首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The phycobilisomes (PBS) from the blue-green algae Microcystis aerogenosa was found to possess the adenylate kinase activity. The enzyme activity of PBS is kept for 2 weeks, reaching its maximum on th 2nd-4th day after PBS isolation from the cells, and is retained after passage of freshly isolated PBS through a column with Sephadex G-25. The adenylate kinase activity of PBS is thermostable, depends on the protein concentration in the sample, undergoes activation by white light and is inhibited by glutaric aldehyde. The enzyme activity is presumably determined by the components of the low molecular weight protein fraction of non-pigment origin, which are constituents of PBS.  相似文献   

3.
Microalgal assemblages from the bottom ice, the ice-water interface and the water column were systematically sampled from April to June 1986, in southeastern Hudson Bay (Canadian Arctic). The taxonomic similarity between samples from the three environments was assessed using a clustering procedure. There were two groups that comprised samples from both the ice-water interface and the water column, while five other groups were made of samples originating from a single environment. Taxonomic compositions of the two mixed groups suggest two types of connexion between the ice-water interface and the water column, i.e. before the phytoplankton bloom, there was seeding of the water column by ice algae and, during ice melt, interfacial algae contributed to the water column communities that were otherwise typically phytoplankton. Overall, the phytoplankton community underwent a succession from pennate to centric diatoms. Sinking rates of algae from the ice-water interface were estimated using settling columns (SETCOL). The sinking rates increased seasonally (0.4–2.7 m d–1), which enhanced accessibility of ice-algal cells to the pelagic grazers. Ice algae contributed to water column production as they became accessible to the pelagic grazers, and also by seeding the water column before the phytoplankton bloom.Contribution to the programs of GIROQ (Groupe interuniversitaire de recherches océanographiques du Québec) and of the Maurice Lamontagne Institute (Department of Fisheries and Oceans)  相似文献   

4.
The heme and chlorophyll precursor δ-aminolevulinic acid acid (ALA) is formed in plants and algae from glutamate in a process that requires at least three enzyme components plus a low molecular weight RNA which co-purifies with the tRNA fraction during DEAE-cellulose column chromatography. RNA that is effective in the in vitro ALA biosynthetic system was extracted from several plant and algal species that form ALA via this route. In all cases, the effective RNA contained the UUC glutamate anticodon, as determined by its specific retention on an affinity resin containing an affine ligand directed against this anticodon. Construction of the affinity resin was based on the fact that the UUC glutamate anticodon is complementary to the GAA phenylalanine anticodon. By covalently linking the 3′ terminus of yeast tRNAPhe(GAA) to hydrazine-activated polyacrylamide gel beads, a resin carrying an affine ligand specific for the anticodon of tRNAGlu(UUC) was obtained. Column chromatography of plant and algal RNA extracts over this resin yielded a fraction that was highly enriched in the ability to stimulate ALA formation from glutamate when added to enzyme extracts of the unicellular green alga Chlorella vulgaris. Enhancement of ALA formation per A260 unit added was as much as 50 times greater with the affinity-purified RNA than with the RNA before affinity purification. The affinity column selectively retained RNA which supported ALA formation upon chromatography of RNA extracts from species of the diverse algal groups Chlorophyta (Chlorella Vulgaris), Euglenophyta (Euglena gracilis), Rhodophyta (Cyanidium caldarium), and Cyanophyta (Synechocystis sp. PCC 6803), and a higher plant (spinach). Other glutamate-accepting tRNAs that were not retained by the affinity column were ineffective in supporting ALA formation. These results indicate that possession of the UUC glutamate anticodon is a general requirement for RNA to participate in the conversion of glutamate to ALA in plants and algae.  相似文献   

5.
Conventional genomic DNA extraction protocols need expensive and hazardous reagents for decontamination of phenolic compounds from the extracts and are only suited for certain types of tissue. We developed a simple, time-saving and cost-efficient method for genomic DNA extraction from various types of organisms, using relatively innocuous reagents. The protocol employs a single purification step to remove contaminating compounds, using a silica column and a non-hazardous buffer, and a chaotropic-detergent lysing solution that hydrolyzes RNA and allows the selective precipitation of DNA from cell lysates. We used this system to extract genomic DNA from different tissues of various organisms, including algae (Dunaliella salina), human peripheral blood, mouse liver, Escherichia coli, and Chinese hamster ovary cells. Mean DNA yields were 20-30 μg/cm(3) from fresh tissues (comparable to yields given by commercial extraction kits), and the 260/280 nm absorbance ratio was 1.8-2.0, demonstrating a good degree of purity. The extracted DNA was successfully used in PCR, restriction enzyme digestion and for recombinant selection studies.  相似文献   

6.
7.
Large blooms of opportunistic green macroalgae such as Enteromorpha intestinalis are of ecological concern in estuaries worldwide. Macroalgae derive their nutrients from the water column but estuarine sediments may also be an important nutrient source. We hypothesized that the importance of these nutrient sources to E. intestinalis varies along a nutrient-resource gradient within an estuary. We tested this in experimental units constructed with water and sediments collected from 3 sites in Upper Newport Bay estuary, California, US, that varied greatly in water column nutrient concentrations. For each site there were three treatments: sediments + water; sediments + water + Enteromorpha intestinalis (algae); inert sand + water + algae. Water in units was exchanged weekly simulating low turnover characteristic of poorly flushed estuaries. The importance of the water column versus sediments as a source of nutrients to E. intestinalis varied with the magnitude of the different sources. When initial water column levels of dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) were low, estuarine sediments increased E. intestinalis growth and tissue nutrient content. In experimental units from sites where initial water column DIN was high, there was no effect of estuarine sediments on E. intestinalis growth or tissue N content. Salinity, however, was low in these units and may have inhibited growth. E. intestinalis growth and tissue P content were highest in units from the site with highest initial sediment nutrient content. Water column DIN was depleted each week of the experiment. Thus, the water column was a primary source of nutrients to the algae when water column nutrient supply was high, and the sediments supplemented nutrient supply to the algae when water column nutrient sources were low. Depletion of water column DIN in sediment + water units indicated that the sediments may have acted as a nutrient sink in the absence of macroalgae. Our data provide direct experimental evidence that macroalgae utilize and ecologically benefit from nutrients stored in estuarine sediments.  相似文献   

8.
Homogenates of various lower land plants, aquatic angiosperms, and green algae were assayed for glycolate oxidase, a peroxisomal enzyme present in green leaves of higher plants, and for glycolate dehydrogenase, a functionally analogous enzyme characteristic of certain green algae. Green tissues of all lower land plants examined (including mosses, liverworts, ferns, and fern allies), as well as three freshwater aquatic angiosperms, contained an enzyme resembling glycolate oxidase, in that it oxidized l- but not d-lactate in addition to glycolate, and was insensitive to 2 mm cyanide. Many of the green algae (including Chlorella vulgaris, previously claimed to have glycolate oxidase) contained an enzyme resembling glycolate dehydrogenase, in that it oxidized d- but not l-lactate, and was inhibited by 2 mm cyanide. Other green algae had activity characteristic of glycolate oxidase and, accordingly, showed a substantial glycolate-dependent O2 uptake. It is pointed out that this distribution pattern of glycolate oxidase and glycolate dehydrogenase among the green plants may have phylogenetic significance.  相似文献   

9.
Some marine algae can form volatile aldehydes such as n-hexanal, hexenals, and nonenals. In higher plants it is well established that these short-chain aldehydes are formed from C18 fatty acids via actions of lipoxygenase and fatty acid hydroperoxide lyase, however, the biosynthetic pathway in marine algae has not been fully established yet. A brown alga, Laminaria angustata, forms relatively higher amounts of C6- and C9-aldehydes. When linoleic acid was added to a homogenate prepared from the fronds of this algae, formation of n-hexanal was observed. When glutathione peroxidase was added to the reaction mixture concomitant with glutathione, the formation of n-hexanal from linoleic acid was inhibited, and oxygenated fatty acids accumulated. By chemical analyses one of the major oxygenated fatty acids was shown to be (S)-13-hydroxy-(Z, E)-9, 11-octadecadienoic acid. Therefore, it is assumed that n-hexanal is formed from linoleic acid via a sequential action of lipoxygenase and fatty acid hydroperoxide lyase (HPL), by an almost similar pathway as the counterpart found in higher plants HPL partially purified from the fronds has a rather strict substrate specificity, and only 13-hydroperoxide of linoleic acid, and 15-hydroperoxide of arachidonic acid are the essentially suitable substrates for the enzyme. By surveying various species of marine algae including Phaeophyta, Rhodophyta and Chlorophyta it was shown that almost all the marine algae have HPL activity. Thus, a wide distribution of the enzyme is expected.  相似文献   

10.
Four species of red marine algae (Rhodophyceae), five species of brown marine algae (Pheophyceae) and two species of green marine algae (Chlorophyceae) were examined for the fatty acid composition of the three lipid groups separated by silica gel column chromatography (neutral lipids, glycolipids, phospholipids). The four red algae had high contents of 16:0 and C20-polyunsaturated fatty acids (PUFA), 20:5n-3 ranging from 18 to 49% of the total fatty acid content and 20:4n-6 from 1.4 to 22.5%, these fatty acids were evenly distributed in all lipid groups. The five brown algae had high contents of 18:1n-9, 18:2n-6 and 18:3n-3 but low content of 20:5n-3. No precise trend was detected for the distribution of these fatty acids in the three lipid groups. The two green algae had high contents of 16:0, 18:1n-7 and 18:3n-3 and a very low content of PUFA. They contained also large amounts of 16:4n-3 together with 16:2n-6 and 16:3n-3. While 16:2n-6 was mainly found in phospholipids, 16:4n-3 was mainly distributed in neutral lipids and glycolipids.Porphyra umbilicalis represents the richest source of 20:5n-3 whileUndaria pinnatifida can be selected when a balanced mixture of (n-6) and (n-3) PUFA is required.Author for correspondence  相似文献   

11.
Chromium(VI) is present in several industrial wastewaters and it can cause health and environmental hazards above certain concentrations. Equilibrium studies have shown the feasibility of using Sargassum sp. algae for chromium removal from aqueous solutions by biosorption. However, for the design and operation of chromium biosorption processes, dynamic flow studies are required. The objective of the study was to examine chromium(VI) removal from an aqueous solution using a packed-bed column with Sargassum sp. algae as a biosorbent. The dynamic behavior of the biosorption column was investigated through experiments and the influence of operating conditions, such as initial chromium concentration, flow rate and amount of biosorbent, on the column removal capacity have been analyzed using the factorial design methodology. The capacity of removal obtained at optimum conditions was 19.06 mg of metal/g biosorbent.  相似文献   

12.
Polyclonal antiserum specific for ferredoxin-nitrite reductase (EC 1.7.7.1) from the green alga Chlamydomonas reinhardii recognized the nitrite reductase from other green algae, but did not cross-react with the corresponding enzyme from different cyanobacteria or higher plant leaves. An analogous situation was also found for ferredoxin-glutamate synthase (EC 1.4.7.1), using its specific antiserum. Besides, the antibodies raised against C. reinhardii ferredoxin-glutamate synthase were able to inactivate the ferredoxin-dependent activity of nitrite reductase from green algae.These results suggest that there exist similar domains in ferredoxin-nitrite reductases and ferredoxin-glutamate synthases from green algae. In addition, both types of enzymes share common antigenic determinants, probably located at the ferredoxin-binding domain. In spite of their physicochemical resemblances, no apparent antigenic correlation exists between the corresponding enzymes from green algae and those from higher plant leaves or cyanobacteria.Abbreviations Fd ferredoxin - GOGAT glutamate synthase - MV+ reduced methyl viologen (radical cation) - NiR nitrite reductase - PMSF phenylmethylsulphonyl fluoride - SDS sodium dodecyl sulfate  相似文献   

13.
S Gamati  J H Luong 《Bioseparation》1991,2(3):147-154
An enzyme fraction, acting predominantly on L-phenylalanine has been purified and characterized from Morganella morganii. The total envelope was prepared by disrupting the cells with a French press followed by high speed centrifugation. After solubilization of the particulate fraction with 0.1% Triton X-100 and then centrifugation, the resulting supernatant was layered onto a DEAE-Cellulose column. Active fractions eluted were applied to a Phenyl-Sepharose CL-4B column as the final purification step. The activity of the purified enzyme to various L-amino acids in decreasing order was phenylalanine, methionine, leucine, tryptophan, and to a much lesser extent cysteine and tyrosine. At 4 degrees C in 20 mM phosphate buffer pH 7.5, the partially purified fractions collected from the DEAE-Cellulose column were stable for 120 h. On the other hand, the purified fractions obtained from the Phenyl Sepharose CL-4B column showed a drastic decrease in activity within only 24 h. Mg2+ (up to 40 mM), Mn2+ or Ca2+ (up to 10 mM) stimulated the oxidation of the purified enzyme but increases beyond such levels decreased the enzyme activity. Co2+ (0.05 mM), Cu2+ (0.5 mM) or Zn2+ (0.1 mM) decreased the enzyme activity 37, 33 and 20%, respectively.  相似文献   

14.
Lecithin-cholesterol acyltransferase was purified from rat plasma and the properties of this enzyme during the purification procedures and those of the purified enzyme were investigated in comparison with the human enzyme. The rat enzyme was not adsorbed on hydroxyapatite, which was employed for the purification of the human enzyme. When purified human enzyme was incubated at 37 degrees C in 0.1 mM phosphate buffer (pH 7.4; ionic strength, 0.00025), no alteration of enzyme activity was observed for up to 6 h. In the case of the rat enzyme, however, approximately 40% of the enzyme activity was lost under the same conditions. The human enzyme and rat enzyme were both retained on a Sepharose 4B column to which HDL3 was covalently linked, in 39 mM phosphate buffer, pH 7.4. Although the human enzyme was eluted from the column in 1 mM phosphate buffer, the rat enzyme was dissociated from the column at a lower buffer concentration (0.1 mM phosphate buffer). These findings indicate that the rat enzyme effectively associated with HDL3 in 39 mM phosphate buffer, pH 7.4, but the association was more sensitive to increase of ionic strength compared with that of the human enzyme.  相似文献   

15.
A marine bacterial strain, Fucobacter marina, produced extracellular sulfated fucoglucuronomannan (SFGM) lyase when cultivated in the presence of crude SFGM obtained from fucoidan of Kjellmaniella crassifolia (brown algae) by cetyl pyridinium chloride fractionation. For the SFGM lyase assay, SFGM fraction separated from K. crassifolia fucoidan by anion exchange column chromatography was used as the substrate. The extracellular SFGM lyase was purified to homogeneity on an electrophoresis gel with 4240-fold purity at 13.8% yield. The enzyme proved to be a monomer, since gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis gave the same relative molecular mass of 67,000. The enzyme specifically digested SFGM but did not digest any other uronic-acid-containing polysaccharides tested. The optimum conditions for the enzyme reaction were around pH 7.5, 43°C, and 0.4 M NaCl concentration. The enzyme was strongly inhibited by CuCl2 and ZnCl2, and also by some sulfhydryl reagents.  相似文献   

16.
The acyclic monoterpene myrcene is the likely progenitor of the unusual cytotoxic halogenated monoterpenes that are found in marine algae and that function as feeding deterrents to herbivores. Myrcene synthase was isolated from suspension cultures of the marine red alga Ochtodes secundiramea, representing the first enzyme of this type from a marine organism. The algal myrcene synthase produces exclusively myrcene from the natural substrate geranyl diphosphate (GDP), utilizes Mg(+2) as the required divalent metal ion cofactor, has a molecular mass of about 69 kDa, and exhibits a pH optimum near 7.2. These features are similar to those of monoterpene synthases from terrestrial organisms. When incubated with neryl diphosphate (the cis-isomer of GDP), the O. secundiramea myrcene synthase produces the cyclic monoterpene limonene, whereas incubation with (+/-)linalyl diphosphate (the tertiary allylic isomer of geranyl diphosphate) yields both acyclic and cyclic monoterpenes. These results suggest that the enzyme is incapable of isomerizing geranyl diphosphate to linalyl diphosphate, a feature common to all monoterpene cyclases from terrestrial sources. The limited catalytic capability of the myrcene synthase may reflect the ancient evolutionary origin of the producing organism. The ability to assay this enzyme in cultured algae, grown under strictly defined conditions, provides an unparalleled opportunity to delineate factors eliciting the biosynthesis of this class of secondary metabolites, to investigate the metabolic pathway leading to the halogenated monoterpenes, and to determine their role in the chemical ecology of marine algae.  相似文献   

17.
beta-Glucocerebrosidase, partially purified by the method of F. S. Furbish et al. (1977, Proc. Natl. Acad. Sci. USA 74, 3560-3563), was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to contain, in addition to the desired enzyme, variable amounts of a very hydrophobic contaminant (apparent Mr 45,000). Purification of the enzyme was accomplished by gel-permeation HPLC on a TSK 3000 SW column (0.7 X 60 cm). Adsorptive losses of protein on the column were minimized by using buffers containing up to 50% ethylene glycol. We have examined the effects of varying the ethylene glycol concentration on the elution times and recoveries of the two major proteins in this preparation. The high reproducibility of the individual chromatograms permitted the use of an automatic sampler and fraction collector to perform multiple, continuous runs for the purification of milligram quantities of enzyme. Multiple runs of a preparative-scale column, TSK G3000 SWG (2.15 X 60 cm), permitted gram-scale purification of beta-glucocerebrosidase without loss in efficiency of separation. Recovery of enzyme activity is greater than 94% with less than 1% contamination by other proteins. Reaction of enzyme prepared in this fashion with rabbit polyclonal antiserum or mouse monoclonal anti-beta-glucocerebrosidase shows the enzyme to be pure and not immunologically related to the 45,000 Mr contaminant. The specific activity of enzyme prepared by this means is 1.6 X 10(6) nmol/h/mg protein. Inclusion of ethylene glycol in buffers was shown to overcome hydrophobic protein interactions with TSK 3000 SW column matrices for both the soluble human lysosomal enzyme alpha-galactosidase A and the plant toxin ricin.  相似文献   

18.
A bacterial strain that assimilates fucoidan from Cladosiphon okamuranus as sole carbon source was isolated as Luteolibacter algae H-18. It was found that it degraded fucoidan by intracellular enzymes, and that the degradation reactions were catalyzed by multiple enzymes. One enzyme, designated fraction B, was established to exhibit the deacetylation reaction of fucoidan. Other enzyme(s), designated fraction A, catalyzed the reaction(s) lowering the molecular weight of fucoidan.  相似文献   

19.
Eutrophication in the northern Baltic Sea promotes growth of annual filamentous algae. The algae detach, gather at the bottom and give rise to algal mats of varying size, density, composition and condition. Dense mats of filamentous algae induce anoxia, which in turn leads to faunal mortality. By a set of field experiments, we have studied the fate of the abundant Cladophora glomerata after detaching from the rocky substrate, and the effect of water depth and sediment on its decay. Further, we have studied the importance of common mesograzers (Gammarus and Idotea) on the rate of degradation of C. glomerata and Pilayella littoralis.Our results show that loose algae at shallow sites (8 m) decompose faster than algae in deeper (18 m) areas. Drifting C. glomerata on the sediment is more rapidly broken down and dissolved than algae floating in the water column, which depends on higher microbiological activity. Dominant amphipods (Gammarus spp) colonise near-shore drift algae quickly, and juvenile bivalves (Cerastoderma glaucum) utilise algae in the water column for settling. Moderate natural densities of grazers (Gammarus spp and Idotea baltica) in the drifting algae did not increase the degradation rates of C. glomerata and P. littoralis. C. glomerata was completely decomposed in 4 months.Our experiments demonstrate the effects of position (depth, water/sediment) and grazing on the degradation of drifting filamentous algae. Mass developments of opportunistic algae occur annually in the study area, and information on the destiny of detached drift algae may help us to predict their longevity and the damage they cause, and hence, to decide on long-term measures needed to improve environmental conditions.  相似文献   

20.
Superoxide dismutases in photosynthetic organisms at different evolutionary levels were characterized using the criterion that the Cu,Zn-enzyme is sensitive to cyanide while the Mn- and Fe-enzymes are insensitive. The effect of the antibody against spinach Cu,Zn-superoxide dismutase was also tested as a means of distinguishing the several forms of the enzyme. Superoxide dismutase activity in extracts from photosynthetic bacteria, prokaryotic algae (blue-green algae), and eukaryotic algae (red, green, and brown algae, diatoms, Euglena, and Charophyta) were insensitive to cyanide and to the antibody, suggesting the presence of the Fe- and/or Mn-enzymes and the absence of the Cu,Zn-enzyme. In contrast, ferns, mosses, and seed plants including gymnosperms and angiosperms contained the Cu,Zn-superoxide dismutase in addition to the cyanidein-sensitive enzyme in soluble or bound form. Although an aerial green alga lacks the Cu,Zn-superoxide dismutase, aquatic angiosperms and ferns, like other land plants, contain this form of superoxide dismutase. Thus the distribution of the Cu,Zn-superoxide dismutase does not reflect the habitat but, rather, the phylogeny of the organism. The relation between the oxygen concentration in the atmosphere and the appearance of various forms of superoxide dismutase during the evolution of photosynthetic organisms is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号