named MetaFocus (Metabolite-Focused library), is presented that exploits information encoded in natural molecules and combines naturally occurring and synthetic compounds. An important goal of the MF approach is the identification of synthetic compounds that mimic properties of natural molecules that are difficult to obtain in sufficient quantities or to synthesize. Compounds in MetaFocus (MF) arrays are focused on natural molecules with attractive therapeutic effects. Similarity search and diversity design techniques are employed to generate compound arrays that start from a selected natural molecule, add similar molecules, either from natural or synthetic sources, and diversify scaffolds derived from these molecules. Since the identification of similar molecules from natural and synthetic sources plays a significant role in our library design efforts, the performance of fingerprint-type search tools was systematically assessed in a newly assembled test database consisting of 16 biological activity classes. MF arrays are organized as an easily expandable and searchable data structure and serve as a knowledge base for drug discovery applications. Here we introduce the design principles and organization of MF arrays and present example applications.  相似文献   

7.
Malaria a global pandemic has engulfed nearly 0.63 million people globally. It is high time that a cure for malaria is required to stop its ever increasing menace. Our commentary discusses the advent and contribution of diversity oriented synthesis (DOS) in the drug discovery efforts towards developing cure for malaria. DOS based on chemical genetics focusses on design and synthesis of molecular libraries which covers large tracts of biologically relevant chemical space. Herein we will discuss the applications, advantages, disadvantages and future directions of DOS with respect to malaria.  相似文献   

8.
Small molecules are widely used for the modulation of the molecular basis of diseases. This makes them the perfect tool for discovering and developing new therapeutics. In this work, we have established a library of small molecules in house and characterized its molecular and druglike properties. We have shown that most small molecules have molecular weights less than 450. They have pharmaceutically relevant cLogP, cLogS, and druglikeness value distributions. In addition, Meinox’s small molecule library contained small molecules with polar surface areas that are less than 60 square angstroms, suggesting their potent ability to cross the blood-brain barrier. Meinox’s small molecule library was also tested in vitro for pathologically distinct forms of cancer, including pancreatic adenocarcinoma PANC1, breast carcinoma MCF7, and lymphoblastic carcinoma RS4-11 cell lines. Analysis of this library at a dose of 1 μM allowed the discovery of potent, specific or broadly active anticancer compounds against pathologically distinct cancers. This study shows that in vitro analysis of different cancers or other phenotypic assays with Meinox small molecule library may generate novel and potent bioassay-specific compounds.  相似文献   

9.
High-throughput fluorescent intercalator displacement (HT–FID) was adapted to the semi-automated screening of a commercial compound library containing 60,000 molecules resulting in the discovery of cytotoxic DNA-targeted agents. Although commercial libraries are routinely screened in drug discovery efforts, the DNA binding potential of the compounds they contain has largely been overlooked. HT–FID led to the rapid identification of a number of compounds for which DNA binding properties were validated through demonstration of concentration-dependent DNA binding and increased thermal melting of A/T- or G/C-rich DNA sequences. Selected compounds were assayed further for cell proliferation inhibition in glioblastoma cells. Seven distinct compounds emerged from this screening procedure that represent structures unknown previously to be capable of targeting DNA leading to cell death. These agents may represent structures worthy of further modification to optimally explore their potential as cytotoxic anti-cancer agents. In addition, the general screening strategy described may find broader impact toward the rapid discovery of DNA targeted agents with biological activity.  相似文献   

10.
宋新蕊  李达  陈洁  赵勇 《生物信息学》2014,12(4):300-304
先导化合物发现是创新药物研发的最重要环节之一。针对目前海量功能不明确的小分子化合物,本文构建了一个用来实现快速发现先导化合物,有效降低药物研发成本的计算机辅助药物筛选平台。该平台采用分布式架构思想,集成了Auto Dock Vina和多个小分子库,具有数据安全、计算与存储的负载均衡以及实时监控的特点。应用平台进行先导化合物筛选,在较短时间发现了有针对性的活性小分子化合物,命中率高,大大缩短先导化合物发现周期。该平台具有很好的实用性和良好的扩展性。  相似文献   

11.
Efficient library design is an ongoing challenge for investigators seeking novel ligands for proteins, whether for drug discovery or chemical biology. Strategies that add neglected chemistry or exclude unproductive compounds are two dominant recent themes, as is a growing awareness of molecular complexity and its implications. The choice of how complex molecules in screening libraries should be often amounts to how big they should be. Small, simple molecules have lower affinities and must be screened at high concentration, but they will also have higher hit rates. Larger compounds, on the other hand, will often more closely resemble final drugs, but because they are more highly functionalized and specific, they will have much lower hit rates. The best general-purpose screening libraries may well be those of intermediate complexity that are free of artifact-causing nuisance compounds.  相似文献   

12.
Lead compounds discovered from libraries: part 2   总被引:3,自引:0,他引:3  
Many lead compounds with the potential to progress to viable drug candidates have been identified from libraries during the past two years. There are two key strategies most often employed to find leads from libraries: first, high-throughput biological screening of corporate compound collections; and second, synthesis and screening of project-directed libraries (i.e. target-based libraries). Numerous success stories, including the discovery of several clinical candidates, testify to the utility of chemical library collections as proven sources of new leads for drug development.  相似文献   

13.
Combinatorial biocatalysis: taking the lead from nature   总被引:1,自引:0,他引:1  
Combinatorial biocatalysis is an emerging technology in the field of drug discovery. The biocatalytic approach to combinatorial chemistry uses enzymatic, chemoenzymatic, and microbial transformations to generate libraries from lead compounds. Important recent advances in combinatorial biocatalysis include iterative derivatization of small molecules and complex natural products, regioselectively controlled libraries, novel one-pot library syntheses, process automation, and biocatalyst enhancements.  相似文献   

14.
Combinatorial syntheses allow production of compound libraries in an expeditious and organized manner immediately applicable for high-throughput screening. Natural products possess a pedigree to justify quality and appreciation in drug discovery and development. Currently, we are seeing a rapid increase in application of natural products in combinatorial chemistry and vice versa. The therapeutic areas of infectious disease and oncology still dominate but many new areas are emerging. Several complex natural products have now been synthesised by solid-phase methods and have created the foundation for preparation of combinatorial libraries. In other examples, natural products or intermediates have served as building blocks or scaffolds in the synthesis of complex natural products, bioactive analogues or designed hybrid molecules. Finally, structural motifs from the biologically active parent molecule have been identified and have served for design of natural product mimicry, which facilitates the creation of combinatorial libraries.  相似文献   

15.
The Selectide process is a random synthetic chemical library method based on the one-bead one-peptide (structure) concept. A "split-synthesis" method is used to generate huge random libraries (106-108). At the end of the synthesis, each bead expresses only one chemical entity (e.g., peptide). The whole library is then tested simultaneously for binding to a specific acceptor molecule of biologic interest. The ligand bead that interacts specifically with the acceptor molecule is then isolated for structure determination. Once a binding motif is identified, a secondary library (based on the motif of the primary screen) is generated and screened under a more stringent condition to identify leads of higher affinity. This process can be applied to both peptide and nonpeptide (small organic) libraries. In the case of nonsequencable structure libraries, the coding principle has to be applied for structure elucidation of positively reacting beads. Coding peptide is synthesized in parallel to the screening structure, and classical Edman degradation (one or multiple-step) is used for structural analysis. To exclude the possibility of interaction of the macromolecular target (e.g., receptor, enzyme, antibody) with the coding structure, a synthetic technique for segregation of the surface (screening structure) and the interior (coding structure) of the beads was developed. The one-bead one-structure process is invaluable in drug discovery for lead identification as well as further optimization of the initial leads. It also serves as an important research tool for molecular recognition.  相似文献   

16.
Previous studies have shown DNA re-replication can be induced in cells derived from human cancers under conditions in which it is not possible for cells derived from normal tissues. Because DNA re-replication induces cell death, this strategy could be applied to the discovery of potential anticancer therapeutics. Therefore, an imaging assay amenable to high-throughput screening was developed that measures DNA replication in excess of four genomic equivalents in the nuclei of intact cells and indexes cell proliferation. This assay was validated by screening a library of 1,280 bioactive molecules on both normal and tumor-derived cells where it proved more sensitive than current methods for detecting excess DNA replication. This screen identified known inducers of excess DNA replication, such as inhibitors of microtubule dynamics, and novel compounds that induced excess DNA replication in both normal and cancer cells. In addition, two compounds were identified that induced excess DNA replication selectively in cancer cells and one that induced endocycles selectively in cancer cells. Thus, this assay provides a new approach to the discovery of compounds useful for investigating the regulation of genome duplication and for the treatment of cancer.  相似文献   

17.
Biological in vitro selection techniques, such as RNA aptamer methods and mRNA display, have proven to be powerful approaches for engineering molecules with novel functions. These techniques are based on iterative amplification of biopolymer libraries, interposed by selection for a desired functional property. Rare, promising compounds are enriched over multiple generations of a constantly replicating molecular population, and subsequently identified. The restriction of such methods to DNA, RNA, and polypeptides precludes their use for small-molecule discovery. To overcome this limitation, we have directed the synthesis of combinatorial chemistry libraries with DNA "genes," making possible iterative amplification of a nonbiological molecular species. By differential hybridization during the course of a traditional split-and-pool combinatorial synthesis, the DNA sequence of each gene is read out and translated into a unique small-molecule structure. This "chemical translation" provides practical access to synthetic compound populations 1 million-fold more complex than state-of-the-art combinatorial libraries. We carried out an in vitro selection experiment (iterated chemical translation, selection, and amplification) on a library of 10(6) nonnatural peptides. The library converged over three generations to a high-affinity protein ligand. The ability to genetically encode diverse classes of synthetic transformations enables the in vitro selection and potential evolution of an essentially limitless collection of compound families, opening new avenues to drug discovery, catalyst design, and the development of a materials science "biology."  相似文献   

18.
Chemical genomics aims to discover small molecules that affect biological processes through the perturbation of protein function. However, determining the protein targets of bioactive compounds remains a formidable challenge. We address this problem here through the creation of a natural product-inspired small-molecule library bearing protein-reactive elements. Cell-based screening identified a compound, MJE3, that inhibits breast cancer cell proliferation. In situ proteome reactivity profiling revealed that MJE3, but not other library members, covalently labeled the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1), resulting in enzyme inhibition. Interestingly, MJE3 labeling and inhibition of PGAM1 were observed exclusively in intact cells. These results support the hypothesis that cancer cells depend on glycolysis for viability and promote PGAM1 as a potential therapeutic target. More generally, the incorporation of protein-reactive compounds into chemical genomics screens offers a means to discover targets of bioactive small molecules in living systems, thereby enabling downstream mechanistic investigations.  相似文献   

19.
Antimicrobial peptides (AMPs) belong to a class of natural microbicidal molecules that have been receiving great attention for their lower propensity for inducing drug resistance, hence, their potential as alternative drugs to conventional antibiotics. By generating AMP libraries, one can study a large number of candidates for their activities simultaneously in a timely manner. Here, we describe a novel methodology where in silico designed AMP-encoding oligonucleotide libraries are cloned and expressed in a cellular host for rapid screening of active molecules. The combination of parallel oligonucleotide synthesis with microbial expression systems not only offers complete flexibility for sequence design but also allows for economical construction of very large peptide libraries. An application of this approach to discovery of novel AMPs has been demonstrated by constructing and screening a custom library of twelve thousand plantaricin-423 mutants in Escherichia coli. Analysis of selected clones by both Sanger-sequencing and 454 high-throughput sequencing produced a significant amount of data for positionally important residues of plantaricin-423 responsible for antimicrobial activity and, moreover, resulted in identification of many novel variants with enhanced specific activities against Listeria innocua. This approach allows for generation of fully tailored peptide collections in a very cost effective way and will have countless applications from discovery of novel AMPs to gaining fundamental understanding of their biological function and characteristics.  相似文献   

20.
微生物代谢物具有极大的化学结构多样性和复杂性,建立微生物代谢物库对发现新药有重要意义。对几种重要的微生物代谢物库及建库方法作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号