首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ramamoorthy  V.  Raguchander  T.  Samiyappan  R. 《Plant and Soil》2002,239(1):55-68
Pseudomonas fluorescens isolate Pf1 was found to protect tomato plants from wilt disease caused by Fusarium oxysporum f. sp. lycopersici. Induction of defense proteins and chemicals by P. fluorescens isolate Pf1 against challenge inoculation with F. oxysporum f. sp. lycopersici in tomato was studied. Phenolics were found to accumulate in bacterized tomato root tissues challenged with F. oxysporum f. sp. lycopersici at one day after pathogen challenge. The accumulation of phenolics reached maximum at the 5th day after pathogen challenge. In pathogen-inoculated plants, the accumulation started at the 2nd day and drastically decreased 4 days after the pathogen inoculation. Activities of phenylalanine ammonia-lyase (PAL), peroxidase (PO) and polyphenol oxidase (PPO) increased in bacterized tomato root tissues challenged with the pathogen at one day after pathogen challenge and activities of PAL and PO reached maximum at the 4th day while activity of PPO reached maximum at the 5th day after challenge inoculation. Isoform analysis revealed that a unique PPO1 isoform was induced and PO1 and PPO2 isoforms were expressed at higher levels in bacterized tomato root tissues challenge inoculated with the pathogen. Similarly, -1,3 glucanase, chitinase and thaumatin-like proteins (TLP) were induced to accumulate at higher levels at 3-5 days of challenge inoculation in bacterized plants. Western blot analysis showed that chitinase isoform Chi2 with a molecular weight of 46 kDa was newly induced due to P. fluorescens isolate Pf1 treatment challenged with the pathogen. TLP isoform with molecular weight of 33 kDa was induced not only in P. fluorescens isolate Pf1-treated root tissues challenged with the pathogen but also in roots treated with P. fluorescens isolate Pf1 alone and roots inoculated with the pathogen. These results suggest that induction of defense enzymes involved in phenylpropanoid pathway and accumulation of phenolics and PR-proteins might have contributed to restriction of invasion of F. oxysporum f. sp. lycopersici in tomato roots.  相似文献   

2.
L. Xu    T. Nonomura    S. Suzuki    Y. Kitagawa    H. Tajima    K. Okada    S. Kusakari    Y. Matsuda    H. Toyoda 《Journal of Phytopathology》2006,154(10):577-586
The pathogenic isolates (Kin2001a, Kin2001b and Kin2003) of Fusarium oxysporum f. sp. radicis‐lycopersici were obtained from hydroponically cultured seedlings of pear tomato (Lycopersicon esculentum var. pyriforme) infected at different times and their pathogenicity examined in an in vitro assay system on cotyledonal seedlings of pear tomato, cherry tomato (L. esculentum var. cerasiforme) and common tomato (L. esculentum). With the in vitro assay, infection and subsequent disease progress could be microscopically observed. Pear and cherry tomatoes suppressed invasion by all isolates at the junctions of epidermal cells along the root, comparable with the resistant cultivars of common tomato. The pathogen entered pear and cherry tomatoes at the tips of lateral roots and tap roots, in contrast to infection of susceptible cultivars of common tomato. In Kin2003‐inoculated roots, the top of the lateral rootlets first became discoloured, followed by the cortical parenchyma, central xylem vessel and finally the crown. This dark‐brown discolouration expanded rapidly and severe rot developed in the discoloured regions. In contrast, the dark‐brown discolouration in Kin2001b‐infected roots expanded into the cortical parenchyma cells abutting the originally infected lateral rootlets and at a much slower rate. Kin2001a was in a new group that entered via the cortical cleavage formed by the emergence of lateral rootlets, in addition to the tips of taproots and lateral roots. In this in vitro assay system, the Japanese pathogenic isolates collected from different districts of Japan were characterized and classified by the mode of host invasion. Of 13 isolates, four were placed with Kin2003, six with Kin2001a and three with Kin2001b.  相似文献   

3.
Callus cultures derived from isogenic lines of the tomato cultivars Moneymaker and Craigella, resistant or susceptible to F. oxysporum f. sp. lycopersici, were inoculated with Fusarium oxysporum f. sp. lycopersici race 1. Fungal growth was restricted on callus derived from resistant plants, after inoculation with a conidial suspension, whereas callus derived from susceptible plants was totally overgrown by the fungus within 7 days. The concentration of the phytoalexin rishitin was significantly higher in the callus culture derived from a resistant tomato line compared with the callus culture from a susceptible line, 2 and 3 days after inoculation with mycelium. The results of the experiments were compared with experiments with whole plants. Rishitin production as well as growth of the fungus was comparable with responses in plant-fungus interaction. Therefore callus culture may be useful in studying the interaction between tomato plants and race 1 of F. oxysporum f. sp. lycopersici.  相似文献   

4.
The response of seedling roots of near-isogenic tomato varieties to infection by Verticillium albo-atrum or Fusarium oxysporum f. sp. lycopersici was investigated. Studies of the infection of seedling roots not artificially damaged indicated that there was an extra-vascular expression of resistance towards V. albo-atrum but not to F. oxysporum. Roots of resistant tomato seedlings infected by V. albo-atrum contained the fungus in the epidermis and outer cortex while susceptible roots became heavily colonised. Observations made by transmission electron microscopy showed that the fungus appeared to be abnormal in growth and appearance in the epidermal and cortical cells of resistant seedling roots but normal in susceptible roots. Two preformed antifungal terpenoids were detected in seedling roots in greater amounts in resistant that in susceptible varieties. The possible mechanisms of seedling root resistance to vascular wilts are discussed.  相似文献   

5.
The growth of young tomato plants in nutrient solution or in soil and infected with Pyrenochaeta lycopersici Schneider & Gerlach, the cause of tomato brown root rot, was decreased relative to that of uninfected plants. The roots of plants grown in nutrient solution and infected with a mycelial mat of the pathogen contained lower concentrations of potassium and higher concentrations of calcium than roots of uninfected plants. These changes occurred largely in the visibly affected tissue, as opposed to the root system as a whole. The concentrations of magnesium, total nitrogen and phosphorus in the roots of infected plants were not significantly different from those of control plants. Magnesium, nitrogen and phosphorus concentrations in the tops of infected plants were also not significantly different from those of healthy plants, but no consistent changes were found in the concentrations of calcium and potassium. Young tomato plants grown in soil infested with P. lycopersici contained lower concentrations of phosphorus and potassium in the tops than plants grown in sterilized soil. It was not possible to separate intact damaged root systems of infected plants from soil. The changes in composition found in infected plants are discussed in relation to possible methods of manipulating the nutrition of the plant to offset the effects of the disease on crop yield.  相似文献   

6.
Fusarium crown and root rot of tomato (Lycopersicon esculentum) caused by Fusarium oxysporum f. sp. radicis‐lycopersici is a new devastative disease of tomato greenhouse crops in Tunisia. Nothing is known neither about the population of this pathogen in this region, nor about the population of F. oxysporum f. sp. lycopersici the causal agent of Fusarium wilt of tomato. In order to examine the genetic relatedness among the F. oxysporum isolates by intergenic spacer restriction fragment length polymorphism (IGS‐RFLP) analysis and to elucidate the origin of the formae specialesradicis‐lycopersici in Tunisia by looking for genetic similarity of Tunisians isolates with isolates from a foreign source, the genetic diversity among F. oxysporum f. sp. radicis‐lycopersici and F. oxysporum f. sp. lycopersici populations was investigated. A total of 62 isolates of F. oxysporum, obtained from symptomless tomato plants, were characterized using IGS typing and pathogenicity tests on tomato plants. All Fusarium isolates were highly pathogenic on tomato. Fusarium oxysporum f. sp. radicis‐lycopersici isolates were separated into five IGS types. From the 53 F. oxysporum f. sp. radicis‐lycopersici isolates, 34 isolates have the same IGS types (IGS type 25), and the remaining 19 isolates were distributed into four IGS types. However, the only nine isolates of F. oxysporum f. sp. lycopersici have six different IGS types. This difference of diversity between the two formae speciales suggests that F. oxysporum f. sp. radicis‐lycopersici isolates have a foreign origin and may have been accidentally introduced into Tunisia.  相似文献   

7.
The wheat rhizosphere-inhabiting nonpathogenic Fusarium sambucinum isolate FS-94 protected tomato from Fusarium wilt (F. oxysporum f. sp. lycopersici) in laboratory experiments. Seed soaking or immersion of seedling roots in a FS-94 spore suspension prior to inoculation with the pathogen delayed the appearance of wilt symptoms and significantly reduced disease severity in plants of a susceptible tomato cultivar. Quantification of fungal ergosterol in infected tomato showed that protection against wilt agent was related to limitation of the pathogen growth in plants exposed to FS-94. Incubation of tomato seedlings in a FS-94 spore suspension for 48 or 72 h led to plant protection and increased the salicylic acid (SA) concentration in their roots, suggesting that this isolate was involved in a plant-mediated mode of action and induced resistance. Soaking tomato seeds in the spore suspension did not induce SA accumulation in seedling roots, but nevertheless resulted in a significant reduction in wilt severity when the seedlings were challenged with the pathogen. In response to pathogen attack, the SA content in susceptible seedlings grown from FS-94-treated seeds started to increase within 1 day and remained elevated for 72 h. This suggests that F. sambucinum isolate FS-94 primed a SA-dependent signaling system in tomato.  相似文献   

8.
In this article, we describe the presence of genes encoding close homologues of an endogenous plant peptide, rapid alkalinization factor (RALF), within the genomes of 26 species of phytopathogenic fungi. Members of the RALF family are key growth factors in plants, and the sequence of the RALF active region is well conserved between plant and fungal proteins. RALF1‐like sequences were observed in most cases; however, RALF27‐like sequences were present in the Sphaerulina musiva and Septoria populicola genomes. These two species are pathogens of poplar and, interestingly, the closest relative to their respective RALF genes is a poplar RALF27‐like sequence. RALF peptides control cellular expansion during plant development, but were originally defined on the basis of their ability to induce rapid alkalinization in tobacco cell cultures. To test whether the fungal RALF peptides were biologically active in plants, we synthesized RALF peptides corresponding to those encoded by two sequenced genomes of the tomato pathogen Fusarium oxysporum f. sp. lycopersici. One of these peptides inhibited the growth of tomato seedlings and elicited responses in tomato and Nicotiana benthamiana typical of endogenous plant RALF peptides (reactive oxygen species burst, induced alkalinization and mitogen‐activated protein kinase activation). Gene expression analysis confirmed that a RALF‐encoding gene in F. oxysporum f. sp. lycopersici was expressed during infection on tomato. However, a subsequent reverse genetics approach revealed that the RALF peptide was not required by F. oxysporum f. sp. lycopersici for infection on tomato roots. This study has demonstrated the presence of functionally active RALF peptides encoded within phytopathogens that harbour an as yet undetermined role in plant–pathogen interactions.  相似文献   

9.
Two genes encoding putative family F xylanases from the tomato vascular wilt pathogen Fusarium oxysporum f.sp. lycopersici have been cloned and sequenced. The two genes, designated xyl2 and xyl3, encode proteins with calculated molecular masses of 33 and 39.3 kDa and isoelectric points of 8.9 and 6.7, respectively. The predicted amino acid sequences show significant homology to other family F xylanases. XYL3 contains a cellulose-binding domain in its N-terminal region. Southern analysis suggested that xyl2 and xyl3 homologs are also present in other formae speciales of F. oxysporum. Both genes were expressed during growth on oat spelt xylan and tomato vascular tissue in vitro. RT-PCR revealed that xyl3 is expressed in roots and in the lower stems of tomato plants infected by F. oxysporum f.sp. lycopersici throughout the whole disease cycle, whereas xyl2 is only expressed during the final stages of disease. Received: 1 June 1998 / Accepted: 25 December 1998  相似文献   

10.
Methyl salicylate production in tomato affects biotic interactions   总被引:1,自引:0,他引:1  
The role of methyl salicylate (MeSA) production was studied in indirect and direct defence responses of tomato (Solanum lycopersicum) to the spider mite Tetranychus urticae and the root‐invading fungus Fusarium oxysporum f. sp. lycopersici, respectively. To this end, we silenced the tomato gene encoding salicylic acid methyl transferase (SAMT). Silencing of SAMT led to a major reduction in SAMT expression and MeSA emission upon herbivory by spider mites, without affecting the induced emission of other volatiles (terpenoids). The predatory mite Phytoseiulus persimilis, which preys on T. urticae, could not discriminate between infested and non‐infested SAMT‐silenced lines, as it could for wild‐type tomato plants. Moreover, when given the choice between infested SAMT‐silenced and infested wild‐type plants, they preferred the latter. These findings are supportive of a major role for MeSA in this indirect defence response of tomato. SAMT‐silenced tomato plants were less susceptible to a virulent strain of F. oxysporum f. sp. lycopersici, indicating that the direct defense responses in the roots are also affected in these plants. Our studies show that the conversion of SA to MeSA can affect both direct and indirect plant defence responses.  相似文献   

11.
《Plant science》1988,56(3):253-260
Since the host-specific toxins of Alternaria alternata f. sp. lycopersici play an important role in pathogenesis, they potentially could be applied as selective agents in in vitro selection at the cellular level for disease resistance. Prerequisite for this is that sensitivity to the Alternaria alternata f.sp. lycopersici pathotoxins is manifest at the cellular level. To gain insight into cellular effects of AAL-toxins and into the mechanisms of plant insensitivity to AAL-toxins, effects of AAL-toxins on leaves, leaf discs, roots, calli, suspension cells, minicalli and protoplasts of susceptible and resistant tomato genotypes were studied. In leaves of susceptible genotypes, toxins cause severe necrosis, while in leaves of resistant genotypes necrosis was never observed. Inhibition effects of toxins were observed at all other levels in susceptible and resistant genotypes: toxins inhibited shoot induction on leaf discs, root growth and growth of calli, suspension cells and protoplasts. This indicates a cellular site for AAL-toxins. Differences in sensitivity to AAL-toxins between susceptible and resistant genotypes were observed in leaves and roots, but were not observed during shoot induction on leaf discs, in calli, suspension cells and protoplasts. However, differences in sensitivity to AAL-toxins in roots were at least 20 times less than in leaves. Therefore insensitivity seems related to a higher level of tomato plant differentiation and is most pronounced in leaves.  相似文献   

12.
The effect of root exudates from mycorrhizal and non-mycorrhizal tomato plants on microconidia germination of the tomato pathogen Fusarium oxysporum f. sp. lycopersici was tested. Microconidia germination was enhanced in the presence of root exudates from mycorrhizal tomato plants. The more tomato plants were colonized by the arbuscular mycorrhizal fungus Glomus mosseae, the more microconidia germination was increased, indicating that alterations of the exudation pattern depended on the degree of root AM colonization. Moreover, alterations of the exudation pattern of mycorrhizal plants are not only local, but also systemic. Testing the exudates from plants with a high and a low P level revealed that the alterations of the root exudates from mycorrhizal plants, resulting in a changed effect on microconidia germination, are not due to an improved P status of mycorrhizal plants.  相似文献   

13.
Dark septate endophytic fungi (DSE) may have an important functional relationship with host plants, but these functions and the colonization process remain unknown. We made microscopic observations of the growth of an endophytic hyphomycete in Chinese cabbage roots to understand its colonization process. This hyphomycete was Heteroconium chaetospira, a suspected DSE. Three weeks post inoculation, some hyphae became irregularly lobed and formed microsclerotia within host epidermal cells of healthy plants. In stunted plants, hyphae formed closely packed masses of fungal cells within host epidermal cells, but conidiophores rarely broke through the cell walls to produce conidia. Received: December 7, 2000 / Accepted: November 20, 2001  相似文献   

14.
The effect of root exudates from mycorrhizal and non-mycorrhizal tomato plants on microconidia germination of the tomato pathogen Fusarium oxysporum f. sp. lycopersici was tested. Microconidia germination was enhanced in the presence of root exudates from mycorrhizal tomato plants. Tomato plants were colonised by the arbuscular mycorrhizal fungus Glomus fasciculatum, indicating that alterations of the exudation pattern depended on the degree of root AM colonisation. Testing the exudates from plants with a high and a low P level revealed that the alterations of the root exudates from mycorrhizal plants, resulting in a changed effect on microconidia germination, are not due to an improved P status of mycorrhizal plants.  相似文献   

15.
Brown root rot of tomato, and its control, in Crete   总被引:1,自引:0,他引:1  
Symptoms similar to those regarded as typical of brown root rot disease have been noticed in tomato and eggplant in Crete. Infected plants showed symptoms only during the winter. Three fungi Pyrenochaeta lycopersici, Colletotrichum coccodes and Fusarium oxysporum were consistently isolated from infected tomato roots and proved to be pathogenic to young tomato seedlings. Pycnidia of P. lycopersici were produced when small pieces of infected young tomato roots were plated out on tomato juice agar (Oxoid) and incubated at 23 °C under continuous white light. Good control of the disease was achieved when soil was fumigated with dazomet 98% (70g/m2), methyl isothiocyanate (MIC) 20%+ dichloropropane-dichloropropene mixture (DD) 80% (-Di-Trapex; 50 ml/m2), methyl bromide (75 g/m2), and vapam (200 ml/m2) + ethoprophos 10% (10 g/m2) or when solarisation was applied (soil covered by 50 μm transparent polyethylene sheet) during the whole period of August and September. Dazomet (30 g/m2) or ethoprophos 10% (10 g/m2) when combined with solarisation did not improve its effectiveness. MIC 20%+ DD 80% emulsified (Di-Trapex e.c, 50 ml/m2) was ineffective.  相似文献   

16.
Isolates of Verticillium dahliae Kleb. from wilted cacao (Theobroma cacao L.), cotton (Gossypium hirsutum L.), and okra (Abelmoschus esculentus Medik.) penetrated all regions of living cacao tap and lateral roots and progressed intracellularly from the epidermis to the xylem in 4–6 days. The hypocotyl and tissues of the unerupted lateral roots beneath the epidermis resisted invasion. Host reactions included browning of extensively colonized cells, alteration (with apparent granulation) of the cytoplasm, and accumulation of materials in the lumina of endodermal cells. Resistance in the hypocotyl was associated with occasional thickening of inner tangential walls of colonized epidermal cells. The fungus formed conidia, microsclerotia, and narrow and wide hyphae within root tissues. The narrow hyphae predominated at the front of mycelial invasion of tissues while the broad hyphae developed behind this front. Limited studies under non-sterile conditions indicated that the apparent host-parasite interactions were similar to those observed with sterile roots and cultures of V. dahliae.  相似文献   

17.
Simultaneous infestation with root-knot nematodes (RKN) and Fusarium oxysporum f. sp. lycopersici (FOL) leads to formation of a disease complex that increases crop losses than effect of either RKN or FOL. In this study a management programme involving plant resistance, biological control agents, and neem was carried out to manage RKN and fusarium wilt disease complex. The biological control agents were Purpureocillium lilacinum (PL) and Trichoderma harzianum (TH) while the RKN was Meloidogyne javanica. In vitro dual culture plates were set up to test the interaction of biological control agents and FOL. Greenhouse experiments were conducted using two tomato cultivars Rambo F1 and Prostar F1. The treatments were; PL, TH, PL–TH, neem, PL neem, TH neem, and PL–TH neem. Each treatment was replicated four times and the treatments set up in a randomised complete block design in the greenhouse. Inhibition of FOL mycelial growth by TH and PL was 51.9%, and 44% respectively by the ninth day in vitro culture plates. In the cultivar, Prostar F1, the treatments PL–TH, PL, and TH in the presence or absence of neem had a FOL disease severity score significantly lower than the untreated control. Host resistance sufficed to prevent infection of Rambo F1 with FOL. The treatments PL–TH, PL and TH reduced FOL propagules and M. javanica juveniles in the roots and performed even better when combined with neem in both tomato cultivars. Therefore, a host that is resistant combined with biological control agents and organic amendments can be used in the management of RKN and FOL in tomato production.  相似文献   

18.
To determine whether bacteria isolated from within plant tissue can have plant growth-promotion potential and provide biological control against soilborne diseases, seeds and young plants of oilseed rape (Brassica napus L. cv. Casino) and tomato (Lycopersicon lycopersicum L. cv. Dansk export) were inoculated with individual bacterial isolates or mixtures of bacteria that originated from symptomless oilseed rape, wild and cultivated. They were isolated after surface sterilization of living roots and stems. The effects of these isolates on plant growth and soilborne diseases for oilseed rape and tomato were evaluated in greenhouse experiments. We found isolates that not only significantly improved seed germination, seedling length, and plant growth of oilseed rape and tomato but also, when used for seed treatment, significantly reduced disease symptoms caused by their vascular wilt pathogens Verticillium dahliae Kleb and Fusarium oxysporum f. sp. lycopersici (Sacc.), respectively.  相似文献   

19.
Corky root disease of tomato caused by Pyrenochaeta lycopersici is an economically important disease in organic tomato production. This study aimed to evaluate the effects of various composts consisting of green manure, garden waste and horse manure against corky root disease through bioassay under greenhouse conditions, where soil naturally infested with P. lycopersici was used as a root substrate. The various composts were mixed at a rate of 20% (v/v) with the infested soil. Disease severity (measured as infected roots) in the unamended soil was compared with that in the soil–compost mixtures. One of the composts made from garden waste significantly reduced the disease, whereas horse manure compost significantly stimulated it. Lower concentrations of NH4‐N and total carbon and a higher concentration of Ca in the substrate were correlated with lower level of corky root disease. Addition of green manure or garden waste compost to the infested soil increased total microbial activity or population density of copiotrophic bacteria and actinomycetes, respectively. However, increased microbial activity or microbial population in soil–compost mixtures was not associated with a reduction in corky root disease severity in the present study.  相似文献   

20.
Fusarium wilt of tomato (Solanum lycopersicum Mill.) caused by Fusarium oxysporum f. sp. lycopersici (Sacc.) W. C. Snyder and H. N. Hans (Fol.), is most serious and versatile pathogen. Chemical control of disease is not satisfactory and biological control is an attractive and potential alternative to the use of chemicals to control fusarium wilt of tomato. No any bioagent is universally effective everywhere therefore, search for potential biocontrol agent is continuous process and mandatory for several and individual ecological niches. In this experiment biocontrol efficacy of five species of Aspergillus and five species of Trichoderma were evaluated in vitro against Fusarium oxysporum f. sp. lycopersici. In both the experiments (dual culture and culture filtrates) T. harzianum was found to be highly effective against the isolates of Fol. followed by A. niger biocontrol potential of A. terreus is least among all the isolates tested. Culture filtrates obtained from A. luchuensis exerted least inhibition of Fol. The most sensitive isolate of Fol. against all the antagonists tested was identified as IIVR-2 (Fol. 9). Inherent diversity among Fol. isolates, from different tomato growing regions in India, was determined using RAPD primers. The genetic similarity coefficients ranged from 0.20 to 0.96, indicating that no any two or more isolates were 100% similar. RAPD profiles revealed up to 20% genetic diversity among ten isolates of Fusarium oxysporum f. sp. lycopersici.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号