首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
许振柱  周广胜  肖春旺  王玉辉 《生态学报》2004,24(10):2186-2191
研究利用大型环境生长箱模拟了两种沙地优势灌木柠条和羊柴对 CO2 浓度倍增和土壤干旱交互作用的响应。 CO2 浓度倍增使柠条和羊柴的生物量分别增加了 6 2 .90 %和 5 0 .0 0 % ,使植株叶面积分别增加了 4 1.86 %和 4 5 .84 %。 CO2 浓度的倍增效应随着土壤干旱的增加而下降。 CO2 浓度倍增和土壤干旱都增加单位叶面积质量 (L MA) ,但 CO2 浓度倍增主要增加了水分充足时的 L MA。 CO2 倍增使柠条和羊柴叶片含氮量分别降低了 10 .4 0 %和 5 .0 6 %。柠条叶片含氮量在所有土壤干旱条件下均呈现出增加的趋势 ,而羊柴叶片的含氮量仅在严重干旱条件下增加。 CO2 倍增使叶片的碳氮比显著增加 ,但土壤干旱使之降低。CO2 浓度倍增降低叶肉细胞质膜的过氧化产物丙二醛 (MDA )的含量 ,干旱使之增加。叶片含氮量与 MDA呈显著正相关。研究表明 CO2 倍增有保护叶片免受严重土壤干旱的作用 ,但干旱的负面影响是 CO2 倍增效应所难以弥补的  相似文献   

2.
杨柴对高CO2浓度和土壤干旱胁迫的响应   总被引:11,自引:0,他引:11  
毛乌素优势植物杨柴 (HedysarummongolicumTurcz.)对高CO2 浓度和土壤干旱胁迫响应的研究结果表明 :干旱胁迫可使杨柴根系伸长 ,根生物量、地径、主茎高和茎生物量下降 ;高CO2 浓度使杨柴根和茎生物量明显增加 ,CO2 的“施肥效应”显著 ,干旱使CO2 的“施肥效应”减弱。同时 ,土壤干旱胁迫使杨柴的根 /冠比增加 ,说明在土壤干旱胁迫情况下根的生长比地上部分 (茎 )的生长更活跃 ,有利于提高杨柴在干旱沙漠地区的固沙作用 ;CO2 浓度升高和土壤干旱胁迫均使杨柴叶片的水势下降 ,叶片水势的下降使叶片细胞对水分的束缚力增强 ,从而减少植物蒸腾耗水 ,有利于提高水资源的利用效率  相似文献   

3.
李清明  刘彬彬  艾希珍 《生态学报》2010,30(22):6063-6071
为了探明CO2浓度倍增对干旱胁迫下黄瓜幼苗氧化损伤的缓解机理,为未来大气CO2浓度升高或温室CO2施肥以及干旱、半干旱地区水分亏缺等逆境胁迫下黄瓜的优质高效栽培提供理论依据和技术参数,以温室专用黄瓜品种津优1号(Cucumissativus L.var.Jinyou No.1)为试材,采用裂区设计,主区因素为CO2浓度处理,设2个CO2浓度水平:大气CO2浓度(≈380μmol/mol,表示为Ambient[CO2])和倍增CO2浓度((760±20)μmol/mol,表示为Doubled[CO2]);裂区因素为水分处理,用PEG6000模拟根际干旱胁迫,设3个水分处理水平:对照(营养液,表示为C)、中度干旱胁迫(含5%PEG6000的营养液,相当于水势ψw=-0.05MPa,表示为M)和重度干旱胁迫(含10%PEG6000的营养液,相当于水势ψw=-0.15MPa,表示为S),研究了CO2浓度倍增对干旱胁迫条件下黄瓜幼苗叶片渗透调节物质含量、膜脂过氧化及抗氧化系统的影响,结果表明:(1)干旱胁迫导致黄瓜幼苗活性氧积累,质膜透性增大,丙二醛含量升高,同时幼苗叶片脯氨酸、可溶性蛋白质和可溶性总糖含量显著增加,抗氧化酶活性(SOD、POD、CAT、APX和GR)显著提高,抗坏血酸(AsA)和还原型谷胱甘肽(GSH)含量显著升高;(2)CO2浓度倍增不仅有利于促进干旱胁迫条件下黄瓜叶片渗透调节物质的积累,而且能够促进干旱胁迫条件下黄瓜叶片抗氧化酶(SOD、POD、CAT、APX和GR)活性的表达,减轻干旱胁迫下活性氧的积累,使膜脂过氧化程度下降,质膜相对透性降低,丙二醛含量减少,对防止植物的氧化损伤具有一定的保护作用。综上所述,推测温室CO2施肥或未来CO2浓度升高可在一定程度上增强黄瓜幼苗的抗旱性和缓解干旱胁迫的负效应。  相似文献   

4.
CO2倍增对紫光苜蓿碳,氮同化与分配的影响   总被引:3,自引:0,他引:3  
  相似文献   

5.
CO2浓度升高对植物-土壤系统地下部分碳流通的影响   总被引:11,自引:1,他引:11  
目前 ,由于化石燃料的燃烧和土地利用的改变 ,每年释放到大气中的碳大约有 7Gt[2 4 ] ,其中 ,有 3Gt留在大气中 ,2Gt被固定在深海中 ,另 2Gt被植物固定在生态系统中[19,4 8] ,事实上 ,陆地生态系统中的碳大部分都贮存在土壤中[4 4 ] ,所以植物与土壤之间的碳流通对全球碳循环极为重要。大气CO2 浓度升高有可能通过生态系统中的各种生理过程来改变植物 -土壤系统中碳通量的变化 ,使输入土壤的碳量增加 ,另一方面 ,地下部分碳通量的增加使土体成为一个潜在的碳汇 ,有可能缓解大气中CO2 浓度的升高。但有关高CO2 对地下部分植物…  相似文献   

6.
大气CO2浓度升高对土壤微生物的影响   总被引:18,自引:1,他引:18  
自人类进入工业化时代以来,由于化石燃料的燃烧和森林的大面积破坏,大气中CO2的浓度已由工业革命以前的280μl·L-1增加到现在的350μl·L-1,仅从1957年至今的几十年间,大气中CO2的浓度就增加了20%,预计到下个世纪下半叶,大气中CO2的...  相似文献   

7.
土壤CO2浓度的动态观测、模拟和应用   总被引:3,自引:0,他引:3  
盛浩  罗莎  周萍  李腾毅  王娟  李洁 《应用生态学报》2012,23(10):2916-2922
土壤CO2浓度不仅是地上、地下生物活动的反映,其变化对未来大气CO2浓度和气候变化也有重要影响.本文综述了国内外土壤CO2浓度的原位测定方法及其优缺点,分析了不同时(昼夜、几天、季节、年际)空(剖面、立地、景观)尺度上土壤CO2浓度的变化规律和影响因素,概括了现有土壤CO2浓度的模拟模型和发展态势,并总结了土壤CO2浓度梯度法在土壤呼吸研究中的应用和限制因素.最后展望了未来有待研究的4个领域:1)研发适于恶劣土壤环境(如淹水、石质土)的土壤CO2气体采集、测定技术;2)探讨土壤CO2浓度对天气变化的响应及其调控机理;3)加强土壤CO2浓度空间异质性的研究;4)扩大通量梯度法在热带、亚热带土壤呼吸测定中的应用.  相似文献   

8.
9.
大气CO2浓度升高和氮(N)添加对土壤碳库的影响是当前国际生态学界关注的一个热点。为阐述土壤不同形态有机碳的抗干扰能力, 运用大型开顶箱, 研究了4种处理((1)高CO2浓度(700 µmol·mol-1)和高氮添加(100 kg N·hm-2·a-1) (CN); (2)高CO2浓度和背景氮添加(CC); (3)高氮添加和背景CO2浓度(NN); (4)背景CO2和背景氮添加(CK))对南亚热带模拟森林生态系统土壤有机碳库稳定性的影响。近5年的试验研究表明: (1) CN处理能明显地促进各土层中土壤总有机碳含量的增加, 其中, 下层土壤(5-60 cm土层)中的响应达到统计学水平。(2)活性有机碳库各组分对处理的响应有所差异: 不同土层中微生物生物量碳(MBC)的含量对各处理的响应趋势基本一致, 各土层中的MBC含量均为CN > CC > NN > CK, 其中0-5 cm、5-10 cm、10-20 cm 3个土层的处理间差异都达到了显著水平; 10-20 cm与20-40 cm两个土层中的易氧化有机碳处理间有显著差异; 而对于各土层中水溶性有机碳, 处理间差异均不明显。(3)各团聚体组分中的有机碳含量的响应也有所差异: 20-40 cm与40-60 cm土层中250-2000 μm组分的有机碳含量存在处理间差异; 40-60 cm土层中53-250 μm组分的有机碳对各处理响应敏感, CC处理和NN处理都有利于该组分碳的深层积累, 尤其CN处理下的效果最为明显; 在各处理10-20 cm、20-40 cm及40-60 cm土壤中, < 53 μm组分中的碳含量间差异显著。大气CO2浓度上升和N添加促进了森林生态系统中土壤有机碳的增加, 尤其有利于深层土壤中微团聚体与粉粒、黏粒团聚体等较稳定组分中有机碳的积累, 增加了土壤有机碳库的稳定性。  相似文献   

10.
CO_2倍增对植物生长和土壤微生物生物量碳、氮的影响   总被引:8,自引:0,他引:8  
关于大气CO2浓度倍增(即为700μmolCO2·mol-1空气)将对植物生长产生诸多影响,已有大量报道[1,2]。但CO2倍增对植物及所在土壤中微生物影响的研究甚少[3,4]。土壤微生物是陆地生态系统中最活跃的成分,担负着分解动植物残体的重要作用,...  相似文献   

11.
CO_2倍增对紫花苜蓿碳、氮同化与分配的影响   总被引:6,自引:0,他引:6  
本文简要报道CO2倍增下紫花苜蓿碳素积累、氮素的吸收与生物固氮及其产物在地上、地下部分配的特性1 材料和方法在北京香山中国科学院植物研究所植物园试验区,建立了两个高2.8m、直径2.2m的钢管支撑的圆柱状开顶式薄膜培养室,由底部向室内连续通气,保证培养室内每分钟换气3次。对照室通入正常空气(350×10-6,1×CO2),处理室通入CO2加倍的空气(700×10-6,2×CO2)。室内CO2浓度经红外CO2分析仪(QGD-07型,北京分析仪器厂产品)测定,24h内均可保持在350×10-6及70…  相似文献   

12.
CO2浓度升高与氮沉降增加对陆地生态系统的耦合作用已成为全球变化的研究热点。应用大型开顶箱 (OTC) 人工控制手段研究了人工生态系统在1) 高CO2 (700±20μmol·mol-1) +高氮沉降 (100kg N·hm-2·a-1) (CN) ;2) 高CO2 (700±20μmol·mol-1) +背景氮沉降 (C+) ;3) 高氮沉降 (100kg N·hm-2·a-1) +背景CO2 (N+) ;4) 背景CO2+背景氮沉降处理 (CK) 4种处理条件下荷木 (Schima superba) 、红锥 (Castanopsis hystrix) 、海南红豆 (Ormosia pinnata) 、肖蒲桃 (Acmena acuminatissima) 、红鳞蒲桃 (Syzygium hancei) 等主要南亚热带森林植物的生物量积累模式及其分配格局。连续近3年的实验结果表明:不同处理条件下, 各参试植物生物量积累具有不同的响应特征, N+处理显著促进荷木、肖蒲桃及红鳞蒲桃生物量的积累;C+处理显著促进肖蒲桃、海南红豆生物量的积累;CN处理显著促进除红锥外其他物种生物量的积累, 并且具有两者单独处理的叠加效应。不同处理改变物种生物量的分配模式, N+处理降低植物的根冠比, 促进地上部分生物量的积累;C+处理增加红锥和红鳞蒲桃地下部分生物量的分配, 却促进荷木和海南红豆地上部分的积累;CN处理仅促进红磷蒲桃地下部分的积累。群落生物量的积累与分配格局取决于优势物种的生物量及其分配格局在群落中所 占的权重。  相似文献   

13.
 通过对典型草原优势植物种羊草(Leymus chinensis)的盆栽实验,模拟5个土壤水分梯度(分别为土壤持水量的75%~80%(对照)、60%~65%、50%~55%、35%~40%和25%~30% )对羊草叶片相对含水量、光合速率、光合产物分配和种群CO2交换速率的影响。结果表明:随着土壤水分胁迫的增加,羊草叶片相对含水量呈先增加而后下降的单峰型变化,且在50%~55%处理下达到最大;叶片光合速率随着水分胁迫的增加而减小,且75%~80%、60%~65%、50%~55%的水分处理与35%~40%、25%~30%的水分处理的叶片光合速度日动态规律不同。羊草总生物量及根、鞘、叶生物量均随着水分胁迫的增加呈下降趋势。干旱促进早期羊草根的分配和根冠比增加, 但到后期却使它们降低, 表明羊草在受到较长期的持续干旱后通过增加根部的比重来提高抗旱性的能力逐渐降低。羊草根茎的生物量和分配随着土壤水分含量降低均呈现出先增加而后下降的趋势,羊草根茎的生物量在50%~55%处理下达最大(1.28 g·株-1),而羊草根茎的分配在35%~40%处理下达最大(48.5%)。羊草种群CO2的净交换速率随着水分胁迫的增加而减小,其日交换量随着水分胁迫的增加而增加,且在60%~65%处理下达到最高,而后呈下降趋势,并在25%~30% 处理下为负值。研究结果表明,土壤持水量的40%可能是羊草对于水分变化响应的阈值。  相似文献   

14.
 试验设两种CO2浓度水平(350 μmol·mol-1和700 μmol·mol-1),两种土壤水分处理(湿润、干旱)和5种N肥施用水平(0、 50、 100、 150、 200 mg·kg-1土)。结果表明,CO2浓度增加,地上部氮(N)磷(P)浓度下降,根系N浓度略有下降。无论CO2浓度是升高或是当前水平,与干旱处理相比,湿润处理的地上部和根系N浓度明显降低;地上部和根系N浓度随氮肥用量增加而增加。小麦体内N浓度下降,是因为CO2浓度升高,水分利用效率增加,这将减少质流运送养分到根系为作物利用以及氮  相似文献   

15.
正人类在利用化石燃料的过程中会导致大量有害温室气体CO_2的排放,促进全球气候变暖。微藻可通过光合作用固定CO_2,同时大量的微藻生物质还能作为生物能源的原料[1],因此,越来越多的研究关注于微藻生物固碳以达到降低碳排放的目的。利用微藻光合作用进行CO_2固定是一种能量节约型和环境友好型技术手段[2]。在利用微藻进行CO_2生物固定以及生物燃料生产时,研究微藻的CO_2固定能力、CO_2对微藻的生长以及油脂积累的影响等都是十分重要的。国内外利用微藻进行生  相似文献   

16.
研究了CO_2倍增对大豆(Glycine max L.)Bragg(野生型)及其不同单基因突变品系Nts 382(超结瘤突变体)和Nod 49(不结瘤突变体)某些光合特性的影响。结果表明,CO_2倍增能提高Bragg、Nts 382和Nod 49的叶绿素(Chl)和类胡萝卜素(Car)的含量,但不同品系提高的幅度有所不同。荧光诱导动力学测定结果表明,CO_2倍增均能提高其PSⅡ活性、PSⅡ原初光能转化效率和光合作用潜在量子转化效率。CO_2倍增更有利于提高Nts 382的荧光光化学猝灭系数(qp)和PSⅡ总的光化学量子产量,以及较大幅度地降低荧光非光化学猝灭系数(qN),有助于把所捕获的光能用于进行光合作用。这可能与Nts 382是超结瘤突变体,比Bragg和Nod 49能更充分地利用空气中的氮素有关。  相似文献   

17.
 根呼吸与微生物呼吸的作用底物不同,二者对高浓度CO2的响应机理及敏感程度亦不同。在大气CO2浓度升高的背景下,精确区分根呼吸与微生物呼吸是构建森林生态系统碳循环模型和预测森林生态系统碳源/汇关系所必需的。根(际)呼吸与微生物呼吸对高浓度CO2的响应呈增加、降低或无明显变化等不同趋势,根(际)呼吸变化主要与根生物量明显相关,细根的作用大于粗根;土壤微生物呼吸变化存在较大的不确定性,微生物量和微生物活性与土壤微生物呼吸相关或不相关。根系统对高浓度CO2的响应会潜在地影响微生物的代谢底物,进而影响微生物呼吸强度。凡影响土壤总呼吸的生物与非生物因子都会直接或间接地影响根呼吸与土壤微生物呼吸。  相似文献   

18.
19.
 CO2浓度升高与氮沉降增加对陆地生态系统的耦合作用已成为全球变化的研究热点。应用大型开顶箱(OTC)人工控制手段研究了人工生态系统在1)高CO2(700±20 μmol·mol–1)+高氮沉降(100 kg N·hm–2·a–1)(CN); 2)高CO2(700±20 μmol·mol–1)+背景氮沉降(C+); 3)高氮沉降(100 kg N· hm–2·a–1)+背景CO2(N+); 4)背景CO2+背景氮沉降处理(CK) 4种处理条件下荷木 (Schima superba)、红锥(Castanopsis hystrix)、海南红豆(Ormosia pinnata)、肖蒲桃(Acmena acuminatissima)、红鳞蒲桃(Syzygium hancei)等主要南亚热带森林植物的生物量积累模式及其分配格局。连续近3年的实验结果表明: 不同处理条件下, 各参试植物生物量积累具有不同的响应特征, N+处理显著促进荷木、肖蒲桃及红鳞蒲桃生物量的积累; C+处理显著促进肖蒲桃、海南红豆生物量的积累; CN处理显著促进除红锥外其他物种生物量的积累, 并且具有两者单独处理的叠加效应。不同处理改变物种生物量的分配模式, N+处理降低植物的根冠比, 促进地上部分生物量的积累; C+处理增加红锥和红鳞蒲桃地下部分生物量的分配, 却促进荷木和海南红豆地上部分的积累; CN处理仅促进红磷蒲桃地下部分的积累。群落生物量的积累与分配格局取决于优势物种的生物量及其分配格局在群落中所占的权重。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号