共查询到20条相似文献,搜索用时 15 毫秒
1.
Mapping the hyaluronan-binding site on the link module from human tumor necrosis factor-stimulated gene-6 by site-directed mutagenesis 总被引:6,自引:0,他引:6
Link modules are hyaluronan-binding domains found in extracellular proteins involved in matrix assembly, development, and immune cell migration. Previously we have expressed the Link module from the inflammation-associated protein tumor necrosis factor-stimulated gene-6 (TSG-6) and determined its tertiary structure in solution. Here we generated 21 Link module mutants, and these were analyzed by nuclear magnetic resonance spectroscopy and a hyaluronan-binding assay. The individual mutation of five amino acids, which form a cluster on one face of the Link module, caused large reductions in functional activity but did not affect the Link module fold. This ligand-binding site in TSG-6 is similar to that determined previously for the hyaluronan receptor, CD44, suggesting that the location of the interaction surfaces may also be conserved in other Link module-containing proteins. Analysis of the sequences of TSG-6 and CD44 indicates that the molecular details of their association with hyaluronan are likely to be significantly different. This comparison identifies key sequence positions that may be important in mediating hyaluronan binding, across the Link module superfamily. The use of multiple sequence alignment and molecular modeling allowed the prediction of functional residues in link protein, and this approach can be extended to all members of the superfamily. 相似文献
2.
Getting SJ Mahoney DJ Cao T Rugg MS Fries E Milner CM Perretti M Day AJ 《The Journal of biological chemistry》2002,277(52):51068-51076
TSG-6 protein (the secreted product of the tumor necrosis factor-stimulated gene-6), a hyaluronan-binding protein comprised mainly of a Link and CUB module arranged in a contiguous fashion, has been shown previously to be a potent inhibitor of neutrophil migration in an in vivo model of acute inflammation (Wisniewski, H. G., Hua, J. C., Poppers, D. M., Naime, D., Vilcek, J., and Cronstein, B. N. (1996) J. Immunol. 156, 1609-1615). It was hypothesized that this activity of TSG-6 was likely to be mediated by its potentiation of inter-alpha-inhibitor anti-plasmin activity (causing a down-regulation of the protease network), which was reliant on these proteins forming a stable, probably covalent approximately 120-kDa complex. Here we have shown that the recombinant Link module from human TSG-6 (Link_TSG6; expressed in Escherichia coli) has an inhibitory effect on neutrophil influx into zymosan A-stimulated murine air pouches, equivalent to that of full-length protein (which we produced in a Drosophila expression system). The active dose of 1 microg of Link_TSG6 per mouse (administered intravenously) also resulted in a significant reduction in the concentrations of various inflammatory mediators (i.e. tumor necrosis factor-alpha, KC, and prostaglandin E(2)) in air pouch exudates. Link_TSG6, although unable to form a stable complex with inter-alpha-inhibitor (under conditions that promote maximum complex formation with the full-length protein), could potentiate its anti-plasmin activity. This demonstrates that formation of an approximately 120-kDa TSG-6.inter-alpha-inhibitor complex is not required for TSG-6 to enhance the serine protease inhibitory activity of inter-alpha-inhibitor. Six single-site Link_TSG6 mutants (with wild-type folds) were compared for their abilities to inhibit neutrophil migration in vivo, bind hyaluronan, and potentiate inter-alpha-inhibitor. These experiments indicate that all of the inhibitory activity of TSG-6 resides within the Link module domain, and that this anti-inflammatory property is not related to either its hyaluronan binding function or its potentiation of the anti-plasmin activity of inter-alpha-inhibitor. 相似文献
3.
Blundell CD Mahoney DJ Almond A DeAngelis PL Kahmann JD Teriete P Pickford AR Campbell ID Day AJ 《The Journal of biological chemistry》2003,278(49):49261-49270
The solution structure of the Link module from human TSG-6, a hyaladherin with important roles in inflammation and ovulation, has been determined in both its free and hyaluronan-bound conformations. This reveals a well defined hyaluronan-binding groove on one face of the Link module that is closed in the absence of ligand. The groove is lined with amino acids that have been implicated in mediating the interaction with hyaluronan, including two tyrosine residues that appear to form essential intermolecular hydrogen bonds and two basic residues capable of supporting ionic interactions. This is the first structure of a non-enzymic hyaladherin in its active state, and identifies a ligand-induced conformational change that is likely to be conserved across the Link module superfamily. NMR and isothermal titration calorimetry experiments with defined oligosaccharides have allowed us to infer the minimum length of hyaluronan that can be accommodated within the binding site and its polarity in the groove; these data have been used to generate a model of the complex formed between the Link module and a hyaluronan octasaccharide. 相似文献
4.
Blundell CD Mahoney DJ Cordell MR Almond A Kahmann JD Perczel A Taylor JD Campbell ID Day AJ 《The Journal of biological chemistry》2007,282(17):12976-12988
TSG-6 is an inflammation-associated hyaluronan (HA)-binding protein that has anti-inflammatory and protective functions in arthritis and asthma as well as a critical role in mammalian ovulation. The interaction between TSG-6 and HA is pH-dependent, with a marked reduction in affinity on increasing the pH from 6.0 to 8.0. Here we have investigated the mechanism underlying this pH dependence using a combined approach of site-directed mutagenesis, NMR, isothermal titration calorimetry and microtiter plate assays. Analysis of single-site mutants of the TSG-6 Link module indicated that the loss in affinity above pH 6.0 is mediated by the change in ionization state of a histidine residue (His(4)) that is not within the HA-binding site. To understand this in molecular terms, the pH-dependent folding profile and the pK(a) values of charged residues within the Link module were determined using NMR. These data indicated that His(4) makes a salt bridge to one side-chain oxygen atom of a buried aspartate residue (Asp(89)), whereas the other oxygen is simultaneously hydrogen-bonded to a key HA-binding residue (Tyr(12)). This molecular network transmits the change in ionization state of His(4) to the HA-binding site, which explains the loss of affinity at high pH. In contrast, simulations of the pH affinity curves indicate that another histidine residue, His(45), is largely responsible for the gain in affinity for HA between pH 3.5 and 6.0. The pH-dependent interaction of TSG-6 with HA (and other ligands) provides a means of differentially regulating the functional activity of this protein in different tissue microenvironments. 相似文献
5.
Lesley J English NM Gál I Mikecz K Day AJ Hyman R 《The Journal of biological chemistry》2002,277(29):26600-26608
CD44, a cell-surface receptor for the extracellular matrix glycosaminoglycan hyaluronan, can mediate leukocyte rolling on hyaluronan substrates and has been implicated in leukocyte migration to sites of inflammation. CD44-mediated binding to hyaluronan is of low affinity, and effective cell/matrix interaction depends on multiple interactions with the multivalent ligand. We replaced the Link module of CD44 with the homologous region of TSG-6, a hyaluronan-binding protein secreted in response to inflammation whose Link module has a higher affinity for ligand. Monoclonal antibodies raised against the CD44/TSG-6 chimera recognized recombinant human TSG-6 and native mouse TSG-6 and blocked hyaluronan binding to these proteins. Cells expressing the CD44/TSG-6 molecule bound hyaluronan with higher avidity than cells expressing CD44. This resulted in changes in the hyaluronan binding properties characteristic of cells expressing CD44 such as requirements for threshold levels of receptor expression and for hyaluronan of high molecular mass. In parallel plate flow assays used to model leukocyte rolling, cells expressing CD44/TSG-6 failed to roll on hyaluronan. Instead, they stuck and remained "tethered" to the substrate under fluid flow. This result argues that the low affinity of CD44 for its ligand is important for rolling, an early phase of leukocyte extravasation from the blood. 相似文献
6.
Heng BC Gribbon PM Day AJ Hardingham TE 《The Journal of biological chemistry》2008,283(47):32294-32301
The physiological functions of hyaluronan (HA) in the extracellular matrix of vertebrate tissues involve a range of specific protein interactions. In this study, the interaction of HA with the Link module from TSG-6 (Link_TSG6) and G1 domain of aggrecan (G1), were investigated by a biophysical analysis of translational diffusion in dilute solution using confocal fluorescence recovery after photobleaching (confocal FRAP). Both Link_TSG6 and G1 were shown to bind to polymeric HA and these interactions could be competed with HA(8) and HA(10) oligosaccharides, respectively. Equilibrium experiments showed that the binding affinity of Link_TSG6 to HA was maximal at pH 6.0, and reduced dramatically above and below this pH. In contrast, G1 had maximum binding at pH 7.0-8.0 and moderate to strong binding affinity over a much broader pH range (5.5-8.0). The K(D) determined for Link_TSG6 binding to HA showed a 100-fold increase in binding affinity between pH 7.4 and 6.0, whereas G1 showed a 75-fold decrease in binding affinity over the same pH range. The sharp difference observed in their pH binding suggests that pH controls the physiological function of TSG-6, with a low affinity for HA at neutral pH, but with increased affinity as the pH falls below pH 7. TSG-6 and aggrecan interact with HA through structurally homologous domains and the difference in pH-dependent binding can be understood in terms of differences in the presence and topographical distribution of key regulatory amino acids in Link_TSG6 and in the related tandem Link domains in aggrecan G1. 相似文献
7.
Kuznetsova SA Day AJ Mahoney DJ Rugg MS Mosher DF Roberts DD 《The Journal of biological chemistry》2005,280(35):30899-30908
We recently found that leukocytes from thrombospondin-1 (TSP1)-deficient mice exhibit significant reductions in cell surface CD44 relative to those from wild type mice. Because TSG-6 modulates CD44-mediated cellular interactions with hyaluronan, we examined the possibility that TSP1 interacts with TSG-6. We showed that recombinant full-length human TSG-6 (TSG-6Q) and the Link module of TSG-6 (Link_TSG6) bind 125I-TSP1 with comparable affinities. Trimeric recombinant constructs containing the N-modules of TSP1 or TSP2 inhibit binding of TSP1 to TSG-6Q and Link_TSG6, but other recombinant regions of TSP1 do not. Therefore, the N-modules of both TSP1 and TSP2 specifically recognize the Link module of TSG-6. Heparin, which binds to these domains of both proteins, strongly inhibits binding of TSP1 to Link_TSG6 and TSG-6Q, but hyaluronan does not. Inhibition by heparin results from its binding to TSP1, because heparin also inhibits TSP1 binding to Link_TSG6 mutants deficient in heparin binding. Removal of bound Ca2+ from TSP1 reduces its binding to full-length TSG-6. Binding of TSP1 to Link_TSG6, however, is enhanced by chelating divalent cations. In contrast, divalent cations do not influence binding of the N-terminal region of TSP1 to TSG-6Q. This implies that divalent cation dependence is due to conformational effects of calcium-binding to the C-terminal domains of TSP1. TSP1 enhances covalent modification of the inter-alpha-trypsin inhibitor by TSG-6 and transfer of its heavy chains to hyaluronan, suggesting a physiological function of TSP1 binding to TSG-6 in regulation of hyaluronan metabolism at sites of inflammation. 相似文献
8.
Blundell CD Almond A Mahoney DJ DeAngelis PL Campbell ID Day AJ 《The Journal of biological chemistry》2005,280(18):18189-18201
The Link module from human TSG-6, a hyaladherin with roles in ovulation and inflammation, has a hyaluronan (HA)-binding groove containing two adjacent tyrosine residues that are likely to form CH-pi stacking interactions with sequential rings in the sugar. We have used this observation to construct a model of a protein.HA complex, which was then tested against existing experimental information and by acquisition of new NMR data sets of [(13)C, (15)N]HA (8-mer) complexed with unlabeled protein. A major finding of this analysis was that acetamido side chains of two GlcNAc rings fit into hydrophobic pockets on either side of the adjacent tyrosines, providing a selectivity mechanism of HA over other polysaccharides. Furthermore, two basic residues have a separation that matches that of glucuronic acids in the sugar, consistent with the formation of salt bridges; NMR experiments at a range of pH values identified protein groups that titrate due to their proximity to a free carboxylate in HA. Sequence alignment and construction of homology models for all human Link modules in their HA-bound states revealed that many of these features are conserved across the superfamily, thus allowing the prediction of functionally important residues. In the case of cartilage link protein, its two Link modules were docked together (using bound HA as a guide), identifying hydrophobic residues likely to form an intra-Link module interface as well as amino acids that could be involved in supporting intermolecular interactions between link proteins and chondroitin sulfate proteoglycans. Here, we propose a mechanism for ternary complex formation that generates higher order helical structures, as may exist in cartilage aggregates. 相似文献
9.
Interleukin-17 (IL-17) has been characterized as a proinflammatory cytokine produced by CD4+ CD45RO+ memory T cells. Overproduction of IL-17 was detected in the synovium of patients with rheumatoid arthritis (RA) compared with patients with osteoarthritis. This study examines differentially expressed genes after the stimulation of fibroblast-like synoviocytes of RA patients by IL-17. Among these genes we identified the following: tumor necrosis factor-stimulated gene-6 (TSG-6), IL-6, IL-8, GRO-beta, and bone morphogenetic protein-6 with an expression 3.6-10.6-fold that in the unstimulated control. IL-17 augmented the expression of TSG-6, a hyaluronan-binding protein, in a time- and dose-dependent manner. IL-17 showed additive effects with IL-1beta and tumour necrosis factor-alpha on the expression of TSG-6, IL-6 and IL-8. The mitogen-activated protein kinase p38 seems to be necessary for the regulation of TSG-6 expression by IL-17, as shown by inhibition with SB203580. Our results support the hypothesis that IL-17 is important in the pathogenesis of RA, contributing to an unbalanced production of cytokines as well as participating in connective tissue remodeling. 相似文献
10.
Cartilage link protein interacts with neurocan, which shows hyaluronan binding characteristics different from CD44 and TSG-6 总被引:2,自引:0,他引:2
Uwe Rauch Satoshi Hirakawa Toshitaka Oohashi Joachim Kappler Gunnel Roos 《Matrix biology》2004,22(8):221-639
The interaction of neurocan with hyaluronan was qualitatively characterized with alkaline phosphatase fusion proteins secreted by mammalian cells. The wild type neurocan hyaluronan binding domain fused to alkaline phosphatase bound to immobilized hyaluronan under physiological as well as moderately hypertonic conditions, whereas its ability to bind to immobilized chondroitin sulfate dropped rapidly with increasing salt concentration. Strong hyaluronan binding ability was still evident when in both link modules within the hyaluronan binding domain a basic amino acid was mutated, which is well conserved among link modules of hyaluronan binding proteins. A strong enhancement of the binding of neurocan to immobilized hyaluronan was observed after preincubation of the immobilized hyaluronan with cartilage link protein. Moreover, this preincubation mediated also the binding of a fusion protein representing only the immunoglobulin module of neurocan linked to alkaline phosphatase, which showed no binding to immobilized hyaluronan alone. The interaction of the neurocan immunoglobulin module with link protein could also be shown by overlay blot analysis. These observations suggest that the hyaluronan binding characteristics of paired link modules are different from those of single link modules, and that the reported temporal co-expression of cartilage link protein and of neurocan in developing brain implicates the possibility of a cooperative function of these molecules. 相似文献
11.
The gene expression plasmid, pET-Lmluc, for the fusion protein of the hyaluronan binding domain from human TSG-6 [product of tumor necrosis factor (TNF)-stimulated gene-6] and luciferase from Renilla reniformis was constructed. The fused gene was expressed in Escherichia coli and the resulted insoluble Lm-luc fusion protein was purified and refolded to recover both the hyaluronan binding capability and the luciferase activity. Hyaluronan as low as 1 ng ml–1 was detected by using the indirect enzymatic immunological assay with the refolded Lm-luc fusion protein. 相似文献
12.
Higman VA Blundell CD Mahoney DJ Redfield C Noble ME Day AJ 《Journal of molecular biology》2007,371(3):669-684
Tumour necrosis factor-stimulated gene-6 (TSG-6) is a glycosaminoglycan-binding protein expressed during inflammatory and inflammation-like processes. Previously NMR structures were calculated for the Link module of TSG-6 (Link_TSG6) in its free state and when bound to an octasaccharide of hyaluronan (HA(8)). Heparin was found to compete for HA binding even though it interacts at a site that is distinct from the HA-binding surface. Here we present crystallography data on the free protein, and (15)N NMR relaxation data for the uncomplexed and HA(8)-bound forms of Link_TSG6. Although the Link module is comparatively rigid overall, the free protein shows a high degree of mobility in the beta4/beta5 loop and at the Cys47-Cys68 disulfide bond, both of which are regions involved in HA binding. When bound to HA(8), this dynamic behaviour is dampened, but not eliminated, suggesting a degree of dynamic matching between the protein and sugar that may decrease the entropic penalty of complex formation. A further highly dynamic residue is Lys54, which is distant from the HA-binding site, but was previously shown to be involved in heparin binding. When HA is bound, Lys54 becomes less mobile, providing evidence for an allosteric effect linking the HA and heparin-binding sites. A mechanism is suggested involving the beta2-strand and alpha2-helix. The crystal structure of free Link_TSG6 contains five molecules in the asymmetric unit that are highly similar to the NMR structure and support the dynamic behaviour seen near the HA-binding site: they show little or no electron density for the beta4/beta5 loop and display multiple conformations for the Cys47-Cys68 disulfide bond. The crystal structures were used in docking calculations with heparin. An extended interface between a Link_TSG6 dimer and heparin 11-mer was identified that is in excellent agreement with previous mutagenesis and calorimetric data, providing the basis for further investigation of this interaction. 相似文献
13.
We have developed a procedure for the quantitative refolding of the Link module from human tumor necrosis factor-stimulated gene 6. This significantly simplifies the previously described method of production of this protein domain (Dayet al., Protein Expression Purif.8, 1–16, 1996). The refolding is carried out under nondenaturing conditions at pH 6.0 in the presence of a 100-fold molar excess of β-mercaptoethanol. After 2 days the starting material, which consists of three species that differ only with respect to their disulfide bond organization, has rearranged to give a single homogeneous species with the correct disulfide bridges. This method allows the production of about 20 mg of folded protein per liter ofEscherichia coliculture. 相似文献
14.
A binding site for thrombomodulin on human thrombin (alpha-thrombin) was elucidated by identifying an epitope for a monoclonal antibody for thrombin (MT-6) which inhibited the activation of protein C by the thrombin-thrombomodulin complex by directly inhibiting the binding of thrombin to thrombomodulin. An 8.5-kDa fragment isolated by digestion of thrombin with Staphylococcus aureus V8 protease followed by reversed-phase high performance liquid chromatography (HPLC) and a peptide isolated by reversed-phase HPLC after reduction of the 8.5-kDa fragment, which was composed of three peptides linked by disulfide-bonds, bound directly to MT-6 and thrombomodulin. The amino acid sequence of the peptide coincided with the sequence of residues Thr-147 to Asp-175 of the B-chain of thrombin. A synthetic peptide corresponding to Thr-147 to Ser-158 of the B-chain inhibited the binding of thrombin to thrombomodulin. Elastase-digested thrombin, which was cleaved between Ala-150 and Asn-151, lost its binding affinity for both MT-6 and thrombomodulin. These findings indicate that the binding site for thrombomodulin is located within the sequence between Thr-147 and Ser-158 of the B-chain. 相似文献
15.
Localization of the conglutinin binding site on the third component of human complement 总被引:6,自引:0,他引:6
S Hirani J D Lambris H J Müller-Eberhard 《Journal of immunology (Baltimore, Md. : 1950)》1985,134(2):1105-1109
The binding site on the human third complement component for bovine conglutinin has been located. C3 fragments were purified to homogeneity by preparative SDS-polyacrylamide-gel electrophoresis. Only the N-terminal 27,000 dalton (Da) fragment of the alpha'-chain and the beta-chain were found to be glycosylated, and the carbohydrate was susceptible to endo-beta-N-acetylglucosaminidase H. This finding indicates that only high mannose or hybrid-type oligosaccharide chains are present on the C3 molecule. Binding to conglutinin was determined by an enzyme-linked immunosorbent assay and occurred with C3b, iC3b, C3c, the alpha-chain, and the 27,000 Da fragment of the alpha'-chain, but not with C3d or the C-terminal 40,000 Da fragment of the alpha'-chain. The beta-chain displayed very weak interaction. Binding to conglutinin could be inhibited by EDTA, N-acetylglucosamine, and to a lesser degree by mannose. Enzymatic removal of the carbohydrate from the C3 molecule abolished binding to conglutinin. It is concluded that bovine conglutinin binds to the carbohydrate moiety located on the N-terminal 27,000 Da polypeptide of the alpha-chain. 相似文献
16.
Nentwich HA Mustafa Z Rugg MS Marsden BD Cordell MR Mahoney DJ Jenkins SC Dowling B Fries E Milner CM Loughlin J Day AJ 《The Journal of biological chemistry》2002,277(18):15354-15362
Tumor necrosis factor-stimulated gene-6 (TSG-6) encodes a 35-kDa protein, which is comprised of contiguous Link and CUB modules. TSG-6 protein has been detected in the articular joints of osteoarthritis (OA) patients, with little or no constitutive expression in normal adult tissues. It interacts with components of cartilage matrix (e.g. hyaluronan and aggrecan) and thus may be involved in extracellular remodeling during joint disease. In addition, TSG-6 has been found to have anti-inflammatory properties in models of acute and chronic inflammation. Here we have mapped the human TSG-6 gene to 2q23.3, a region of chromosome 2 linked with OA. A single nucleotide polymorphism was identified that involves a non-synonymous G --> A transition at nucleotide 431 of the TSG-6 coding sequence, resulting in an Arg to Gln alteration in the CUB module (at residue 144 in the preprotein). Molecular modeling of the CUB domain indicated that this amino acid change might lead to functional differences. Typing of 400 OA cases and 400 controls revealed that the A(431) variant identified here is the major TSG-6 allele in Caucasians (with over 75% being A(431) homozygotes) but that this polymorphism is not a marker for OA susceptibility in the patients we have studied. Expression of the Arg(144) and Gln(144) allotypes in Drosophila Schneider 2 cells, and functional characterization, showed that there were no significant differences in the ability of these full-length proteins to bind hyaluronan or form a stable complex with inter-alpha-inhibitor. 相似文献
17.
Two cytokine-inducible gene products, important in inflammation and infection, also play essential roles in female fertility. One of these is the product of tumor necrosis factor (TNF)-stimulated gene 6 (TSG-6), alternatively termed TNFAIP6 (for TNF-alpha-induced protein 6), originally cloned from diploid human fibroblasts stimulated with TNF. The second is pentraxin 3 (PTX3), also termed TSG-14, originally isolated from TNF-stimulated human fibroblasts and from interleukin-1 (IL-1)-stimulated vascular endothelial cells. TSG-6, which specifically binds to hyaluronan (HA) and to inter-alpha-inhibitor (I alpha I), shows potent anti-inflammatory activity in acute and chronic inflammation, notably in several models of autoimmune arthritis. PTX3 was shown to play an important role in resistance to fungal infection with Aspergillus fumigatus. Both TSG-6 and PTX3 are synthesized in the ovary prior to ovulation, where they become components of an expanding viscoelastic matrix that surrounds the oocyte before its release from the follicle at the ovarian surface. Female mice with a targeted disruption of either the TSG-6 or PTX3 gene show severe defects in fertility. 相似文献
18.
Seyfried NT McVey GF Almond A Mahoney DJ Dudhia J Day AJ 《The Journal of biological chemistry》2005,280(7):5435-5448
The chondroitin sulfate proteoglycan aggrecan forms link protein-stabilized complexes with hyaluronan (HA), via its N-terminal G1-domain, that provide cartilage with its load bearing properties. Similar aggregates (potentially containing new members of the link protein family), in which other chondroitin sulfate proteoglycans (i.e. versican, brevican, and neurocan) substitute for aggrecan, may contribute to the structural integrity of many other tissues including skin and brain. In this study, cartilage link protein (cLP) and the G1-domains of aggrecan (AG1) and versican (VG1) were expressed in Drosophila S2 cells. The recombinant human proteins were found to have properties similar to those described for the native molecules (e.g. cLP was able to form oligomers, and HA decasaccharides were the minimum size that could compete effectively for their binding to polymeric HA). Gel filtration and protein cross-linking/matrix-assisted laser desorption ionization time-of-flight peptide fingerprinting showed that cLP and AG1 interact in the absence or presence of HA. Conversely, cLP and VG1 did not bind directly to each other in solution yet formed ternary complexes with HA24. N-linked glycosylation of AG1 and VG1 was demonstrated to be unnecessary for either HA binding or the formation of ternary complexes. Surprisingly, the length of HA required to accommodate two G1-domains was found to be significantly larger for aggrecan than versican, which may reflect differences in the conformation of HA stabilized on binding these proteins. 相似文献
19.
Kvezereli M Michie SA Yu T Creusot RJ Fontaine MJ 《Journal of molecular histology》2008,39(6):585-593
The histologic hallmark of the development of type 1 diabetes (T1D) is insulitis, characterized by leukocytic infiltration
of the pancreatic islets. The molecules controlling the early influx of leukocytes into the islets are poorly understood.
Tumor necrosis factor α (TNFα)-stimulated gene 6 (TSG-6) is involved in inflammation, extracellular matrix formation, cell
migration, and development. In the present study, we examined the expression and cellular localization of TSG-6 protein in
islets of female non-obese diabetic (NOD) mice using frozen section immunofluorescence staining. Pancreata from nondiabetic
(8 and 25 weeks old), prediabetic (230–280 mg/dl blood glucose) and diabetic (>300 mg/dl blood glucose) NOD mice were stained
for TSG-6, insulin, CD3, CD11c, Mac3 and CD31. TSG-6 protein was detected in 67% of islets of prediabetic mice, 27% of islets
of 25-week old nondiabetic mice, and less than 7% of islets of diabetic mice and 8-week old nondiabetic mice. Lastly, islet-derived
TSG-6 protein was localized to the infiltrating CD3 and CD11c positive leukocytes.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
20.
Lesley J Gál I Mahoney DJ Cordell MR Rugg MS Hyman R Day AJ Mikecz K 《The Journal of biological chemistry》2004,279(24):25745-25754
Interactions between CD44 and hyaluronan are implicated in the primary adhesion of lymphocytes to endothelium at inflammatory locations. Here we show that preincubation of hyaluronan with full-length recombinant TSG-6 or its Link module domain (Link_TSG6) enhances or induces the binding of hyaluronan to cell surface CD44 on constitutive and inducible cell backgrounds, respectively. These effects are blocked by CD44-specific antibodies and are absent in CD44-negative cells. Enhancement of CD44-mediated interactions of lymphoid cells with hyaluronan by TSG-6 proteins was seen under conditions of flow at shear forces that occur in post-capillary venules. Increases in the number of rolling cells were observed on substrates comprising TSG-6-hyaluronan complexes as compared with a substrate containing hyaluronan alone. In ligand competition experiments, cell surface-bound TSG-6-hyaluronan complexes were more potent than hyaluronan alone in inhibiting cell adhesion to immobilized hyaluronan. Link_TSG6 mutants with impaired hyaluronan binding function had a reduced ability to modulate ligand binding by cell surface CD44. However, some mutants that exhibited close to wild-type hyaluronan binding were found to have either reduced or increased activity, suggesting that some amino acid residues outside of the hyaluronan binding site might be involved in protein self-association, potentially leading to the formation of cross-linked hyaluronan fibers. In turn, cross-linked hyaluronan could increase the binding avidity of CD44 by inducing receptor clustering. The ability of TSG-6 to modulate the interaction of hyaluronan with CD44 has important implications for CD44-mediated cell activity at sites of inflammation, where TSG-6 is expressed. 相似文献